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Abstract: With the increasing application of global navigation satellite system (GNSS) technology in
the field of meteorology, satellite-derived zenith tropospheric delay (ZTD) and precipitable water
vapor (PWV) data have been used to explore the spatial coverage pattern of PM2.5 concentrations. In
this study, the PM2.5 concentration data obtained from 340 PM2.5 ground stations in south-central
China were used to analyze the variation patterns of PM2.5 in south-central China at different time
periods, and six PM2.5 interpolation models were developed in the region. The spatial and temporal
PM2.5 variation patterns in central and southern China were analyzed from the perspectives of
time series variations and spatial distribution characteristics, and six types of interpolation models
were established in central and southern China. (1) Through correlation analysis, and exploratory
regression and geographical detector methods, the correlation analysis of PM2.5-related variables
showed that the GNSS-derived PWV and ZTD were negatively correlated with PM2.5, and that
their significances and contributions to the spatial analysis were good. (2) Three types of suitable
variable combinations were selected for modeling through a collinearity diagnosis, and six types of
models (geographically weighted regression (GWR), geographically weighted regression kriging
(GWRK), geographically weighted regression—empirical bayesian kriging (GWR-EBK), multiscale
geographically weighted regression (MGWR), multiscale geographically weighted regression kriging
(MGWRK), and multiscale geographically weighted regression—empirical bayesian kriging (MGWR-
EBK)) were constructed. The overall R2 of the GWR-EBK model construction was the best (annual:
0.962, winter: 0.966, spring: 0.926, summer: 0.873, and autumn: 0.908), and the interpolation accuracy
of the GWR-EBK model constructed by inputting ZTD was the best overall, with an average RMSE
of 3.22 µg/m3 recorded, while the GWR-EBK model constructed by inputting PWV had the highest
interpolation accuracy in winter, with an RMSE of 4.5 µg/m3 recorded; these values were 2.17%
and 4.26% higher than the RMSE values of the other two types of models (ZTD and temperature) in
winter, respectively. (3) The introduction of the empirical Bayesian kriging method to interpolate
the residuals of the models (GWR and MGWR) and to then correct the original interpolation results
of the models was the most effective, and the accuracy improvement percentage was better than
that of the ordinary kriging method. The average improvement ratios of the GWRK and GWR-EBK
models compared with that of the GWR model were 5.04% and 14.74%, respectively, and the average
improvement ratios of the MGWRK and MGWR-EBK models compared with that of the MGWR
model were 2.79% and 12.66%, respectively. (4) Elevation intervals and provinces were classified, and
the influence of the elevation and the spatial distribution of the plane on the accuracy of the PM2.5

regional model was discussed. The experiments showed that the accuracy of the constructed regional
model decreased as the elevation increased. The accuracies of the models in representing Henan,
Hubei and Hunan provinces were lower than those of the models in representing Guangdong and
Guangxi provinces.
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1. Introduction

PM2.5 refers to fine particulate matter with a diameter of less than or equal to 2.5 µm
existing in the ambient air; this matter has the characteristics of a long suspension time
in the air, a long transportation distance, strong activity, and easy absorption of toxic
and harmful substances; especially high PM2.5 concentrations cause occurrences of hazy
weather [1–3]. In recent years, the environmental pollution caused by PM2.5 has gradually
attracted attention. Since 2012, China has built a large number of ground-based PM2.5
stations nationwide. However, China is a vast country, and the number of ground-based
PM2.5 stations is still scarce, and therefore they cannot accurately explain all the temporal
and spatial characteristics of PM2.5, thus limiting the application of PM2.5 data in a variety of
practical applications. Therefore, it is necessary to further study how to obtain continuous
and accurate regional PM2.5 distributions on different temporal and spatial scales and how
to use limited station-derived data to conduct high-precision regional PM2.5 temporal and
spatial interpolations, and these applications have become a research hotspot.

China is a vast country, and many scholars have tried to explore the variation patterns
of PM2.5 in different regions of China, such as North China [4], the Yangtze River Economic
Zone [5], the Pearl River Delta [6], Heilongjiang Province [7], and the Beijing–Tianjin–Hebei
region [8,9]. When exploring the changing characteristics of PM2.5, many scholars have
tried to use different PM2.5-related variables to combine analyses to improve the accuracy of
PM2.5 simulations. The impact of the population density, GDP and other social or economic
activities on PM2.5 concentrations in Chinese cities with significant spatial heterogeneity
was explored by Gu et al. [10]; Tai et al. used 11-year (1998–2008) PM2.5 observation
records in the United States to explore the correlations between PM2.5 and meteorological
variables, and the results showed that the daily variations in meteorological variables
described by MLR can explain up to 50% of PM2.5 changes [11]; Ye et al. used Fairbanks
standard air pollutants (NO2, SO2, CO, O3, PM2.5 and PM10) and meteorological parameter
(temperature, wind speed and relative humidity) observations, temporal changes and
related analyses, and all pollutants showed obvious seasonal trends under the influence of
climatology, topography and human activities [12].

With the development of GNSS technology, the global navigation satellite system’s
(GNSS) zenith tropospheric delay (ZTD), zenith wet delay (ZWD) and precipitable water
vapor (PWV) data are able to reflect certain atmospheric water vapor information and can
also reflect changes in meteorological conditions [13,14]. Therefore, some scholars have
begun to introduce GNSS data into the PM2.5 research field; for example, Wen et al. [15]
explored the correlation between PM2.5 and ZWD in Baoding, Hebei, China, and found
that the correlation coefficient between the daily average PM2.5 and ZWD was mainly
greater than 0.4 in autumn and winter in this region, while the correlation coefficient
between the hourly average PM2.5 and ZWD was mainly greater than 0.3. Guo et al. [16]
took the GNSS data from Beijing Fangshan Station (BJFS) as an example to analyze the
correlations among GNSS-derived PWV and ZTD and PM2.5 hourly sequences. The
experimental results showed that it is effective to consider using GNSS-derived ZTD to
assist in haze monitoring.

Due to the continuous development and improvement of spatial fitting and interpo-
lation models, some scholars have used geographically weighted regression (GWR) [17]
to simulate PM2.5 in space and have achieved good results. Zhou et al. [18] established
a model based on PM2.5 data from 283 prefecture-level cities in China combined with
the random regressed effects of the population, economy, and technology, and used geo-
graphically weighted regression methods to evaluate the impacts of different factors on
haze pollution in different regions. Wang et al. [19] used the GWR method to explore the
strengths and directions of the relationships among various factors in Chinese cities and
PM2.5, established a comprehensive explanatory framework consisting of 18 determinants
covering natural and social conditions, and determined three major categories of economic
factors and urban characteristics. Among all natural variables, elevation has a statistically
significant impact on PM2.5 in 95.60% of cities, and is negatively correlated with PM2.5
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in 99.63% of cities. The effect of elevation is gradually weakened from eastern China to
western China; Zou et al. [20] compared the simulation effects of two land use regression
(LUR) and GWR models on PM2.5 concentrations in California. The results showed that
both the GWR and LUR models were able to estimate the PM2.5 concentrations and map
the spatial distribution in the study area. Jiang et al. [21] introduced a variety of auxiliary
variables, such as meteorological and geographic factors, into the GWR model to establish a
four-season GWR model of PM2.5 in the Yangtze River Delta. Hajilooe et al. [22] evaluated
the relationship between the meteorological variables (humidity, pressure, temperature,
precipitation and wind speed) associated with the PM2.5 concentration in Tehran and
environmental parameters (normalized vegetation index and surface temperature from
MODIS satellite data) using GWR to evaluate the impacts of key parameters on PM2.5
concentrations in winter and summer.

Due to the strong spatial and temporal heterogeneity of PM2.5, most scholars have
begun to study GWR models that are more applicable to PM2.5. Yang et al. [23] analyzed
regional PM2.5 spatial variation relationships in China by developing a modified GWR
model using meteorological, topographical and emission factors observed in 2015. Rui
et al. [24] analyzed the spatial distribution of PM2.5 concentrations in the Pearl River Delta
region of China using an enhanced GWR model by introducing geodetector analysis and
principal component analysis (PCA) to enhance the GWR model. Zhai et al. [25] developed
a best subset regression (BSR)-augmented PCA-GWR modeling approach to estimate PM2.5
concentrations by fully considering the contributions of all potential variables simultane-
ously, and conducted a one-year experiment comparing the performance of PCA-GWR
with that of conventional GWR in the Beijing–Tianjin–Hebei region. The results showed
that the PCA-GWR model outperformed the conventional GWR model.

Most of the abovementioned studies dealt with PM2.5 and related variables when
modeling the experimental data, but did not consider the effect of model residuals. Some
scholars introduced the kriging interpolation method to interpolate the GWR residuals for
the purpose of correcting the fitted values of the GWR model for the spatial autocorrelation
of the residuals after fitting the GWR model, deriving the GWRK model from this; however,
this model has been mostly applied to geological field-related research [26–28]. On the basis
of GWRK, Kumari et al. [29] proposed a stratified, geographically weighted regression
residual kriging (s-GWRK) method and applied it to complex-terrain rainfall interpolations
with good results; however, few scholars have applied this type of GWRK model to study
PM2.5 spatial interpolations.

For the kriging interpolation method, empirical Bayesian kriging (EBK) has been
proposed based on this method. Empirical Bayesian kriging differs from other kriging
methods in that it accounts for the introduced error by estimating the underlying semi-
variance function, which has the advantage of predicting standard errors more accurately
than other kriging methods, and can accurately predict data that are generally unstable in
degree [30,31].

Some scholars have improved the GWR method from the spatial-scale perspective,
and the model that is most representative of these improvements is the multiscale geo-
graphically weighted regression (MGWR) model, which is more flexible than the GWR
model. The model allows different processes to work on different spatial scales [32], and
the MGWR model has been applied to spatial simulations of PM2.5 by some; Fan et al. [33]
used the MGWR model to simulate the spatial and temporal patterns of PM2.5 and its
associated influencing factors during the outbreak of new crown pneumonia in China.
Yan et al. [34] simulated the spatial and temporal distribution characteristics and driving
forces of PM2.5 in three major urban agglomerations in the Yangtze River Economic Zone
of China using the MGWR model, and found that the total precipitation, wind speed and
green coverage had the most significant effects on the PM2.5 distribution.

Although both types of models, GWR and MGWR, have performed well in previous
spatial studies of PM2.5, as described above, strong spatial heterogeneity and spatial
nonstationarity exists in PM2.5 distributions, and it is difficult for the above-mentioned
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models to handle or simultaneously handle these two PM2.5 distribution characteristics.
Therefore, to improve the interpolation of PM2.5 concentration values, we compare the
changes induced by the differences in each time scale and spatial scale to the model
interpolation effect, fully consider the variations in GNSS-derived ZTD and PWV, and two
models, the kriging and empirical Bayesian kriging models, are introduced to eliminate the
effect of residual spatial correlations on the fitting of the GWR and MGWR models, thus
improving the interpolation accuracy.

2. Materials and Methods
2.1. Methodology
2.1.1. Geographically Weighted Regression (GWR) Model

Geographically weighted regression (GWR) is a spatial analysis technique that belongs
to the local spatial analysis model and is a relatively simple and effective method used to
detect spatial nonsmoothness. The method allows for the existence of different spatial rela-
tionships in different geographic spaces and results in local, rather than global, parameter
estimates, thus enabling the detection of the spatial nonsmoothness of spatial data.

GWR explores the spatial variability in the study object at a given scale and the
associated drivers by establishing local regression equations at each point in the spatial
scale. As this method takes into account the local effects of spatial objects, it has the
advantage of improved accuracy, and its basic principle can be expressed as follows [17–22]:

Yi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi

where β0(ui, vi) is the regression constant of the model at position (ui, vi) (intercept term);
(ui, vi) is the coordinate of the ith sampling point; βk(ui, vi) is the kth regression parameter
at the ith sampling point; xik is the kth influence variable for the ith observation; p is the
number of influencing variables; εi are the regression residuals.

The estimation of the regression coefficients in the model is implemented using the
least squares method, and the coefficients at each point are represented by the matrix
as follows:

β(ui, vi) = [XTW(ui, vi)X]
−1

XTW(ui, vi)Y

where W(ui, vi) is the diagonal matrix of spatial weights, X is the design matrix of the
independent variable, and Y is the vector of dependent variables.

The spatial weight matrix W is estimated using a Gaussian function: Wij = [1− (dij/h)2]
2
, dij < h

Wij = 0, dij ≥ h

where Wij is the weight of the spatially known point j when estimating the point i to
be measured; dij is the Euclidean distance between point i to be estimated and sample
point j; h is the bandwidth, which is judged using the AICc (corrected Akaike Information
Criterion).

2.1.2. Geographically Weighted Regression Kriging (GWRK) Model

The geographically weighted regression kriging (GWRK) model uses the kriging
model to spatially interpolate the regression residuals obtained from the GWR model;
then, the obtained residual interpolation results are superimposed on the GWR regression
estimates to correct the fitter GWR-derived values to obtain the GWRK model estimation
results [26–29]:

GWRKpm2.5 = GWRpm2.5 + KrigingGWR RES

where GWRKpm2.5 is the PM2.5 concentration estimated by the GWRK model; GWRpm2.5
is the regional PM2.5 concentration estimated by the GWR model; KrigingGWR RES is the
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regional residual result obtained by kriging interpolation of the regression residuals after
the PM2.5 concentration values are estimated by the GWR model.

2.1.3. Geographically Weighted Regression—Empirical Bayesian Kriging (GWR-EBK)
Model

The empirical Bayesian kriging (EBK) method is a geostatistical interpolation method
that automatically performs the most difficult steps in the construction of an effective
kriging model. EBK automatically calculates the model parameters by constructing subsets
and simulating the process.

Empirical Bayesian kriging differs from other kriging methods in that it accounts for
the error introduced by estimating the underlying semivariance function. Other kriging
methods calculate a semivariance function from known data locations and use this single
semivariance function to make predictions at unknown locations; this process implic-
itly assumes that the estimated semivariance function is the true semivariance function
in the interpolated region. By not accounting for the uncertainty in the estimation of
the semivariance function, other kriging methods underestimate the standard error of
the prediction.

EBK predicts standard errors more accurately than other kriging methods for data that
are generally unstable, especially for small data sets [30,31], and is calculated as follows:

GWR− EBKpm2.5 = GWRpm2.5 + EBKGWR RES

where GWR−EBKpm2.5 is the GWR-EBK model estimate of the PM2.5 concentration, GWRpm2.5
is the regional PM2.5 concentration estimated by the GWR model, and KrigingGWR RES is the
regional residual result obtained by EBK interpolation of the regression residuals from the
GWR model after estimating the PM2.5 concentration values.

2.1.4. Multiscale Geographically Weighted Regression (MGWR) Model

The specific bandwidth of each variable in the MGWR model can be used as an
indicator of the spatial scale of each spatial processing action. The MGWR model is
calculated as follows [32–34]:

Yi =
p

∑
k=1

βbωk(ui, vi)xik + εi

where (ui, vi) is the coordinate of the ith sampling point; βk(ui, vi) is the kth regression
parameter at the ith sampling point; each regression coefficient βbωk is the bandwidth
of variable k based on a local regression with a specific bandwidth that represents the
difference between the MGWR and GWR results. MGWR models allow optimizing spe-
cific bandwidths for the relationships between different independent and dependent
variables.xik is the kth influencing variable for the ith observation; p is the number of
influencing variables; εi are the regression residuals.

MGWR uses the same Gaussian kernel function as the previous GWR. We mainly
use the MGWR2.2 software (The School of Geographical Sciences and Urban Planning at
Arizona State University, Tempe, AZ, USA).

2.1.5. Multiscale Geographically Weighted Regression Kriging (MGWRK) Model

The MGWRK model uses the kriging model to spatially interpolate the regression
residuals obtained from the MGWR model; then, the obtained residuals are interpolated to
correct the MGWR estimates:

MGWRKpm2.5 = MGWRpm2.5 + KrigingMGWR RES

where MGWRKpm2.5 is the MGWRK model estimate of the PM2.5 concentration, MGWRpm2.5
is the regional PM2.5 concentration estimated by the MGWR model, and KrigingMGWR RES
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is the regional residual result obtained via kriging interpolation of the regression residuals
from the MGWR model after estimating the PM2.5 concentration values.

2.1.6. Multiscale Geographically Weighted Regression—Empirical Bayesian Kriging
(MGWR-EBK) Model

The MGWR-EBK model uses an empirical Bayesian kriging model to spatially interpo-
late the regression residuals obtained from the MGWR model; then, the obtained residuals
are interpolated to correct the MGWR estimates:

MGWR− EBKpm2.5 = MGWRpm2.5 + EBKMGWR RES

where MGWR− EBKpm2.5 is the MGWR-EBK model estimate of the PM2.5 concentration,
MGWRpm2.5 is the regional PM2.5 concentration estimated by the MGWR model, and
EBKMGWR RES is the regional residual result obtained by EBK interpolation of the regression
residuals from the MGWR model after the PM2.5 concentration values are estimated.

2.2. Study Area and Data
2.2.1. Study Area

The five provinces of south-central China (Henan, Hubei, Hunan, Guangdong and
Guangxi) are located within longitudes of 104◦28′–117◦19′ E and latitudes of 20◦13′–36◦22′ N.
These provinces cover an area of nearly one million square kilometers and have a resident
population of nearly 400 million people; the terrain is high in the west and low in the east.
Due to the large north–south span and the very different folklore and geographical styles
of each province, the region is an important economic and cultural development area in
China; thus, the monitoring and prevention of environmental pollution and other events
should be the focus in the process of development.

The data obtained from ground monitoring stations have the advantage of high
accuracy, so this paper mainly uses various types of station data for experiments and
analysis. The missing data from the observation stations in the five south-central provinces
were screened and eliminated. Finally, annual average air quality parameter data (PM2.5,
CO, SO2, NO2, and O3) collected at PM2.5 ground stations in five provinces in south-central
China from 2017 to 2019 and quarterly average air quality parameter values from December
2016 to November 2019 (Figure 1a) were used for five provinces in south-central China
(data from http://envi.ckcest.cn/environment/; accessed on 9 April 2021).
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GNSS (global navigation satellite system)-derived data (PWV and ZTD) were col-
lected from 16 sounding stations and 21 GNSS sites in south-central China for annual
average values from 2017 to 2019 and quarterly average values from December 2016 to
November 2019, respectively (Figure 1b). (PWV from http://weather.uwyo.edu/upperair/
sounding.html, accessed on 31 March 2021; ZTD from http://www.cgps.ac.cn/, accessed
on 31 March 2021).

Annual averages from 2017 to 2019 and seasonal averages from December 2016 to
November 2019 for all types of meteorological data (barometric pressure, temperature and
wind speed) for South Central China from 97 meteorological stations (Figure 1c) in the re-
gion (data from http://data.sheshiyuanyi.com/WeatherData/, accessed on 13 April 2021),
and the digital elevation model (DEM)-derived (with a spatial resolution of 250 m) eleva-
tion values of the region were used as the experimental data. To simplify the expression,
all meteorological parameters used in this paper are abbreviated: PRE stands for pressure,
TEM stands for temperature, and WIN stands for wind speed. Table 1 summarizes the
sources and timestamps of all variables.

Table 1. Site Data Introduction.

Type Time O3 CO NO2 SO2 DEM WIN PRE TEM ZTD PWV

Annual
2017

340 PM2.5 ground-based stations 97 meteorological monitoring
stations

21 GNSS
sites

16
sounding
stations

2018
2019

Winter
December 2016–February 2017
December 2017–February 2018
December 2018–February 2019

Spring
March 2017–May 2017
March 2018–May 2018
March 2019–May 2019

Summer
June 2017–August 2017
June 2018–August 2018
June 2019–August 2019

Autumn
September 2017–November 2017
September 2018–November 2018
September 2019–November 2019

Note: DEM means the elevation values obtained from the digital elevation model, WIN means wind, PRE means pressure, TEM means
temperature, ZTD means zenith tropospheric delay, PWV means precipitable water vapor, GNSS means global navigation satellite system.

2.2.2. Data Preprocessing

ZTD refers to zenith tropospheric delay; for space geodesy, this delay causes signal
propagation errors, which affect the observation accuracy and are a kind of error source.
In 1992, Bevis et al. [35] proposed the precipitable water vapor (PWV) method using a
ground-based GPS (global positioning system). PWV is mainly calculated from the ZWD
as follows [13,14]:

PWV = Π · ZWD

where Π is a conversion factor.
The number of GNSS sites, sounding stations, and meteorological stations is much

lower than the number of PM2.5 ground stations. To better obtain data on ZTD, PWV,
and meteorological parameters (temperature, barometric pressure and wind speed) with a
corresponding time scale to that obtained at the PM2.5 ground stations, three interpolation
methods, IDW (inverse distance weighting), OK (ordinary kriging) and TSF (tension spline
function), were used, and their interpolation effects were compared when interpolating
different variables at annual and seasonal scales in the study region.

Inverse distance weighting (IDW) is an interpolation method that weights the distance
between the interpolation point and the sampling point. The method is simple and effective;
the closer the interpolation point is, the larger the weight is, and the contribution of the
weight is inversely proportional to the distance [10]. The calculation formula is as follows:

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
http://www.cgps.ac.cn/
http://data.sheshiyuanyi.com/WeatherData/
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Y =

n
∑

i=1

1
(Di ·p)

·Yi

∑ 1
Di
· p

where Y is the estimated value of the interpolation point; Yi indicates the measurement
sample value; n is the number of measurement samples involved in the calculation; Di
denotes the distance between the interpolation point and station i; p is the weight of
the distance.

The ordinary kriging model is expressed as the following equation [36].

Z∗v (x) =
n

∑
i=1

λiZ(xi)

where xi is the position of any point in the study area and λi is the weighting factor, which
denotes the contribution of each known sample value Z(xi) to the kriging estimate Z∗v (x).

The tension spline function (TSF) is a kind of radial basis function interpolation
method that is fast, and its range of estimated sizes is not limited. The basic principle of
the tension spline function is shown in the following equation:

S(x, y) = a +
N
∑

j=1
λjR(rj), j = 1, 2 . . . ., N

R(r) = − 1
2πϕ2 [ln(

rϕ
2 ) + c + k0(rϕ)]

where S(x, y) is the interpolation result; a is the trend function; N is the number of points
in the interpolation area; λj is the coefficient obtained by solving the system of linear
equations; rj is the distance from point (x, y) to the jth point; ϕ is the weight parameter; k0
is the modified Bessel function; c is a constant (c ≈ 0.577215).

The RMSE (root mean square error) values of the data observed at the corresponding
stations were calculated for the accuracy assessment from three models:

RMSE =

√
1
n

n

∑
i=1

(
Xi − X̂i

)2

where n is the sample size, Xi is the actual observed value, and X̂i is the model interpolation
result. The RMSE results are shown in Figure 2.

By looking at the information in Figure 2, we can see that the RMSE values of the
three interpolation methods are low because after the regional interpolation of the site data,
when the interpolation results are extracted to the original site, the data changes are small,
so the differences between the interpolated results and the original site data are also small;
however, according to the data in Figure 2, we can see that all three interpolation methods
can be applied to the regional interpolation of the variables in the table. However, the
best effect is the inverse distance weighted interpolation method, followed by the tensor
spline function interpolation method; the ordinary kriging method has a relatively poor
effect. Therefore, to better obtain meteorological data from PM2.5 ground stations and
GNSS-derived PWV and ZTD data, the inverse distance weighted interpolation method is
uniformly used for regional interpolation processing.
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3. Spatial and Temporal Characteristics of PM2.5 in South-Central China
3.1. Spatial and Temporal Distributions of PM2.5

Investigating the spatial and temporal distributions of PM2.5 is a very important part
of the experiments conducted in this study. To better explore the variation in regional PM2.5
values, the PM2.5 data obtained from each air quality monitoring station were interpolated
with the inverse distance weighting method to obtain a regional PM2.5 distribution map,
which was analyzed at two temporal resolutions: annual and seasonal.

As shown in Figure 3a, there is an obvious high distribution pattern in the north
and a low pattern in the south; the more serious pollution is located in Henan and
Hubei provinces, and the lighter pollution is located in Hunan, Guangxi and Guang-
dong provinces, which is consistent with the conclusion of the previous analysis. From
the annual average values, the annual average PM2.5 values in the central and southern
regions range from roughly 20 µg/m3 to 80 µg/m3, with a relatively smooth change.

As we can see from Figure 3b, pollution in winter is the most serious, followed by that
in spring (Figure 3c) and autumn (Figure 3e), while the lightest pollution occurs in summer
(Figure 3d); winter pollution is mainly concentrated in Henan and Hubei provinces. The
five provinces in south-central China have better air quality in summer (Figure 3d) as long
as the PM2.5 values vary below 60 µg/m3.

After exploring the spatial distribution pattern of PM2.5 in the south-central region, a
cluster analysis of PM2.5 values in the region was conducted to obtain the spatial clustering
information of elements with high or low values to achieve a deeper understanding of
PM2.5 distribution characteristics in the south-central region.
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3.2. PM2.5 Clustering Analysis

Cluster analysis reveals how high or low variables are clustered in a region and is
one of the most important tools used to explore spatial patterns. We used the anselin
local moran’s I statistic in Arcgis 10.4 to perform a clustering analysis of PM2.5 in the five
study provinces in south-central China, where the spatial relationship of elements was
defined by choosing the inverse distance, and the distance between each element and the
adjacent elements was calculated by choosing the euclidean distance; the results are shown
in Figure 4.

As shown in Figure 4a, high clustering of PM2.5 in the south-central region mainly
occurs in the Henan and Hubei regions, while low clustering is mainly concentrated in
south-central Guangdong province, and there is almost no clustering in the Guangxi or
Hunan regions at the annual average scale.

Additionally, as shown in Figure 4, the seasonal average scale clustering results are
similar to the annual average-scale clustering results, showing obvious high clustering in
Henan and low clustering in Guangdong, while in winter (Figure 4b), local areas in Hubei
also show high clustering, and in spring (Figure 4c), local areas in Hunan and Guangxi
provinces also show low clustering, while in autumn (Figure 4e), low clustering occurs in
the northwestern part of Hunan, while high clustering was observed in the eastern part.
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4. Variable Selection

After exploring the spatial and temporal variation patterns of PM2.5 in the five studied
south-central provinces at different scales, a correlation analysis of the multiple variables
considered in the experiment was also conducted, before the modeling analysis was
performed, to ensure that all the variables considered had a certain correlation with PM2.5
and were thus suitable for subsequent modeling work.

4.1. Analysis of the Relationships between the Original-Sequence ZTD and PWV with PM2.5

Satellite-derived tropospheric data have a strong correlation with PM2.5 [37]. To
explore the variation patterns presented by PM2.5 with PWV and ZTD at different time
scales at each station in the five provinces of south-central China, data corresponding to
340 PM2.5 ground stations were mapped and analyzed.

4.1.1. Annual Average Scale

As seen in Figure 5, the variation range of the ZTD values in the five provinces of
south-central China is generally between 2300 and 2600 mm, while the PWV values mainly
vary between 20 and 50 mm, and the overall trend of PWV is clearer than that of ZTD,
while the variation patterns of ZTD and PWV both show obvious negative correlations
with PM2.5.
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Figure 5. Annual average scale ZTD, PWV and PM2.5 changes.

4.1.2. Seasonal Average Scale

From Figure 6, it seems that ZTD is the lowest in winter, and the variation range is
small, basically varying from approximately 2300–2500 mm; in summer, the value is the
highest, with a main variation range between 2400 and 2700 mm, while in spring and
autumn, ZTD basically stays between 2300 and 2600 mm, and the overall variation trends
of PM2.5 and ZTD at the seasonal average scale are consistent with those at the annual
mean scale. The overall trends of PM2.5 and ZTD at the seasonal mean scale are consistent
with the negative-correlation phenomenon observed at the annual mean scale.

As seen in Figure 7, PWV and ZTD seem to be the lowest and have the smallest
variation ranges in winter, with variation ranges below 30 mm; the highest values and
largest variation ranges are observed in summer, with values varying above 40 mm, while
the variations in PWV and PM2.5 recorded in spring and autumn range between 20 mm and
45 mm, and the variation pattern between PWV and PM2.5 is consistent with the negative
correlation phenomenon observed under the annual average scale.
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Figure 7. Seasonal average-scale PWV and PM2.5 changes.

4.2. Spearman Correlation Analysis of Each Variable with PM2.5

Since Spearman’s correlation coefficient determination rule does not require a given
distribution of original variables and has a wide range of applications [38], this method is
applied here for the correlation analysis; the annual average data for three years (from 2017
to 2019) for each type of variable and all quarterly average data from December 2016 to
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November 2019 for a total of 15 time stamps were used for correlation analysis; the results
are shown in Figure 8.
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Because of the large number of explanatory variables considered in the experiments,
this paper presents the various types of correlation analysis in a uniform way using line
graphs, so that the five time scales of annual average, winter, spring, summer and autumn
can be clearly visualized.

The results shown in Figure 8 reveal that the two types of factors, ZTD and PWV, show
high rankings and negative correlations with PM2.5, reflecting the previous conclusion.

On the annual average scale, the correlation level of the wind speed is the lowest, the
correlation levels of the four air pollutants are maintained at approximately 0.5, and the
correlation level of the DEM is between 0.3 and 0.4. Among the meteorological factors, the
correlation levels of the wind speed and air pressure are low, while the correlation level of
temperature is high and stable, with values maintained above 0.8.

On a seasonal scale, temperature, ZTD and PWV still maintain high negative correla-
tions in winter; in spring, the correlation levels of all air pollutants are roughly the same as
the annual average values; in summer, the correlation level of O3 is higher than those of
the other pollutants, and the correlation level of the DEM is the highest compared with
the annual average and with other seasons; in autumn, the correlation level of O3 drops
sharply compared with that measured in summer.

4.3. Geodetectors

Stratified heterogeneity is one of the basic characteristics of geographical phenomena
and the spatial expression of natural and socioeconomic processes, and refers to the fact
that the value of an attribute varies among different regions. PM2.5, which is a class of
variables with strong spatial heterogeneity, also has stratified heterogeneity, and the q
statistic of a geodetector can be used to measure this stratified heterogeneity, detect its
explanatory factors, and analyze the interactive relationships among variables. The q value
is calculated as follows [39]:

q = 1− 1
Nσ2

L

∑
h=1

Nhσ2
h
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The region is divided into h = 1, . . . , L layers, i.e., L subregions; N and σ2 denote
the overall size and its variance, respectively; the q value has a clear physical meaning:
the magnitude of the q-value indicates the percentage of variance in attribute y that is
explained by stratification x.

Therefore, in an effort to investigate the stratified heterogeneity of PM2.5 and to detect
the extent to which a given factor explains the stratified heterogeneity of PM2.5, geographic
probes were used to detect the q-values of each variable; the results are shown in Figure 9a.
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Figure 9a shows that meteorological factors and GNSS-derived ZTD and PWV show
strong abilities to explain the stratified heterogeneity of PM2.5, while atmospheric pollu-
tants and the DEM have the second-strongest abilities to explain the stratified heterogeneity
of PM2.5. Among them, SO2, which has a strong correlation with PM2.5 as well as high ex-
ploratory regression significance, has a weaker ability to explain the stratified heterogeneity
of PM2.5.

4.4. Exploratory Returns

To further investigate whether the effect of each variable on PM2.5 is significant, we
then conducted an exploratory regression experiment, in which all possible combinations
of the input candidate explanatory variables were evaluated to obtain the ratio of the
number of times each alternative explanatory variable was statistically significant to its
statistical significance, where the explanatory variables with stronger effects were always
significant, which could help to find the variables that were always strong explanatory
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factors. The results of the exploratory regression for the significance of each variable are
shown in Figure 9b.

From Figure 9b, it can be seen that the significance magnitudes can be ranked as
atmospheric pollutants > GNSS parameters (ZTD and PWV) > meteorological factors, thus
further illustrating the importance of GNSS-derived PWV and ZTD in reflecting PM2.5
changes; the significance of PWV on PM2.5 is 100% in winter time, and that of ZTD on
PM2.5 in summer time also almost remained at 100%, so these two types of factors showed
good correlations with PM2.5 changes in the five studied south-central provinces.

4.5. Multicollinearity Test

It is important to test for multicollinearity in the considered variables before con-
structing a geographically weighted class model. The combination of variables that are
suitable for modeling is selected according to the diagnostic results, facilitating the smooth
expression of the model. Therefore, here, a multicollinearity test was performed for all the
variables preconsidered in this paper, and the results are shown in Figure 10.
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Figure 10. The results of the multicollinearity test. Magnitude of VIF (variance inflation factor) values
for O3, CO, NO2, SO2, DEM, WIN, PRE, TEM, ZTD and PWV at different time stamps. Note: DEM
means the elevation values obtained from the digital elevation model, WIN means wind, PRE means
pressure, TEM means temperature, ZTD means zenith tropospheric delay, PWV means precipitable
water vapor.

We generally consider a VIF (variance inflation factor) value less than 10 to indicate a
small amount of multicollinearity, which does not affect the modeling results. Therefore,
Figure 10 shows that the VIF values between O3, CO, NO2, SO2, DEM, wind, and the
barometric pressure are not sufficient to trigger multicollinearity. Different degrees of
multicollinearity problems exist among the temperature, PWV, and ZTD at the annual scale
and at seasonal scales other than summer, especially in winter. The reason for this result
may be that the temperature, PWV and ZTD in the five south-central provinces maintain
high correlations with PM2.5 on both the annual and seasonal scales, so these three types
of variables also show strong correlations with each other, and the subsequent modeling
experiments must model and discuss these three types of variables separately. The model-
ing variable combinations can then be divided into three separate categories, which are
applied separately for the subsequent model construction; their variable combinations are
shown in Table 2.
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Table 2. Variable Combination Scheme.

Combination

One O3 CO NO2 SO2 DEM WIN PRE TEM
Two O3 CO NO2 SO2 DEM WIN PRE PWV

Three O3 CO NO2 SO2 DEM WIN PRE ZTD
Note: DEM means the elevation values obtained from the digital elevation model, WIN means wind, PRE means
pressure, TEM means temperature, ZTD means zenith tropospheric delay, PWV means precipitable water vapor.

5. Results and Analysis
5.1. Overall Model Effect

Six types of models (GWR, GWRK, GWR-EBK, MGWR, MGWRK and MGWR-EBK)
were analyzed on annual and seasonal scales for each of the three combinations of variables.
To quantitatively compare the overall simulation effect of each model at each scale, the
decidability factor R2 is used as the basis for comparison, and is calculated as shown
in Equation:

R2 = 1−
∑
i
(ŷi − yi)

2

∑
i
(yi − yi)

2

where yi is the real value, ŷi is the interpolated result, and yi is the mean of the real values.
The value of R2 is between 0 and 1, and the larger the value is, the better the model fitting
effect is. The R2 value of each model for each scale is listed in Figure 11.
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The information in Figure 11 shows that on an annual average scale, all six models
can reach R2 values above 0.9 using the three variable schemes for modeling, and show
good fitting effects. Among the six models analyzed using variables such as temperature,
the lowest R2 values are obtained for the two models MGWR and MGWRK, with values
of 0.922 recorded, and the highest value is obtained for the GWR-EBK model, with an R2

value of 0.962 recorded. The lowest R2 when modeling with variables such as PWV is
obtained for MGWR at 0.929. This lowest value is slightly higher than the lowest R2 value
of the model obtained when considering variables such as temperature, while the highest
R2 value is 0.962 for the GWR-EBK model, which is the same as the highest value obtained
when considering variables such as temperature. When modeling with variables such as
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ZTD, the lowest value is 0.914 for the MGWR model, and the highest value is still 0.962 for
the GWR-EBK model; therefore, on the annual average scale, the best overall model fit is
found for the GWR-EBK model, and the worst is the MGWR model.

From the analysis of the seasonal average scale, the GWR-EBK model effect reaches
0.964 in winter when the six models consider variables such as temperature due to the
annual average scale of 0.962, while the fitting effect of MGWR drops to 0.891. When
considering variables such as PWV, the fit of the GWR-EBK model improves again com-
pared to the combination of temperature variables, reaching 0.966, while the MGWR model
decreases again to 0.879. When considering variables such as ZTD, the R2 values of the
MGWR-class models all drop below 0.9, while the GWR-EBK model fit is the same as that
obtained when considering PWV-like variables.

The R2 values of all six models decrease in spring compared to winter, and the
GWR-EBK model still performs best in spring among all six models. The effect of the
combination of both variables considering temperature and ZTD outperformed the effect
of the combination of variables considering PWV, reaching 0.928. In contrast, the MGWR
model with a combination of temperature-class variables had the worst simulation fit, with
an R2 of 0.838. The R2 values of 0.846 and 0.856 obtained when considering the combination
of two types of variables, PWV and ZTD, respectively, are better than the modeling effect
obtained via the combination of temperature variables.

In summer, when PM2.5 values change to the lowest values measured among the four
seasons, the R2 values of the six models continue to fall, all to below 0.9, with the highest
R2 value of 0.874 obtained for the GWR-EBK model when considering the combination of
ZTD variables, and the lowest R2 value of 0.754 obtained for the MGWR model.

In autumn, appropriate increases in R2 are observed for the six models. Among them,
the GWR-EBK model has an R2 value higher than 0.9 for all three variable combinations
modeled, with the highest value being modeled using the ZTD variable combination
(0.910), and the lowest R2 value of 0.792 obtained for the MGWR model built using the
PWV variable combination.

In summary, in terms of the overall model goodness of fit, the model effects are annual
> winter > spring > autumn > summer, the best performance of the goodness of fit is
obtained with the GWR-EBK model, and the worst performance is obtained with the
MGWR model. Compared with the results obtained with single models such as GWR and
MGWR, the quadratic treatment of single-model-regression residuals using interpolation
methods such as kriging and empirical Bayesian kriging can effectively improve the fit of
the original data. From the choice of variable combinations, the highest R2 value is 0.962
for all three variable combinations at the annual average scale, and the effect of considering
the combination of ZTD variables is better than the effects of considering the other two
types of variable combinations, temperature and PWV, at the seasonal average scale. The
possible reason for the change in the model R2 values with the changing seasons is that
when the PM2.5 value is lower in a given season, the decrease ratio of the sum of squares of
the difference between the true value and the mean value may be greater than the decrease
ratio of the sum of squares of the residuals, so the increase in the sum of squares of the
residuals divided by the sum of squares of the difference between the true value and the
mean value leads to a decrease in the R2 value.

We calculated and summarized the RMSEs of the interpolation results obtained from
the various constructed models; RMSE is a good indicator for testing the accuracy of an
interpolation and can be used to measure the deviation between the interpolation results
and the true values. The RMSE results are shown in Figure 12.

As seen from the results in Figure 12, the GWR-EBK model with the best goodness
of interpolation on the annual average scale also has the smallest RMSE, but unlike the
goodness of interpolation results, the GWR-EBK model has an equal goodness of interpo-
lation after considering three different combinations of variables for modeling, while in
the RMSE results, the combination of ZTD variables considered for modeling results in a
smaller RMSE with better results.
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On the seasonal average scale, the RMSEs of the models also show a larger phe-
nomenon in winter due to the larger PM2.5 values, with the lowest value obtained for the
GWR-EBK model built with the combination of PWV variables (an RMSE of 4.5 µg/m3)
and the highest obtained for the MGWR model built with the combination of ZTD variables
(an RMSE of 10.4 µg/m3). The RMSE of the GWR-EBK model built by the combination of
ZTD variables and temperature variables was optimal and equal in spring and autumn,
with RMSEs of 3.2 µg/m3 and 3.1 µg/m3 obtained, respectively; the PM2.5 values were the
lowest in summer, so the RMSEs of the model interpolation were also the lowest in this
season; the RMSE of the GWR-EBK model obtained using the combination of three types
of variables was the lowest and was equal to 2.7 µg/m3.

The model effects used for the comparison of the RMSE results are quite similar
to those used for the comparison of the goodness of interpolation results. The GWR-
EBK model performs the best, and at the annual average scale, the combined results of
the two comparisons show that the GWR-EBK model constructed by considering the
combination of ZTD variables works best. At the seasonal average scale, the GWR-EBK
model constructed by considering the combination of PWV variables performed best in
winter, while the GWR-EBK model constructed by the combination of ZTD variables had
the highest accuracy in spring, summer and autumn.

5.2. Local Model Effect

PM2.5 is a variable with strong spatial and temporal heterogeneity. To further analyze
the spatial effect of the model interpolation for PM2.5 in depth, the model effect is further
explored from two perspectives: the DEM-derived elevation and the province.

5.2.1. Elevation as a Classification Criterion

The 340 PM2.5 ground stations in the five south-central provinces of China were
roughly divided into three categories based on their DEM-derived elevations and the
number of stations, with 117 stations below 35 m, 111 stations between 35 and 90 m, and
112 stations greater than 90 m.
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The accuracy of the model interpolation for each local elevation interval was quantified
using RMSE, and the obtained precisions were compared.

From the annual average data, it can be seen that with an increase in the DEM
elevation, the overall accuracy of the model interpolation gradually decreases; for the
two elevation intervals less than 35 m (Figure 13a–c) and more than 90 m (Figure 13g–i),
the GWR-EBK model built from the combination of the three variables has the highest
interpolation accuracies, at 2.3 µg/m3 and 2.7 µg/m3, respectively. In the interval of
35–90 m (Figure 13d–f), the accuracy of the GWR-EBK model built by the combination
of two variables, PWV and ZTD, is better than that of the model constructed by the
combination of temperature variables.
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The RMSE statistics of the model considered for each elevation interval in winter
show that the accuracy of the GWR-EBK model established by using the combination of
PWV variables is optimal in each elevation interval, showing good generalizability, and
combined with the overall accuracy evaluation results above, this result proves that the
accuracy of the model is optimal in winter in the five provinces in south-central China,
both overall and in different elevation intervals.

From the statistical results obtained in spring, it can be seen that the GWR-EBK model
built considering the combination of two types of variables, temperature and ZTD, has the
highest interpolation accuracy, with RMSEs of 2.4 µg/m3 and 3.2 µg/m3 recorded in the
intervals less than 35 m (Figure 13a,c) and 35–90 m (Figure 13d,f), respectively, while in
the interval greater than 90 m (Figure 13g,i), the GWR-EBK model built by considering
the combination of temperature variables has the highest interpolation accuracy (a value
of 3.4 µg/m3). From the elevation interval effect, it can be seen that although the GWR-EBK
model established by considering the combination of temperature variables and ZTD variables
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in the overall accuracy evaluation of the model in the previous section has an equal RMSE
value, after refining the elevation interval, it can be found that the effect of considering the
combination of temperature variables (Figure 13g) is better than the effect of considering the
combination of ZTD variables (Figure 13i) in the interval greater than 90 m.

The model interpolation accuracy results presented in the summer were consistent
with those obtained on the annual average scale, and the GWR-EBK model built by the
three variable combinations had the highest accuracies of 2.1 µg/m3 and 2.8 µg/m3 in the
two elevation intervals less than 35 m (Figure 13a–c) and more than 90 m (Figure 13g–i),
respectively. In the 35–90-m interval, the GWR-EBK model built by the combinations of
the PWV (Figure 13e) and ZTD (Figure 13f) variables had better accuracy than that of the
temperature variable (Figure 13d) combination constructed models. The accuracy of the
model interpolation remained consistent overall, and for each elevation interval during the
fall season: i.e., the GWR-EBK model consisting of a combination of two types of variables,
temperature and ZTD, was considered to be the best.

5.2.2. Province as a Classification Criterion

The 340 PM2.5 ground stations were then divided into provinces, and the model effects
were discussed in each of the five provinces in the south-central region to explore the
model applicability of each province at each scale, including 66 points in Henan province,
48 points in Hubei province, 75 points in Hunan province, 101 points in Guangdong
province, and 50 points in Guangxi province. The RMSE results obtained for the six models
constructed from the combination of the three variable types at the annual average scale
are listed in Figure 14.

Through Figure 14, we can see that the model has larger RMSE values in Henan, Hubei
and Hunan provinces and smaller RMSE values in Guangdong and Guangxi provinces,
which is consistent with the previously obtained PM2.5 distribution patterns in the five
south-central provinces (high in the north and low in the south).

The best results were obtained for the GWR-EBK model constructed by combining
two types of variables, PWV and ZTD, in Henan province (Figure 14a); for the GWR-EBK
model constructed by combining three types of variables in Hubei province (Figure 14b);
for the GWR-EBK model constructed by combining two types of variables, temperature and
ZTD, in Hunan province (Figure 14c); for the model constructed by combining temperature
variables in Guangdong province (Figure 14d); for the model constructed by combining
PWV variables in Guangxi province (Figure 14e).

In winter, the GWR-EBK model constructed from the combination of PWV variables
had the best applicability in all five provinces, and combined with the results of the previous
analysis, this proves that the model has the strongest generalizability during winter in the
five south-central provinces.

In two provinces, Hubei (Figure 14b) and Guangdong (Figure 14d), in spring, the
GWR-EBK models constructed with different combinations of variables were equally
applicable; in Henan province (Figure 14a), the consideration of the combination of both
temperature and ZTD variables obtained better results; in Hunan province (Figure 14c),
the best GWR-EBK model was constructed by considering ZTD; in Guangxi province
(Figure 14e), the best GWR-EBK model was constructed by considering the combination of
temperature variables.

The models with the best interpolation accuracies for Henan province (Figure 14a)
in summer are of four types: the GWR-EBK and MGWR-EBK models considering PWV,
the MGWR-EBK model considering temperature and the GWR-EBK model considering
ZTD; combined with the R2 values of the summer models, these results show that the
GWR-EBK model considering ZTD is the best overall. The GWR-EBK model constructed by
the combination of three variables in Hubei province (Figure 14b) has the same effect, and
the model with the smallest RMSE in Hunan province (Figure 14c) also has four categories,
while the combination of the summer model R2 shows that the GWRK model that considers
ZTD has the best effect overall. In Guangdong province (Figure 14d), the RMSEs of various
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models were not very different, but combined with the magnitudes of the R2 values, it
can be judged that the GWR-EBK model considering ZTD is the next-best model, and the
GWR-EBK model considering temperature and ZTD is the best model in Guangxi province
(Figure 14e).

The two types of GWR-EBK models considering temperature and ZTD had the best
accuracy performances in Henan (Figure 14c) and Hubei provinces (Figure 14b) in au-
tumn, while the GWR-EBK model considering ZTD had the best effect in Hunan province
(Figure 14c), the GWR-EBK model constructed by combining three variables had the best
and equal effect in Guangdong province (Figure 14d), and the two types of GWR-EBK mod-
els considering PWV and temperature had the best effects in Guangxi province (Figure 14e).
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6. Discussion

After comparing the interpolation effects of three interpolation methods in obtaining
meteorological data and GNSS-derived PWV and ZTD data from PM2.5 ground stations,
the results show that the IDW interpolation method has better interpolation effects than
the kriging method and the TSF interpolation method for meteorological parameters and
GNSS-derived PWV and ZTD data in the five studied central and southern provinces.

By comparing the changes in the spatial distribution map of PM2.5 in the region, it can
be seen that the PM2.5 concentration values in the five south-central provinces of China
show obvious seasonal variation characteristics of high values in winter and low values in
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summer, and geographical characteristics of high values in the north and low values in the
south, while clustering phenomena mainly occur in Henan and Guangdong provinces, with
high clustering in Henan province and low clustering in Guangdong province recorded.

The experiments show that considering GNSS-derived PWV and ZTD data in the
construction of a regional PM2.5 model is effective and feasible and is better than the
regional model constructed by considering only the atmospheric pollutants, meteorological
factors and elevation factors in the annual and seasonal averages in many cases, with better
interpolation effects. In the five provinces of south-central China, PWV and ZTD show
strong negative correlations with PM2.5 as well as with temperature, showing seasonal
characteristics of low values in winter and high values in summer, and geographical
characteristics of high values in the south and low values in the north. The significance
magnitude in the exploratory regression is divided into atmospheric pollutants > GNSS
parameters (ZTD and PWV) > meteorological factors, and the results of the stratified
heterogeneity of geodetectors again reflected the significant correlation between GNSS
parameters and PM2.5, providing a guide for constructing a regional PM2.5 model when
meteorological data are missing and PWV and ZTD data can be used as a substitute.

In constructing a regional model of PM2.5, the interpolation effect of the model changes
depending on the choice of variables, the time scale, and the spatial scale. The GWR model
has a stronger ability to estimate PM2.5 than the MGWR model and is more efficient in south-
central China. Compared with the interpolation effect of a single geographically weighted
regression-type model for PM2.5, the combined model shows a stronger advantage, and
the overall best performance in this area is obtained with the GWR-EBK model, indicating
that the empirical Bayesian kriging method is better for the explanation and interpretation
of GWR residuals; further, the GWR-EBK model can improve the accuracy by 14.74% more
than the GWR model.

The largest reason for the inverse ratio of the seasonal PM2.5 values to the seasonal
average scale is that when the PM2.5 values are lower due to seasonal changes, the reduction
ratio of the sum of squares of the difference between the true value and the mean value
may be greater than the reduction ratio of the sum of squares of the residuals, as shown by
the formula used to calculate the R2 values. This explains why the R2 value obtained in
winter is greater than those obtained in spring and autumn, while the R2 value in summer
is the smallest.

7. Conclusions

This article analyzed the spatial and temporal characteristics of PM2.5 in the five
provinces of south-central China in 2017–2019 on two time scales (annual average and sea-
sonal average); introduced two types of variables, GNSS-derived PWV and ZTD variables,
to participate in the construction of the regional model of PM2.5 in the region; analyzed a
total of six types of models constructed by the combination of three variables, and obtained
the following conclusions:

(1) The IDW interpolation method is most suitable for the regional interpolation of
meteorological parameters and GNSS-derived PWV and ZTD data for the five studied
provinces in south-central China.

(2) The PM2.5 concentration values in the five south-central provinces show clear
characteristics of high values in the north and low values in the south, as well as a seasonal
variation pattern of high values in winter and low values in summer; clustering phenomena
mainly occur in Henan and Guangdong provinces, with high clustering in Henan province
and low clustering in Guangdong province recorded.

(3) The GNSS-derived PWV and ZTD data show a strong negative correlation with
PM2.5 in the five provinces in south-central China, so it is effective and feasible to consider
GNSS-derived PWV and ZTD in the construction of a regional model of PM2.5, and the
experiments show that the interpolation is better than the regional model constructed by
considering only atmospheric pollutants and meteorological and elevation factors with
many iterations at both the annual and seasonal average scales.
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(4) Compared with a single geographically weighted regression-type model for PM2.5,
the combined model shows a stronger advantage, and the best overall performance in the
five south-central provinces of China is obtained with the GWR-EBK model, indicating that
the empirical Bayesian kriging method has a stronger ability to explain the GWR residuals
and a better interpolation effect.

(5) In the five provinces of south-central China, the applicability of the model in
higher-elevation areas is not as good as that in lower-elevation areas, and the applicability
of the model in higher-latitude areas is also worse than in lower-latitude areas.
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