Role of MicroRNA in Hydroxyurea mediated HbF induction in Sickle cell anaemia patients

Neha Kargutkar^{1#}, Madhavi Sawant-Mulay^{1#}, Priya Hariharan¹, Chandrakala S², and Anita Nadkarni¹

ICMR-National Institute of Immunohaematology, Parel, Mumbai, India ¹ King Edward Memorial Hospital and Seth G.S. Medical College, India²

Neha Kargutkar and Madhavi Sawant-Mulay¹ contributed equally as a 1st author

*Correspondence:

Dr. Anita Nadkarni,

Scientist F,

National Institute of Immunohaematology,

13th floor NMS building, KEM Hospital Campus,

Parel, Mumbai-400012

Tel- 91-22-24138518/19

Fax - 91-22-24138521

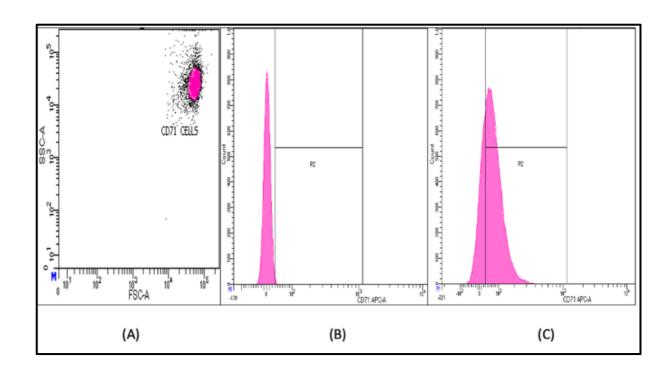
Email- anitahnadkarni@yahoo.com

Running title: Role of miRNA in HbF induction

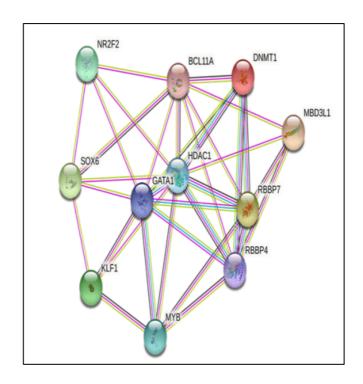
Key words: microRNA, HbF, Hydroxyurea, Sickle cell anaemia

Supplementary Table1: Polymorphic variations in BCL11A, HBS1L-MYB, γ globin promoter region polymorphism

SNP	Genotypic frequency		Allelic frequency		P value	Odds ratio (OR) with 95% CI	
BCL11A (rs11886868)	CC	СТ	TT	С	Т		
SCD	4	17	9	25	35	P=0.02	0.47
(n=30)	(0.13)	(0.56)	(0.3)	(0.41)	(0.58)		(0.22-0.98)
Control	11	14	5	36	24		
(n=30)	(0.36)	(0.46)	(0.16)	(0.6)	(0.4)		
BCL11A	GG	GT	TT	G	T		
(rs1427407)							1.1 (0.5-2.47)
SCD	20	6	4	46	14	P=0.62	
(n=30)	(0.66)	(0.2)	(0.13)	(0.76)	(0.23)	F-0.02	
Control	28	29	1	85	31		
(n=30)	(0.93)	(0.96)	(0.03)	(0.73)	(0.26)		
HBS1L-							
MYB	TAC/TAC	-/TAC	-/-	TAC	-/-		
(rs66650371)							0.25
SCD	18	11	1	47	13	P=0.02	(0.07-0.84)
(n=30)	(0.6)	(0.36)	(0.03)	(0.78)	(0.21)		
Control	26	4	0	56	4		
(n=30)	(0.86)	(0.13)		(0.93)	(0.06)		
XMN1							
(HBG2 c	CC	CT	TT	C	Т		
211 C—>T)							
SCD	0	1	29	1	59		0.001
(n=30)		(0.03)	(0.96)	(0.01)	(0.98)	P=0.001	(0.0001-0.01)
Control	26	4	0	56	4		
(n=30)	(0.86)	(0.13)		(0.93)	(0.06)		

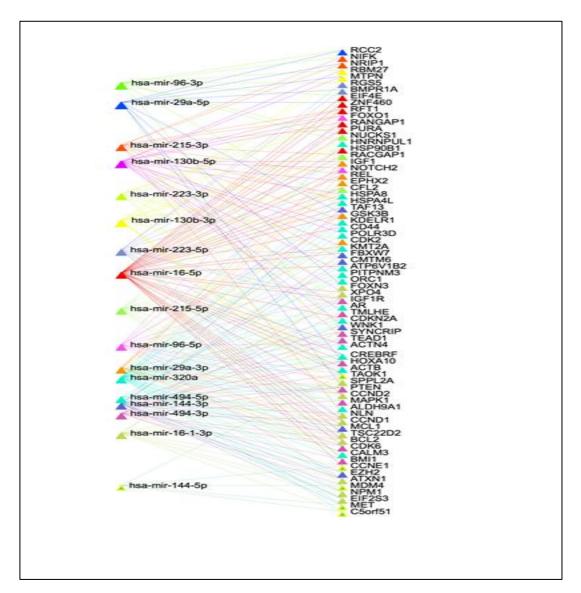

Supplementary Table 2: Effect of associated alpha thalassemia on the hematological parameters in SCD patients

Haematological parameters	SCD patients without alpha thalassemia trait N=14 Median	SCD patients with alpha thalassemia deletion N=16 Median	P value
WBC (x103/μL)	11.3	9.15	0.04
RBC (x106/μL)	3.13	3.65	0.05
Hb (g/dL)	7.9	10.95	0.05
MCV (fL)	78.4	86.04	0.00004
MCH (g/dL)	24.85	29.64	0.00002
HbF (%)	15.66	21.9	0.01
HbS (%)	77.15	68.01	0.00001

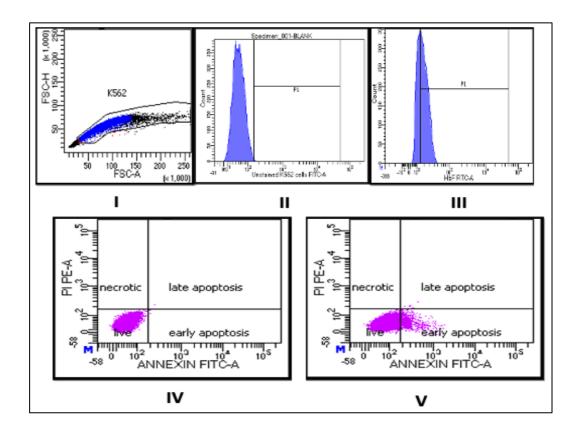

Supplementary Table 3: miRNA and target gene interaction

miRNA	Target genes	pathways
miR-96	RCC2, NIFK, RBM27, RGS5, EIF4E, NUCKS1,	Erythropoiesis,
	HNRNPUL1, TAF13, SYNCRIP, FOXO1, NOTCH2,	Cancer pathways, P53
	GSK3B, KDELR1, PITPNM, IGFR1, ACTN4, TAOK1,	signalling, Focal
	SPPL2A, CCND2, BCL2, ATXN1	adhesion, Cell cycle
		regulation, mTOR
		signalling
miR-29a	RCC2, NIFK, NRIP1, MTPN, BMPR1A, ZNF460, GSK3B,	Erythropoiesis,
	FOXN3, HOXA10, PTEN, IGFN1, REL, EPHX2, CDK2,	Cancer pathways, P53
	SYNCRIP, CCND2, BCL2, CDK6, CALM3	signalling, Focal
		adhesion, Cell cycle
		regulation
miR-215	NIFK, NRIP1, RFT1, FOXO1, PURA, RACGAP1, REL,	Erythropoiesis,
	HSPA4L, KDELR1, CMTM6, TEAD1, NLN, NUCKS,	Cancer pathways, P53
	CFL2, KMT2A, ORC1, IGFR1, CDKN2A, WNK1,	signalling, Cell cycle
	HOXA10, ALDH9A1, BCL2, CCNE1, MDM4	regulation
miR-130b	RBM27, MTPN, RFT1, FOXO1, RANGAP1, IGF1,	Cancer pathways, P53
	NOTCH2, EPHX2, HSPA8, CD44, POLR3D, KMT2A,	signalling, Focal
	PITPNM3, XPO4, TMLHE, WNK1, HNRNPUL1,	adhesion, Cell cycle
	HSP90B1, RACGAP1, CFL2, KDELR1, ATP6V1B2,	regulation, mTOR
	ORC1, TAOK1, PTEN, CCND2, MAPK1	signalling
miR-223	RGS5, BMPR1A, PURA, IGF1, CFL2, FBXW7, IGF1R,	mTOR signalling,
	AR, CREBRF, TAOK1, CCND1, TSC22D2	JAK-STAT signalling
miR-16-1	ZNF460, RFT1, RANGAP1, PURA, NUCKS1, HSP90B1,	Erythropoiesis,
	RACGAP1, NOTCH2, REL, CFL2, HSPAB, HSPA4L,	Prostate cancer, P53
	TAF13, GSK3B, CD44, KMT2A, FBXW7, ATP6V1B2,	signalling, Focal
	IGF1R, XPO4, CDKN2A, ACTN4, CREBRF, HOXO10,	adhesion Cell cycle
	ACTB, TAOK1, CCND2, MCL1, TSC22D2, BCL2, BM1,	regulation, mTOR
	CCNE1, FOXON3, SPPL2A, NLN, CCND1, ATXN1,	signalling, NOD-like
	NPM1, EIF2S3, C5orf51	receptor signalling
miR-320	HNRNPUL1, HSPA4L, KDELR1, POLR3D, KMT2A,	Erythropoiesis, P53
	ATV6V1B2, ORC1, IGFR1, CDKN2, WNK1, SYNCRIP,	signalling, Focal
	TEAD1, ACTN4, CREBRF, HOXA1, ACTB, PTEN,	adhesion, cell cycle

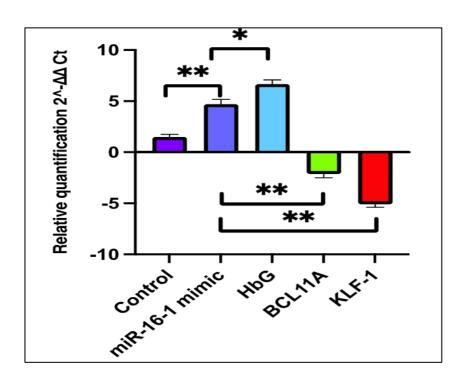
	CCND2, MAPK1, MCL1, TSC22D2, CDK6, CALM3,	regulation, mTOR
	BMI1, EZH2, ATXN1, NPM1, MET, C5orf51	signalling
miR-494	PITPNM3, CREBRF, PTEN, ALDH9A1, EIP2S3, IGFR1,	Erythropoiesis, Focal
	TMLHE, SYNCRIP, HOXA10, MAPK1, CCND1, BCL2,	adhesion, mTOR
	BMI1, ATXN1, MDM4	signalling, NOD-like
		receptor signalling
miR-144	TAF13, FBXW7, CMTM6, WNK1, HOXA10, TAOK1,	Focal adhesion, Cell
	PTEN, NLN, MCL1, ATXN1, EZH2, EIF2S3, MET,	cycle regulation
	CCNE1, MDM4, C5orf51	



Supplementary figure 1: Flow cytometric analysis for CD71+ cells. (1A) Identification of CD71+ cells (logarithmic scale) (1B) Histogram depicting unstained CD71+ cells (1C) Histogram depicting stained CD71+ cells. The % stained CD71+ cells was found to be 69.9%



Supplementary figure 2: Protein-protein interaction network of genes regulating γ globin. PPI network was constructed using STRING software (https://string-db.org/) version 11.5 which


consisted of 11 nodes and 34 edges with PPI enrichment p value (p<0.0001). In PPI network the identified hub genes were BCL11A, N2RF2, SOX6, KLF1, MYB, RBBP4, RBBP7, MBD3L1, DNMT1, HDAC1, GATA1 which are essential modulators of fetal hemoglobin.

Supplementary figure 3: miRNA-mRNA network construction using miRNet webtool/database (http://www.mirnet.ca) version 2.0. The miRNA target genes were identified using miRNet web tool. The target miRNA genes identified were significantly (p<0.0001) enriched in pathways such as erythropoiesis, cell cycle regulation, mTOR signalling, JAK-STAT pathway and cancer pathways. miRNA-target interaction networks constructed for each miRNA is based on the node 'degree' and 'betweenness' of miRNA and target gene.

Supplementary figure 4: Evaluation of 'F cells' and identification of apoptosis rate in miRNA transfected K562 cells. (4I) Gating strategy of K562 cells (linear scale) (4II) Unstained K562 cells as negative control (4III) Histogram depicts stained 'F cells' using anti-HbF FITC labelled antibody in K562 cells. The percent F cells were found to be 57.1%. (4IV) Evaluation of apoptosis rate in non-transfected K562 cells using FITC labelled-Annexin V antibody and Propidium Iodide which was found to be 0.1%. (4V) Evaluation of apoptosis rate in miRNA transfected K562 cells using FITC labelled-Annexin V antibody and Propidium Iodide which was found to be 7.9%.

Supplementary figure 5: Transfection of miR-16-1 mimic in CD34+ cells in SCD patient. Transfection of miR-16-1 mimics resulted into significant upregulation of y globin gene (6.6 folds) and downregulation of BCL11A (2.1 folds) and KLF-1 (5.1 folds) gene.

^{*}Significant at p<0.001, **Significant at p≤0.0001