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Abstract: Metabolic syndrome (MetS) is a constellation of metabolic derangements, including central
obesity, insulin resistance, hypertension, glucose intolerance, and dyslipidemia. The pathogenesis
of MetS has been intensively studied, and now many factors are recognized to contribute to the
development of MetS. Among these, trace elements influence the structure of proteins, enzymes,
and complex carbohydrates, and thus an imbalance in trace elements is an independent risk factor for
MetS. The molecular link between trace elements and metabolic homeostasis has been established,
and peroxisome proliferator-activated receptors (PPARs) have appeared as key regulators bridging
these two elements. This is because on one hand, PPARs are actively involved in various metabolic
processes, such as abdominal adiposity and insulin sensitivity, and on the other hand, PPARs
sensitively respond to changes in trace elements. For example, an iron overload attenuates hepatic
mRNA expression of Ppar-α; zinc supplementation is considered to recover the DNA-binding activity
of PPAR-α, which is impaired in steatotic mouse liver; selenium administration downregulates
mRNA expression of Ppar-γ, thereby improving lipid metabolism and oxidative status in the liver of
high-fat diet (HFD)-fed mice. More importantly, PPARs’ expression and activity are under the control
of the circadian clock and show a robust 24 h rhythmicity, which might be the reasons for the side
effects and the clinical limitations of trace elements targeting PPARs. Taken together, understanding
the casual relationships among trace elements, PPARs’ actions, and the pathogenesis of MetS is of
great importance. Further studies are required to explore the chronopharmacological effects of trace
elements on the diurnal oscillation of PPARs and the consequent development of MetS.

Keywords: trace elements; peroxisome proliferator-activated receptors; metabolic syndrome; iron;
zinc; copper; selenium

1. Introduction

Metabolic syndrome (MetS) is a highly prevalent clinical entity which has become a global
epidemic [1]. It increases the incidences of Type 2 diabetes (T2D) and cardiovascular diseases
(CVD), representing a great threat to public health and to entire social economies [2]. Among
subjects aged 15 years and older, the pooled prevalence is 24.5% in Mainland China [3]. MetS
often occurs in populations characterized by excessive nutritional intake and physical inactivity [4].
Metabolic and genetic susceptibility are also potential key risk factors for MetS [5,6]. Abdominal fat
accumulation, upregulation of serum triglycerides and glucose, hypertension, and a dysregulated ratio
of low-to-high-density lipoprotein levels are the most common features of MetS [7]. Patients exhibiting
three or more conditions among obesity, atherosclerotic dyslipidemia, hypertension, hyperglycemia,
and aggravated inflammation can be clinically diagnosed as having MetS [8]. In this population,
individuals with obvious upper-body obesity are more susceptive to MetS [9].

Previous hypotheses suggested that MetS is initiated by insulin resistance (IR) [10]. There is no
doubt that IR causes hyperglycemia, but whether it acts on other metabolic factors is still uncertain [11].
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Another possibility is that obesity (or energy imbalance) may be the main cause, due to the close
relationship between obesity and all metabolic factors [12,13]. Obesity is an effective clinical indicator of
an over-nourished state, but it is not necessarily true that the excessive accumulation of adipose tissue
is the real cause of MetS [11]. For example, caloric restriction reverses most metabolic risk factors even
in cases of continuous obesity [14]; this fact suggests that a positive energy imbalance (over-nutrition)
takes precedence over excessive adipose tissue, which is the main cause of the syndrome [14].

Interest in essential trace and mineral elements has been increasing in recent years [15]. Certain
essential trace elements (such as iron, zinc, selenium) play essential roles in maintaining human
metabolic homeostasis [16–18]. Imbalances in trace elements significantly disrupt energy metabolism,
which causes digestive [19], cardiovascular [20], hematological [21], and endocrine diseases [22].
For example, chromium, copper, zinc, and selenium play indispensable roles in cardiovascular
protection and cholesterol modulation [23,24]. Specifically, several trace elements, such as zinc,
serve as essential components of various enzyme systems, especially, DNA polymerase, glutamate
dehydrogenase, lactic dehydrogenase [25]. Therefore, levels of trace and mineral elements are correlated
with the occurrence of MetS.

2. Trace Elements and Metabolic Syndrome

Trace elements, such as iron, zinc, copper, chromium, selenium, and so on, are micronutrients
involved in hundreds of biological processes, including inflammation [26], oxidative stress [27],
and lipid metabolism [28]. These elements account for a low percentage of total body weight (less
than 0.01%) [29]. Trace elements are widely distributed in nature, as well as in the human body
(Table 1). Trace elements can be obtained from food and from the environment; iron, copper, zinc,
selenium, cobalt, phosphorus, potassium, and fluorine can come from food; strontium, barium, iodine,
and bromine from drinking water [30–32].

There are 20 trace elements essential to the maintenance of human physiological homeostasis [33].
They are indispensable substances in cellular and tissue metabolism and play important roles in
maintaining healthy physiological states. For example, zinc and iodine act as essential components
of DNA polymerase [34] and thyroid hormone [35], respectively; heme iron binds to porphyrin
of heme, which combines with oxygen [36]; cobalt performs its physiological functions mainly in
vitamin B12, also known as cobalamin, a unique vitamin that contains a metallic element [37]. Trace
elements are involved in the various stages of body development, including tissue generation, growth,
physiological metabolism, and enhancement of the immune system [30]. Notably, selenium and
zinc are even related to prostate cancer and male fertility [38,39]. In 1990, the WHO divided trace
elements into three groups: (1) essential elements, including iron, zinc, copper, selenium, iodine,
molybdenum, chromium, and cobalt; (2) potentially essential elements, including manganese, silicon,
boron, vanadium, and nickel; and (3) potentially toxic elements that are nevertheless essential at
low concentrations, including fluorine, bromine, plumbum, cadmium, mercury, arsenic, aluminum,
and stannum [40].

Table 1. Amount in and recommended daily intake of trace elements for humans.

Elements Content in the Human Body RDI Reference

iron (Fe) 3000–5000 mg 15 mg for man
20 mg for woman [41,42]

zinc (Zn) 2500 mg 15 mg for man
11.5 mg for woman [43]

copper (Cu) 100–150 mg 2 mg [44]

selenium (Se) 14–21 mg 50 µg [45]

iodine (I) 20–50 mg 150 µg [46]

molybdenum (Mo) 9 mg 0.1–0.5 mg [47,48]
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Table 1. Cont.

Elements Content in the Human Body RDI Reference

chromium (Cr) 6 mg 50 µg [49]

cobalt (Co) 1.1–1.5 mg 5–45 µg [50]

manganese (Mn) 12–20 mg 2.5–7 mg [51]

silicon (Si) 2000–3000 mg 20–50 mg [52]

boron (B) 50 mg 2–20 mg [53,54]

vanadium(V) 25 mg 0.1–0.3 mg [55]

nickel (Ni) 6–10 mg 0.3 mg [56]

fluorine (F) 2000–3000 mg 0.5–1.0 mg [52]

bromine (Br) 200 mg 1 mg [40,57]

plumbum (Pb) <10 µg/dL Blood <0.1 mg [58,59]

cadmium (Cd) <1 mg/dL Blood <70 µg [60]

mercury (Hg) <0.8 µg/dL Blood <0.01 mg [59,61]

arsenic (As) <1 µg/dL Blood 1 mg [62]

aluminum (Al) 50–100 mg 1.8–8.4 mg [63,64]

stannum (Sn) 0.38 mg/dL Blood 0.2–3.5 mg [65]

RDI, recommended daily intake.

Both deficiency and overload of trace elements can negatively affect systemic homeostasis.
The recommended daily intake (RDI) of different elements varies significantly. For example, the optimal
intake range of selenium is 50–200 µg/d [45], while those of copper and fluorine are 2 mg and
0.5–1.0 mg/d [44,52], respectively. Iron overload has been reported to accelerate the process of fatty
liver disease [66], liver fibrosis [67], and hepatoma [68] and to highly elevate the risk of cardiovascular
events via excessive redox production [69]. On the other hand, deficiency of iron disrupts the normal
weight gain and easily drives the process of obesity [70]. Zinc directly regulates the synthesis, storage,
and release of insulin; its depletion always causes insulin dysfunctions, ultimately enhancing systemic
IR and impairing glucose tolerance [71]. In diabetic patients, zinc supplementation surprisingly
improves insulin sensitivity and atherosclerosis [72,73]. Chromium also shows similar effects on insulin
and glucose metabolism [74]. Cobalt serves as a component of vitamin B12 [75] and enhances organic
iron storage and the absorption of iron and zinc by the intestine [76–78]. Molybdenum and fluorine
have also been reported to have similar functions in absorbing and utilizing iron [79–81], maintaining
cardiac energy, and preventing CVD [82]. Studies about copper and manganese have mainly focused
on cardiovascular diseases. High serum copper and manganese contents have been reported to be
independent risk factors and biomarkers of CVD (e.g., cardiac arrhythmia) in both case–control and
large prospective population studies [83]. In contrast, insufficient silicon intake is associated with a
high risk of cardiovascular events and increases the case fatality rate [84]. Selenium often acts as a
redox scavenger in the human body [27], an action which is essential to the restoration of impaired
islets and vascular tissues in diabetes [85,86]. The liver is one of the organs with the highest selenium
concentration [87]. Clinical data suggest that patients suffering from chronic liver diseases such as
hepatic steatosis and cirrhosis have much lower concentrations of plasma selenium [88]. Chronic
selenium supplementation recovers hepatic dysfunction; selenium is thus described as a hepatic
protective factor [89]. Regarding non-metallic elements, it has been found that bromide levels are
negatively related to levels of triglyceride (TG), cholesterol, and high-density lipoprotein cholesterol
(HDL-C) in humans and rats [90]. An in vitro study also illustrated beneficial effects of bromide in
hepatocytes recovering from a lipid metabolism disorder [91]. Moreover, an adequate and reasonable
intake of boron, which mainly exists in vegetables and fruits, effectively reverses the plasma contents
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of elevated blood glucose and reduces TG in postmenopausal women [92]. In conclusion, trace and
mineral elements are closely correlated to the pathogenesis of metabolic diseases and systemic disorders
(Figure 1).
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superfamily and include three nuclear receptor isoforms which are ligand-inducible transcription 
factors, i.e., PPAR-α, PPAR-β/δ, and PPAR-γ [93]. Through heterodimerizing with the retinoid X 
receptors (RXRs), which then bind to PPAR-responsive regulatory elements (PPRE), PPARs control 
a group of genes involved in energy homeostasis, insulin sensitivity, lipid metabolism, and 
maintenance of metabolic homeostasis [94,95]. The first identified member of the PPAR group, PPAR-
α, is highly expressed in highly energy-demanding tissues which show high rates of β-oxidation, 
such as the liver, kidney, heart, and skeletal muscle [96]. Activation of PPAR-α mainly occurs under 
energy deprivation [96]. It has been reported that PPAR-α mediates the hypolipidemic function of 
fibrates (selective PPAR-α agonists) in the treatment of hypertriglyceridemia, being the star regulator 
of lipid metabolism [97]. Specifically, an animal study revealed that oral administration of fenofibrate 
effectively lowered the serum TG levels of obese mice through upregulating hepatic very low density 
lipoprotein receptor (VLDLR) [98]. PPAR-β/δ is the least well-characterized isotype of the PPAR 
family. It is mainly expressed in skeletal muscle and acts as a key regulator of muscular lipid balance 
[99]. Studies of systemic PPAR-β/δ agonists (GW501516, GW0742, bezafibrate, telmisartan, etc.) have 
demonstrated the pivotal role of this gene in lipid metabolism. For example, researchers noted the 
fact that GW501516 treatment improved MetS in obese monkeys and mice. Moreover, in GW0742-
treated L6 rat myocytes, fatty acid uptake and β-oxidation were robustly increased compared to a 
control group [100,101]. These data were also confirmed in PPAR-β/δ-overexpressing activated 
mouse C2C12 myoblasts [102]. However, so far there have been no clinical studies to support the 
findings in animal models. PPAR-γ serves as an important mediator in energy balance and cell 
differentiation. IR is the central node of metabolic syndrome, and impaired PPAR-γ function is 
reported to induce severe IR in mouse adipose tissues [103]. Conversely, PPAR-γ positively adjusts 
glucose metabolism by increasing the insulin sensitivity of peripheral tissues, thus improving IR. 
Thiazolidinediones (TZDs), synthetic insulin-sensitizing PPAR-γ agonists, like rosiglitazone, 
pioglitazone, and troglitazone, effectively improve IR and lower the blood glucose of T2D patients 
and have been widely prescribed to treat T2D in the clinic [104]. Consistent with other anti-diabetic 
strategies (oral anti-diabetic agents and insulin), treatment-related excessive weight gain and fluid 
retention are common side effects of TZDs [105]. Besides, a previous population-based study of older 
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correlated to the pathogenesis of numerous diseases. Br, Bromine; Cr, Chromium; Cu, Copper; Se,
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3. Peroxisome Proliferator-Activated Receptors Mediate the Effects of Trace Elements on
Metabolic Syndrome

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor
superfamily and include three nuclear receptor isoforms which are ligand-inducible transcription
factors, i.e., PPAR-α, PPAR-β/δ, and PPAR-γ [93]. Through heterodimerizing with the retinoid X
receptors (RXRs), which then bind to PPAR-responsive regulatory elements (PPRE), PPARs control a
group of genes involved in energy homeostasis, insulin sensitivity, lipid metabolism, and maintenance
of metabolic homeostasis [94,95]. The first identified member of the PPAR group, PPAR-α, is highly
expressed in highly energy-demanding tissues which show high rates of β-oxidation, such as the
liver, kidney, heart, and skeletal muscle [96]. Activation of PPAR-α mainly occurs under energy
deprivation [96]. It has been reported that PPAR-α mediates the hypolipidemic function of fibrates
(selective PPAR-α agonists) in the treatment of hypertriglyceridemia, being the star regulator of
lipid metabolism [97]. Specifically, an animal study revealed that oral administration of fenofibrate
effectively lowered the serum TG levels of obese mice through upregulating hepatic very low density
lipoprotein receptor (VLDLR) [98]. PPAR-β/δ is the least well-characterized isotype of the PPAR family.
It is mainly expressed in skeletal muscle and acts as a key regulator of muscular lipid balance [99].
Studies of systemic PPAR-β/δ agonists (GW501516, GW0742, bezafibrate, telmisartan, etc.) have
demonstrated the pivotal role of this gene in lipid metabolism. For example, researchers noted the fact
that GW501516 treatment improved MetS in obese monkeys and mice. Moreover, in GW0742-treated
L6 rat myocytes, fatty acid uptake and β-oxidation were robustly increased compared to a control
group [100,101]. These data were also confirmed in PPAR-β/δ-overexpressing activated mouse C2C12
myoblasts [102]. However, so far there have been no clinical studies to support the findings in
animal models. PPAR-γ serves as an important mediator in energy balance and cell differentiation.
IR is the central node of metabolic syndrome, and impaired PPAR-γ function is reported to induce
severe IR in mouse adipose tissues [103]. Conversely, PPAR-γ positively adjusts glucose metabolism
by increasing the insulin sensitivity of peripheral tissues, thus improving IR. Thiazolidinediones
(TZDs), synthetic insulin-sensitizing PPAR-γ agonists, like rosiglitazone, pioglitazone, and troglitazone,
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effectively improve IR and lower the blood glucose of T2D patients and have been widely prescribed
to treat T2D in the clinic [104]. Consistent with other anti-diabetic strategies (oral anti-diabetic agents
and insulin), treatment-related excessive weight gain and fluid retention are common side effects of
TZDs [105]. Besides, a previous population-based study of older patients with T2D demonstrated
that TZDs treatment, primarily with rosiglitazone, was associated with a higher risk of and mortality
due to cardiovascular events, such as congestive heart failure and acute myocardial infarction [106].
Additionally, it has been reported that activation of PPAR-γ accelerates and elevates lipolysis in rat
peripheral tissues (especially in adipose tissue) [107] and that this is followed by upregulation of
hormone-sensitive lipase (Hsl) mRNA expression in rat hepatocytes and preadipocytes [108]. PPARs
are obviously correlated with the pathogenesis of various metabolic diseases, such as T2D [109],
obesity [110], non-alcoholic fatty liver disease (NAFLD) [111], and atherosclerosis [112]. The major
roles and functions of the PPAR isotypes are depicted in Figure 2. Studies on the functions of trace
elements in MetS have attracted growing interest. Among these studies, PPARs have been noted to be
directly or indirectly modulated by trace elements in different organs and tissues (Table 2). Thus, PPARs
may serve as crucial mediators of trace elements under MetS.
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Figure 2. Major roles of peroxisome proliferator-activated receptor (PPAR) isotypes in metabolic
syndrome (MetS). PPARs are a class of nuclear transcriptional factors activated by physiological stimuli
(fatty acids and eicosanoids) and synthetic small molecules (fibrates for PPAR-α; GW501516, GW0742,
bezafibrate, and telmisartan for PPAR-β/δ; thiazolidinediones (TZDs) for PPAR-γ). PPAR-α is mainly
expressed in liver tissue, where it controls a set of genes facilitating fatty acid oxidation, thereby
lowering circulating triglyceride levels. PPAR-β/δ modulates a series of genes involved in energy
uncoupling and fatty acid oxidation in skeletal muscle, resulting in increased energy expenditure and
reduced plasma triglyceride levels. PPAR-γ is abundantly expressed during increasing adipogenesis in
adipose tissues, where it governs multiple genes and thereby improves insulin sensitivity and decreases
lipolysis. All the members of the PPAR family can be activated by relevant agonists. Although different
PPARs have unique non-overlapping patterns of biological functions, all three isoforms act on given
tissues and share similar biological functions.
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Table 2. Effects of trace elements on PPARs modulation in multiple diseases and models.

Elements Diseases or Models Organ or Cells Doses of Elements Change of PPARs

Fe
Hyperlipidemia, Hamsters Liver 10 mg/d i.p. PPAR-α↓ [113]

Diabetes, Rats Pancreas De PPAR-β/δ↑ [114]
Oxidative Stress, Rats Central Nervous System 3 mM PPAR-γ↑ [26]

Zn

Atherosclerosis HAECs 15 µM PPAR-α↑ [115]
Inflammation PPAECs 12 µM PPAR-γ↑ [116]
Steatosis, Mice Liver 75 mg/L Liquid Diet PPAR-α↑ [117]

Sepsis, Mice Lung 1.3 mg/kg BW i.p. PPAR-γ↑ [118]

Cu
Rabbits Liver, Muscle, Adipose Tissue 5–45 mg/kg Diet PPAR-α↑ [28]

Pufferfish Liver 24–98 µg/L Water PPAR-γ↑ [119,120]

Se

Chicken Pancreas 2 mg/kg Diet PPAR-γ↑ [121]
Infection Mammary Gland De PPAR-γ↓ [122]

Proliferation HaCaT Keratinocytes 10 µM PPAR-β/δ↑ [123]
PCOS, Human Lymphocytes 200 µg/d p.o. PPAR-γ↑ [124]

Diabetes, Human Macrophages 100–300 µg/d p.o. PPAR-γ↑ [125]
HFD-fed Mice Liver 0.3 µg/d Diet PPAR-α↑, PPAR-γ↓ [126]

Heart Damage, Mice Heart, H9c2 9 mg/L Water, 5µM PPAR-γ↓ [127]

I Mammary Cancer, Rats Tumor 0.05% in Water PPAR-α↓, PPAR-γ↑ [128,129]

Cr
Exercise-trained Rats Liver, Muscle 4 mg/kg BW i.g. PPAR-γ↑, PPARβ/δ↑ [130,131]

Diabetes, Rats Adipose Tissue 80 µg/kg BW i.g. PPAR-γ↑ [132]
NAFLD, Mice Liver 80 µg/kg BW i.g. PPAR-α↑ [133]

Co
Hypoxia Trophoblast Cells 100µM PPAR-α/β/γ↓ [134]

Hypoxia, Rats Heart 60 mg/kg BW i.p. PPAR-α↓ [135]

Mn
Neurotoxicity U87, SK-N-SH 4 mM PPAR-α/β/γ↓ [136]

Oxidative Stress, Mice Mitochondria De PPAR-α↑ [137]

Si - - - PPAR-α/β/γ↑ [138]

V
Adipogenesis 3T3-L1 2.5–10 µM PPAR-γ↓ [139,140]

db/db Mice Adipose Tissue 0.05 mmol/kg BW i.g. PPAR-γ↑ [141]
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Table 2. Cont.

Elements Diseases or Models Organ or Cells Doses of Elements Change of PPARs

Br Hyperlipidemia Hepatocytes 1–10 µM PPAR-α↑ [91]

Cd Chicken Pancreas 150 mg/kg Diet PPAR-γ↓ [121]

Hg HFD-fed Mice Adipocytes 1 mg/kg BW s.c. PPAR-α↓, PPARγ↓ [142]

As
- hMETSCs 0.2–4µM PPAR-γ↓ [143]

Adipogenesis C3H/10T1/2 6 µM PPAR-γ↓ [144]
HFD-fed Mice Liver 3 mg/L Water PPAR-γ↓ [145]

De, deficiency; BW, body weight; VECs, vascular endothelial cells; PPAECs, porcine pulmonary artery endothelial cells; PCOS, polycystic ovary syndrome; HFD, high-fat diet; NAFLD,
non-alcoholic fatty liver disease; hMSCs, human mesenchymal stem cell.
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3.1. Iron

Iron is extensively distributed throughout the whole human body and shows the highest content
among all trace elements found in humans [146]. It is an essential mineral required for a variety
of molecules to maintain their normal structures and functions in growth and proliferation. Iron is
distributed in almost all organs, especially the liver, spleen, and lungs [147]. Iron exists in the
human body in two main forms: heme and non-heme [148]. The heme form includes hemoglobin,
myoglobin, cytochrome, and various enzymes, while the non-heme form includes ferritin, lactoferrin,
hemosiderin [149,150]. Importantly, 60%–70% of iron in the body exists in the form of hemoglobin [36].

Iron uptake occurs mainly through food intake, and the mineral is easily absorbed throughout
the whole gastrointestinal tract [151]. Iron overload is always manifested as a gross elevation in
serum iron and hepatic iron storage [152]. In daily life, a high dietary intake of iron through meat or
nutritional supplements is a potential cause of iron overload [153]. Hepatic iron overload can be found
in numerous chronic liver diseases [152]. Some animal and epidemiological studies have suggested
that high iron levels may have a harmful impact on glucose and lipid metabolism [154–156]. It is
noteworthy that iron overload attenuates the hepatic expression of Ppar-α, which is an important
transcriptional factor that promotes lipid and lipoprotein metabolism [113]. Bonomo et al. [113]
reported evidence that iron is involved in the pathogenesis of non-alcoholic steatohepatitis (NASH).
Their data showed that intraperitoneal injection of iron dextran, when associated with a high-fat diet
(HFD), caused increased serum cholesterol levels due to a reduction in Ppar-αmRNA expression in the
liver tissue of hamsters. So, decreased Ppar-α expression might be an important mechanism underlying
the iron overload-mediated disruption of lipid metabolism.

Hepatic fibrosis is an exacerbated wound-healing response with excessive synthesis and deposition
of extracellular matrix (ECM) in the liver [157]. The ECM components are synthesized by hepatic stellate
cells (HSC) [158]. For this reason, excessive HSC activation is believed to be the main cause of the hepatic
fibrotic process and maintenance. Gardi et al. [159] demonstrated that a 48 h incubation of a solution of
ferric chloride and citrate abnormally stimulated rat HSCs, and iron chelators remarkably reversed the
activation, upregulated pro-apoptotic proteins, and therefore reduced fibrosis. Various in vitro studies
have reported that iron treatment activated HSCs, which was accompanied by decreasing PPAR-γ
expression. Dias et al. [160] discovered the fact that fructose-1,6-bisphosphate (FBP), serving as a novel
iron chelator, could reverse activation in the mouse GRX HSC cell line, leading to a quiescent state,
by recovering Ppar-γ expression dampened by iron.

It is well recognized that a temporal iron deficiency sensitizes insulin action [161], but chronic iron
deficiency can accelerate the development of cardiovascular diseases [162]. Minamiyama et al. [114]
concluded that the expression of PPAR subtypes in diabetic rats was influenced by iron levels in
the liver and pancreas. In particular, mRNA expression of Ppar-α and Ppar-γ in iron-deficient rats
was decreased in the pancreas but was not altered in the liver. Another member of the PPAR family,
Ppar-β/δ, showed elevated mRNA levels and maintained this tendency in both liver and pancreas upon
iron depletion.

3.2. Zinc

Zinc is an essential trace element and micronutrient and plays a vital role in various physiological
processes. Human nutritional requirements for zinc are second to iron [163]. Its deficiency is
remarkably associated with inductive oxidative stress [164], inflammatory events [165], and vascular
dysfunction [166]. Epidemiological studies suggest that low serum levels of zinc are inversely
associated with multiple diseases, such as diabetes [167], coronary artery disease [168], and Parkinson’s
disease [169].

Zinc plays both catalytic and structural roles in nearly 300 specific enzymes and thousands of
“zinc finger” protein domains, through which zinc also plays regulatory functions in cellular signaling
pathways [170,171]. Coincidentally, the DNA-binding domain (DBD) of PPAR, PPRE, contains two
classic “zinc fingers” [172], meaning that zinc may be a critical component of gene expression and
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regulation by PPARs. Hence, depletion of zinc may partially impair the transcriptional function of
PPAR complexes.

As the largest human metabolic organ, the liver plays a crucial role in maintaining systemic zinc
homeostasis. Plenty of chronic hepatic metabolic abnormalities, including IR [173], NAFLD [174],
hepatic steatosis [173], liver cirrhosis [175], and hepatic encephalopathy [176], are often ascribed to
systemic zinc depletion. In the livers of hepatic steatosis mice, zinc has been considered to be closely
related to the DNA-binding activity of PPAR-α [117]. Therefore, zinc deficiency may result in a decline
of PPAR-α function, thereby facilitating a detrimental alteration of lipid peroxidation, ultimately
exacerbating hepatic steatosis [177]. Sugino et al. [178] investigated the effect of zinc (polaprezinc) in a
NASH mouse model. Zinc supplementation did not affect the steatosis but, surprisingly, attenuated
fibrosis in the liver. Another study reported that treatment with zinc sulfate reversed alcohol-induced
steatosis in male mice via reactivation and recovery of hepatocyte nuclear factor-4α (Hnf-4α) and
Ppar-α [117]. Combined with more clinic reports, we may conclude that zinc supplementation could
therefore be considered as an optional treatment for patients suffering from some specific chronic liver
diseases [176,179–181].

Endothelial cell dysfunction and activation play major roles in the development and progression
of CVD [182]. Zinc has shown extensive and potent antioxidant and anti-inflammatory properties [183].
Zinc deficiency evokes oxidative stress and negatively affects endothelial cell function [164].
Shen et al. and Meerarani et al. [116,184] demonstrated that insufficiency of zinc-induced vascular
pro-inflammatory parameters was associated with dampened NF-κB and PPAR signaling in mice and
porcine endothelial cells, respectively. Their original research supports the concept that adequate
zinc supplementation could reverse impaired anti-inflammatory and protective functions of PPARs
(PPAR-α and PPAR-γ) in endothelial cells.

3.3. Copper

Copper is an essential element for most living organisms and plays an important role in
physiological processes [185]. Needed in only trace amounts, the human body contains approximately
100 mg of copper [186]. Insufficient intake of copper often leads to anemia, paratrichosis, infertility,
and brain disorders [187]. There is also no doubt that copper is toxic at high levels, although it is an
essential micronutrient for human bodily functions [188]. An overload of copper quickly results in a
detrimental alteration of living organisms, through liver cirrhosis, emesis, diarrhea, arthritis, cognitive
decline, and cardiac arrhythmia [187]. Thus, it is urgent and vital to consider balanced homeostatic
mechanisms of copper intake, absorption, and excretion. Normally, copper intake comes from various
foodstuffs, such as milk, meat, seafood, vegetables, and fruits, which are all rich in copper [189].
Fifteen minutes after dietary copper enters the human body, copper is absorbed into the blood and
erythrocytes [190]. It plays essential roles in catalyzing and activating the production of ferroheme and
the absorption and utilization of iron through collaboration with transferrin [191]. Copper generally
exists in tissues in the form of organic compounds, most of which are metalloproteins. Metalloproteins
normally act as enzymes catalyzing electron transfer and oxidation–reduction reactions; these enzymes
include tyrosinase, monoamine oxidase, peroxidases, superoxide dismutase, and hemocyanin [192].

Fat is the largest energy reserve in mammals [193]. Most tissues are involved in fatty acid
metabolism, but three are quantitatively more important than others: adipose tissue, skeletal muscle,
and liver tissue. One study in rabbits by Liu et al. [28] showed evidence that addition of extra
dietary copper decreased hepatic fat content, reduced intramuscular fat accretion, and promoted
skeletal muscle growth presumably through activating PPAR-α signaling in liver, adipose tissue. and
skeletal muscle. As mentioned above, acute exposure to high amounts of copper deteriorates tissue
function. Reports on aquatic Takifugu fasciatus illustrated the fact that copper sulfate accumulation
and stress disrupted aquatic lipid homeostasis in the liver, which was accompanied by upregulated
ppar-γ [119,120].
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3.4. Selenium

Selenium is incorporated into selenoproteins, which have a wide range of pleiotropic effects,
ranging from immune-enhancing, antioxidant, and anti-inflammatory effects to the production of
active thyroid hormone [194]. Human beings absorb selenium only through the duodenum, not the
stomach or any other section of the intestinal tract [195]. This is the reason why humans are generally
lacking in selenium. In contrast to many other micronutrients, the intake of selenium varies hugely
worldwide, ranging from deficiency to toxic concentrations that cause garlic breath, hair and nail loss,
disorders of the nervous system, poor dental health, and paralysis [196]. The recommended dietary
selenium intake ranges from 7 to 4990 µg per day worldwide, with mean values of 60 µg per day in
China and 40 µg per day in Europe [194].

In the livers of HFD-induced NAFLD rats, selenium supplementation recovered dyslipidemia
and improved liver function and hepatic steatosis by activating Ppar-α expression and subsequently
elevating fatty acid oxidation [126]. Selenium-enriched probiotics have been confirmed to have a great
effect in improving lipid metabolism, antioxidative status, and histopathological lesions in HFD-fed
mice. Among genes whose expression was altered in the liver, Ppar-α was upregulated [126]. IR plays
a pivotal role in the pathogenesis of NALFD in the setting of IR syndrome or MetS [197]. In a previous
study, selenium-enriched green tea Ziyang reduced IR, together with oxidative stress and hepatic
steatosis, in high-fructose-fed mice [198]. Mueller et al. [199] also reported a similar effect of selenium
in the form of selenate, but not selenite; its administration in db/db diabetic mice improved IR syndrome
by increasing the expression of Ppar-γ and reducing the activity of liver cytosolic tyrosine phosphatases.

PPAR-γ, as a transcriptional node, participates in an important signaling pathway that occurs at the
intersection of depression and obesity. Donma et al. [200] combined the epidemiological evidence that
selenium supplementation alleviates inflammatory signaling pathways and inflammatory cytokines,
e.g., TNF-α, IL-1β, and prostaglandin E2 (PGE2) and interacts with various stages relevant to
depression, the so-called obesity-associated parameters. They suggested that lipophilic selenium
compound supplementation and fortification could be employed as a novel PPAR-γ agonist to alleviate
obesity as well as depression.

Selenium depletion significantly heightens the risk of cardiovascular diseases by reducing the
concentration and activity of selenoproteins that act as predictors of cardiovascular events [194].
Clinically, the administration of selenium to patients with cardiomyopathy improves an extensive
range of cardiac functions [201]. Selenium activates myocardial calcium and ATPase, thereby recovering
myocardial contractility [202]. Evidence has confirmed that most heart disease patients show much
lower selenium levels than healthy cohorts in their blood and heart [203]. Nowadays, supplementing
selenium is becoming an important strategy for preventing cardiopathy [204]. Recently, researchers used
thiamine (vitamin B1) and sodium selenite to accelerate and reverse the basal transcriptional activity
of Ppar-γ, which was impaired by citreoviridin (a mycotoxin, ATP synthase inhibitor, and one of the
etiological factors of cardiac beriberi and Keshan disease) in mouse heart and H9c2 cardiomyocytes [127].
A recent clinical study reported the effects of selenium supplementation on the elevated gene expression
of Ppar-γ in the lymphocytes of women with polycystic ovary syndrome (PCOS), who were candidates
for in vitro fertilization (IVF) [124]. An animal experiment in chicken pancreas illustrated the
antagonistic effect of sodium selenite on cadmium-induced apoptosis, which involved the recovering
of the impaired PPAR-γ/PI3K/Akt pathway by cadmium [121]. Besides, selenium-enriched probiotics
(Lactobacillus acidophilus and Saccharomyces cerevisiae) have been reported to repress the gene expression
of Ppar-γ, thereby improving lipid metabolism, in HFD-fed mice [126]. Conflicting results have
emerged when comparing PPAR-γ modulation by selenium in various studies, whose reason may
be that various sources of selenium (selenite and selenium-enriched probiotics) and diverse target
organs/tissues (heart, liver, pancreas, and immune system) were considered in these studies.
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3.5. Other Essential Trace Elements

There are four other microelements (iodine, molybdenum, chromium, and cobalt) essential for
human function, besides the aforementioned iron, zinc, copper, and selenium. It has been widely
recognized that iodine has a series of beneficial physiological functions [205]. Iodine deficiency
disorders are among the biggest public health problems worldwide today, with populations in southern
Asia, Latin America, and Sub-Saharan Africa particularly affected [206]. It is noteworthy that insufficient
iodine intake in adults results in a high risk of multiple cancers (goiter, mammary cancer); iodine
supplementation has been considered as an adjuvant therapy for these cancers [129,207]. Research by
Aceves et al. [128] and Alfaro et al. [129] suggested the participation of PPARs in the antineoplastic
effect of iodine; I2 in drinking water effectively dampened the expression of Ppar-α and elevated that of
Ppar-γ in tumoral mammary glands of rats. Similarly, chromium, which has a concentration of only
6–7 mg in the human body, serves as a necessary regulator of normal body weight [208] and blood
glucose level [208] and for cardioprotection [209]. Chromium picolinate significantly induces Ppar-δ
mRNA expression in skeletal muscle of HFD-fed rats [131], as PPAR-δ is a well-known modulator
of fatty acid metabolism in skeletal muscle. Chen and colleagues demonstrated that oral chromium
moderately improved impaired Ppar-α in the liver of HFD-fed mice [133]. Coincidently, in Type 2
diabetic rats, a safe dose of malate acid chromium activates Ppar-γ to exert its hypoglycemic effect [132].
As for cobalt, limited studies have revealed that cobalt chloride, a chemical hypoxia mimetic, reduces
mRNA levels of PPAR-α and -γ in the heart and in Caco-2 cells [135,210].

Over the years, some trace elements which may exert potential toxicity but have essential effects
at low concentrations in humans have been recognized. In our previous study, we focused on bromine
and we found that sodium bromide alleviated excessive lipid accumulation and recovered lipid
dysfunction by activating PPAR-α signaling in mouse primary hepatocytes, since PPAR-α is a key
participant in the induction of fatty acid oxidation [91]. As a non-metal trace element, chronic exposure
to inorganic arsenic (arsenic trioxide) strongly impaired Ppar-γ expression in the liver and in the 3T3-L1
cell line [211].

4. Trace Elements Supplementation and Perspectives

Nowadays, in addition to environmental resources, we widely supply the trace elements through
healthcare agents or additives. The first generation of micronutrient additives was produced decades
ago and mainly included sulfates and oxides, while the second generation, which has recently
begun, mostly includes organic salts such as zinc gluconate, zinc citrate, iron lactate, and iron
gluconate [212]. Given that the biological activities of trace elements are controversial under
different settings, we speculated that these controversial effects are partially caused by the circadian
clock, which orchestrates the biological processes in a 24 h cycle during a day [94]. Moreover,
modern chronotherapeutics, which refers to the combination of systemic diurnal activity and clinical
therapy, explores the optimal time of medication in a clinical context to separate drug efficacy
from toxicity, thereby achieving the purpose of increasing the efficacy and tolerance of drugs [213].
Thus, chronotherapy is now of great importance to minimize these controversial effects. However,
currently, there is no convincing information on the usefulness of compounds containing trace
elements. Hence, chronotherapeutics may maximize the effects of trace elements on MetS, as well
as minimize their potential side effects. All functions in humans are highly organized in time as
biological rhythms of diverse periods, both in health and in disease. It is well-known that the biological
rhythms significantly affect the responses of patients to diagnostic tests, and rhythmicity in the
pathophysiology of disease is a basis for chronotherapeutics [214]. As healthcare agents or additives,
trace element intake has the potential to develop “chronotherapeutic pharmacological properties”.
Given that the ions of trace elements may pass cytoplasmic membranes through certain ionic channels
or receptors [146,215–217] and the fact that the expression of multiple ionic channels and receptors
exhibits diurnal regulation [217–219], we suggest that the absorption of these micronutrients via
channels and receptors also shows a circadian pattern. Besides, all three PPAR isoforms were found to
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be rhythmically expressed in some mouse tissues [220]. Among these, PPAR-α and PPAR-γ are direct
regulators of the core clock components BMAL1 and REV-ERBα. Conversely, PPAR-α is also a direct
target of BMAL1 [94]. In the context of chronotherapeutics, the rhythms of potential targets, especially
PPARs, should be considered and compared.

5. Conclusions

This review summarizes the current knowledge on various potential trace elements that modulate
PPARs expression and activity. PPARs, members of the nuclear receptor superfamily and transcriptional
factors, may serve as effective molecular targets of trace elements in the treatment of MetS. Since the
nuclear location and epigenetic modification of PPARs play mainstream roles in their transcriptional
function [221,222], it is worthwhile to persistently explore the mechanisms by which trace elements
may influence the subcellular location and epigenetic modification of PPARs.
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