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GLUCOCORTICOIDS are potent inhibitors of inflammatory
processes and are widely used in the treatment of
asthma. The anti-inflammatory effects are mediated
either by direct binding of the glucocorticoid/gluco-
corticoid receptor complex to glucocorticoid respon-
sive elements in the promoter region of genes, or by
an interaction of this complex with other transcrip-
tion factors, in particular activating protein-1 or
nuclear factor-kB. Glucocorticoids inhibit many
inflammation-associated molecules such as cyto-
kines, chemokines, arachidonic acid metabolites, and
adhesion molecules. In contrast, anti-inflammatory
mediators often are up-regulated by glucocorticoids.
In vivo studies have shown that treatment of asth-
matic patients with inhaled glucocorticoids inhibits
the bronchial inflammation and simultaneously
improves their lung function. In this review, our
current knowledge of the mechanism of action of
glucocorticoids and their anti-inflammatory potential
in asthma is described. Since bronchial epithelial
cells may be important targets for glucocorticoid
therapy in asthma, the effects of glucocorticoids on
epithelial expressed inflammatory genes will be
emphasized.
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Introduction

Glucocorticoids are hormones synthesized in the
adrenal cortex and secreted into the blood, where the
levels of glucocorticoids fluctuate in a circadian
mode. In humans, the naturally occurring gluco-
corticoid is hydrocortisone (cortisol), which is syn-
thesized from its precursor cortisone.

The beneficial effects of glucocorticoids in asth-
matic patients were first described in 1950." Since
then on, many studies have focused on the ther-
apeutic potential of glucocorticoids. Several synthetic
glucocorticoids, much more potent than cortisol and
without the unwanted mineralocorticoid side effects,
have been developed. Nowadays, glucocorticoids are
powerful agents in the treatment of inflammatory
diseases and are by far the most effective anti-
treatment of

inflammatory drugs used in the

asthma.

Mechanism of Action

Although glucocorticoids have been known for a long
period of time, their precise mechanism of action is
still not completely understood. However, recent
studies have increased our understanding of their
complex mechanisms of action.
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Glucocorticoid receptor

To exert their effects, glucocorticoids need to bind to
a specific cytoplasmic glucocorticoid receptor (GR).
Almost all cells of the body express the GR, but the
number of receptors may vary between different cell
types.” Cloning of the GR has revealed that the GR
consists of approximately 800 amino acid residues,
and that certain areas of the molecule show homol-
ogy with other steroid receptors, receptors for
thyroid hormones, and receptors for retinoic acid.”™’
All members of the nuclear hormone receptor family
share a characteristic three-domain structure, first
described for the human GR. The Cterminal domain
is equal in size in all nuclear receptors studied (about
250 amino acids) and its main function is to bind the
steroid.® It also contains the binding sites for the heat
shock proteins (hsp) 90.”'°
binding domain results in a constitutively active GR

Removal of the steroid-

molecule, indicating that this part of the molecule
acts as a repressor of the transcription-activation
function. The most conserved central domain is
involved in direct binding of the receptor to DNA. It
contains two distinct loops of protein, each bound at
their base via four cysteine residues to a single zinc
ion, the so-<alled zinc ﬁngers.11 These zinc clusters
are involved in binding of the GR to the major groove
of the DNA double helix and play a role in dimeriza-
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tion of two GR molecules.'*'? In addition, the central
DNA-binding domain has a transcription-activation
functon.*' The steroid-binding and DNA-binding
domains are separated by the ‘hingeregion’, which
contains sequences that are important for nuclear
translocation and dimerization.”'® The N-erminal
domain is extremely variable in size (24-600 amino
acids). Its precise role is still uncertain, but it is
required in transcriptional activation.'’

Two different forms of the human GR have been
described.>'® These two highly homologous isoforms,
termed GRa and GR, are generated by alternative
splicing of the human GR pre-mRNA. The GRP
isoform differs from the GRa isoform only in its
C+terminal domain, in which the last 50 amino acids
of the latter are replaced by a unique 15 amino acid
sequence. However, this replacement has dramatic
functional consequences, since the GRP isoform is
unable to bind glucocorticoids and to transduce
ligand-dependent transactivation. However, the phys-
iological significance of the GRP isoform remains
questionable, since some recent studies indicate that
this form is not conserved among species and no
dominant negative inhibition of GRa activity could be
found.'”'® Nevertheless, abundant expression of GRp}
protein can be found in the epithelial cells lining the
terminal bronchioli of the lung."”

The expression of the GR may be regulated by
numerous factors either at the transcriptional, transla-

20,21 ..
l. Glucocorticoids

tional or post-translational leve
have been shown to down-regulate the expression of
the GR, both in vitro and in vive.”*’ In contrast,
inflammatory mediators like interleukin (IL)-1B, IL4,
tumour necrosis factor (TNF)-a, lipopolysaccharide
(LPS) and interferon (IFN)-y have been shown to
increase glucocorticoid binding in vitro **~** How-
ever, the increase in GR numbers may be accom-
panied by a reduced affinity for glucocorticoids.“’28
Analysis of GR localization in normal and asthmatic
lung has not revealed differences in the level or sites

. 29
of GR expression.””

Regulation of gene transcription

In the absence of glucocorticoids, the GR is present
in the cytoplasm of the cell as a hetero-oligomer
consisting of the GR itself, two molecules of hsp
90, one molecule hsp 70, and one molecule of hsp
56 (which probably does not interact with the GR
itself, but interacts with hsp 90).*°7** Glucocor-
ticoids enter the cytoplasm of the cell by passive
diffusion through the cell membrane. In the cyto-
plasm they bind to the GR complex, which subse-
quently undergoes conformational changes, result-
ing in the dissociation of the hsp 90 and hsp 56
molecules. Upon this activation, the glucocorticoid-
GR complex passes the nuclear membrane, enters
the nucleus, and the hsp 70 molecule is dissociated.
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FIG. 1. Schematic representation of the cellular events after
administration of glucocorticoids (adapted from Ref. 39).

Furthermore, in the nucleus liganded GR form hom-
odimers (Fig. 1).

Within the nucleus, the GR homodimers may
regulate gene transcription in several ways: (1) via
binding of the glucocorticoid-GR complex to specific
DNA sequences, thereby directly activating or repres-
sing genes; (2) via interaction with other transcription
factors; and (3) via modulating the stability of specific
mRNA molecules.’” ™’

Binding to DNA sequences

Several steroidresponsive genes contain glucocor-
ticoid responsive elements (GRE) in their promoter
region.35’40 Binding of GR homodimers to GRE may
either result in transcriptional activation of the gene
(via a positive GRE) or repression of the gene (via a
negative GRE) (Fig. 1). The consensus sequence for
(positive) GRE is the palindromic 15-base-pair
sequence GGTACAnnnTGTTCT, whereas the negative
GRE has a more variable sequence.”® The rate of
transcriptional regulation of steroidresponsive genes
is dependent on both the numbers of GRE, the affinity
of the glucocorticoid-GR complex to the GRE, and the
position of the GRE relative to the transcriptional start
site. Binding of the complex to GRE may result in
conformational changes in the DNA and exposure of
previously masked areas, resulting in increased bind-

: o 11-44
ing of other transcription factors.

Interaction with other transcription factors

Many steroidtesponsive genes do not have GRE in
their promoter region. However, binding sites for
other transcription factors, including nuclear factor
(NF)xB, activating protein (AP)-1, and cAMPrespon-
sive element binding protein (CREB), often can be
found.*”
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AP-1, which is a dimer of two proto-oncogenes
(members of the cjun and cHos family),46’47 is
involved in the regulation of several genes, including
adhesion molecules and cytokines (reviewed in Ref.
47). Direct protein—protein interaction between AP-1
and the glucocorticoid-GR complex results in recipro-
cal repression of one another’s transcriptional activa-
tion by preventing binding of the AP-1 and gluco-

corticoid-GR  complex to AP-1 and GRE,
)37,48,49

sites
respectively (Fig. 1
Comparable to AP-1, NFxB (a heterodimer of p50

50,51

and p65 subunits ) regulates the transcription of

several genes involved in inflammatory reac-
tions.’*>*3 In unstimulated cells, NFxB is retained in
the cytoplasm of the cells through the interaction with
the inhibitors IxBot and IkBB.>*~>® Upon cell stimula-
tion, for example by IL-1P or TNF-a, IkB are rapidly
phosphorylated, ubiquitinated, and consequently pro-
teolysed.”*” The liberated NFxB dimers translocate
to the nucleus where they can activate target genes.
Glucocorticoids may inhibit NF«Bstimulated genes
by a direct interaction between the glucocorticoid-GR
complex and the p65 subunit of NFxB, resulting in
transrepression (Fig. 1).>1555859 Burthermore, gluco-
corticoids may indirectly antagonize NF&B mediated
transcription by up-regulating the synthesis of the
inhibitory protein IkBa, which traps NF«B in inactive
cytoplasmic complexes.’”?*°% A large number of
immunoregulatory genes, whose expression is
induced by a variety of pro-inflammatory mediators,
contain NFxB sites in their promoters/regulatory
regions. Therefore, itis no wonder that glucocorticoids
have been found to prevent the expression of these
genes, including those coding for IL-1[3, IL2, IL-6, IL-8,
monocyte chemoattractant protein (MCP)-1, RANTES
(Regulated upon Activation, Normal T cell Expressed,
and presumably Secreted), granulocyte macrophage
colony-stimulating factor (GM-CSF), the IL2 receptor,
intercellular adhesion molecule (ICAM)-1, and
Eselectin (reviewed in Ref. 45). Probably, interactions
between glucocorticoids and NFXB or AP-1 will
explain most of the antiinflammatory and immuno-
suppressive activities of glucocorticoids.

An interaction between CREB and the gluco-
corticoid-GR complex has also been suggested.60’61
B-agonists, which are used as bronchodilators in the
treatment of asthma, increase cAMP formation and
subsequently activate CREB. Therefore, simultaneous
treatment of asthmatic patients with glucocorticoids
and B-agonists may result in reduced responsiveness

; 1 616
of the airways for steroids.®'™*

Modulation of mRNA stabiliry.

A third mechanism by which glucocorticoids may
regulate the synthesis of proteins is via enhanced
transcription of specific ribonucleases which are able
to degrade mRNA containing constitutive AUrich
sequences in the untranslated _’)'—region.64 Such gluco-

Table 1. Influence of glucocorticoids on the synthesis of
proteins with inflammatory effects by bronchial epithelial
cells

Glucocorticoid
effect

Protein

Cytokines
IL-1B, IL-6, IL-11, TNF-a, GM-CSF
IL-10, LIF
G-CSF

Chemokines
MCP-1, eotaxin, IL-8, RANTES, MIP-1a

Receptors
NK, GR
IL-1R Il, IL-6R, B,-adrenergic receptor

I~

Enzymes
iNOS, COX-2, cPLA;
NEP

Adhesion molecules
ICAM-1

Inhibitory proteins

Le1
IL-1RA type |, SPLI

S e o

corticoid-mediated modulation of posttranslational
events (resulting in decreased mRNA stability and
reduced halfdife time) has been observed for IL-1f, IL-
6 and GM-CSE®>°

Glucocorticoid Regulated Genes

Glucocorticoids are able to modulate the transcrip-
tion of a variety of genes, including cytokines and
chemokines,
cules, and inhibitory proteins (Table 1). Since epithe-

receptors, enzymes, adhesion mole-

lial cells may be one of the most important targets for
glucocorticoid therapy in asthma, the effects of
glucocorticoids on epithelial expressed inflammatory
genes will be emphasized in this review.

Cytokines and chemokines

Glucocorticoids inhibit the transcription of most
cytokines and chemokines that are relevant in asthma,
including IL-1 B, TNFo, GM-CSE IL-3, IL4, IL-5, IL-6, IL-
8, IL-11, IL-12, IL-13, RANTES, eotaxin, and macro-
phage inhibitory protein (MIP)-10..5%¢ In general,
reduced synthesis of these mediators may result in a
decreased recruitment and activation of leukocytes,
also indirectly due to effects on adhesion molecules
and cell survival. Since many cytokine gene pro-
moters do not contain a negative GRE, the effects of
glucocorticoids on cytokine and chemokine produc-
tion are probably mediated via an effect on a critical
transcription factor (especially NFxB and AP-1).%”
Cross=signalling between NF«B and AP-1 with gluco-
corticoid/GR complex have indeed been demon-
strated in bronchial epithelial cells.®’”
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Bronchial epithelial cells are capable of producing a
variety of cytokines and chemokines that may contrib-
ute to the initiation and perpetuation of airway
inflammation. Several studies have shown that cyto-
kine-induced expression of eotaxin, IL-6, IL-8, GM-
CSE and RANTES can be diminished by gluco-
corticoids in vitro.**77° In contrast, glucocorticoids
did not modulate the secretion of G-CSF by human
bronchial epithelial cells.”®

In wvivo studies have

shown that treatment with inhaled steroids decreases
both the expression of GMCSE”’ IL—1[3,78 IL8,”° and
RANTES®’ by the bronchial epithelium, together with
the number of

activated eosinophils in the

epithelium.

Receptors

Glucocorticoids may modulate the expression of
several receptors. The expression of the neurokinin
(NK); receptor, which mediates many effects of
substance P (SP) in the airways and is believed to be
upregulated in asthma,®' is down-regulated by gluco-
corticoids.®” Since the NK; receptor gene promoter
region has no GRE but has an AP-1 response element,
this effect probably will be mediated via an inter-
action of the glucocorticoid-GR complex with AP-1.

In contrast to NK; receptors, expression of the
Bs-adrenergic receptor is increased by glucocor-
ticoids.*> Since the human B,-adrenergic receptor
gene contains three potential GRE, this effect of
glucocorticoids probably is a direct one.” Up-regula-
tion of Pr-adrenergic receptors by glucocorticoids
may be relevant in asthma as it may prevent down-
regulation in response to prolonged treatment with
[32—:;Lgonists.84

The IL-1 receptor type II, which functions as a
decoy receptor,®” may also be up-regulated by gluco-
corticoids, thereby reducing the functional activity of
IL-1 :;Lgonists.%’87 Soluble TNE+eceptor type 1 (p55)
release by human bronchial epithelial cells, both
constitutive as well as IL-1B-induced, has been shown
to be reduced by glucocorticoids.®® In contrast,
glucocorticoids up-regulate the expression of IL-6
receptors in rat hepatoma and human epithelial
cells.®”*”* Thus far little is know n about this process in
human bronchial epithelial cells, which constitutively
express these receptors.”’

Glucocorticoids also modulate the expression of
their own receptor. In a recent study it was shown
that expression of the aform (but not the Bform) of
the GR in human bronchial epithelial cells was down-
regulated in healthy subjects after 4 weeks of budeso-

. . . 2
nide inhalation.??

Enzymes
inhibit the

inflammatory mediators implicated in the pathogene-

Glucocorticoids synthesis of several
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sis of asthma through an inhibitory effect on enzyme
induction. The synthesis of inducible nitric oxide
synthase (iNOS) by human airway epithelial cells is
inhibited by glucocorticoids, both in wvitro and in
vivo.”> % This effect seems to be mediated via
inactivation of NFxB.””’° Since nitric oxide (NO)
may contribute to skewing of Th lymphocytes
towards a Th2 phenotype, thereby promoting IgE
production and eosinophil recruitment, inhibition of
iNOS may be of importance in antiinflammatory
therapy in asthma.”’

Glucocorticoids also inhibit the gene transcription
of a cytosolic form of phospholipase A, induced by
cytokines’® and inhibit the gene expression of
cyclooxygenase-2, resulting in reduced formation of
prostaglandins and thromboxanes.”

In contrast to the enzymes mentioned above,
glucocorticoids have been shown to increase the
expression of neutral endopeptidase (NEP),'°°~'%?
thereby potentially limiting neurogenic inflammatory
responses.’' > In accordance with these results, it was
found that the expression of NEP on bronchial
epithelial cells was higher in asthmatics treated
with
asthmatics.

steroids
104

compared with nonsteroid-treated

Endothelins

Endothelins are a family of highly homologous
21-amino acid peptides, characterized by two intra-
chain disulphide chains, a hairpin loop consisting of
polar amino acids, and a hydrophobic C+erminal
chain.'”” Human bronchial epithelial cells have been
shown to produce ET1,'%°"'% which promotes the
proliferation of smooth muscle cells, is a potent
constrictor of both vascular and non-vascular smooth
muscle cells, increases the secretion of mucus, and
may activate inflammatory cells.'>'?"'%? ET1 also
stimulates collagen gene expression and through its
inhibitory actions on collagenase will promote airway
wall collagen deposition, thereby contributing to
airway wall thickening which underlies bronchial
hyperresponsiveness.''*™''? Increased levels of ET-
l-immunoreactivity were detected in airway epithe-
lium and vascular endothelium of bronchial biopsy
specimens from nonsteroid-treated asthmatics com-

106,113,114

pared with healthy subjects. In contrast, no

increased ET1 expression was found in the bronchial

of asthmatic treated with

5

epithelium
.1
glucocorticoids.

patients

Adhesion molecules

Adhesion molecules play an important role in the
recruitment of inflammatory cells to the inflamma-
tory locus. Expression of adhesion molecules on
endothelial, epithelial or inflammatory cells is often
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induced by cytokines, whereas glucocorticoids
reduce surface expression of adhesion molecules.
This effect may be due either to inhibition of cytokine
synthesis or to a direct effect of glucocorticoids on
adhesion molecule gene transcription. It has been
shown that the expression of ICAM-1, endothelial
leukocyte adhesion molecule (ELAM)-1, and Eselectin
is down—regulated by steroids.''® Basal and cytokine-
stimulated ICAM-1 expression on human bronchial
epithelial cell lines is inhibited by glucocor-
ticoids.'"”"'"® However, inhaled glucocorticoids did
not modulate ICAM-1 expression by bronchial epithe-
lial cells from asthmatics in vivo.'"”’

Eosinophil adhesion to cytokine-stimulated bron-
chial epithelial cells was shown to be inhibited by the
synthetic glucocorticoid dexamethasone.'*” Although
cytokine-activated epithelial cells showed increased
expression of ICAM-1, this molecule did not seem to
be involved in the decreased adhesion of eosinophils

. 120
observed in the presence of dexamethasone.

Inhibitory proteins

The anti-inflammatory effects of glucocorticoids may
be mediated by increasing the production of inhibi-
tory proteins, such as lipocortins. Lipocortins are
members of a superfamily of proteins characterized
by their ability to bind calcium and anionic phospho-
lipids, now known as the ‘annexins’.'*"'??

cell types, but not all, glucocorticoids are inducers of

In several

lipocortins, which have an inhibitory effect on the
activity of phospholipase A,."**"'** As a result, the
synthesis of lipid mediators, including prostaglandins
and eicosanoids, will be reduced. However, in human
bronchial epithelial cells glucocorticoids do not seem
to upsegulate the expression of lipocortins.'*” Fur-
thermore, no significant difference was found
between lipocortin-1 concentration in BAL fluid from
asthmatic patients receiving inhaled glucocorticoid
therapy and those who were not treated with
glucocorticoids.126

Recently, glucocorticoids have also been shown to
increase the expression of intracellular IL-1 receptor
antagonist type I by human bronchial epithelial cells
in vitro."” Increased production of this mediator
may inhibit the effects of IL-1 agonists, thereby
reducing inflammation. However, glucocorticoid
treatment of asthmatic patients did not affect the
expression of IL-1 receptor antagonist by the bron-
chial epithelium.”

To provide protection against potentially injurious
agents, airway epithelial cells secrete a number of
mediators, including antiproteases. Secretory leuko-
cyte protease inhibitor (SLPI) is the predominant
antiprotease in the airways. Its expression has been
shown to be increased in airway epithelial cells after

. . . .. 128
stimulation with glucocorticoids.

Cellular and Clinical Effects of
Glucocorticoids in Asthma

Several studies have determined the effects of inhaled
glucocorticoids on bronchial inflammation, either by
measurements in BAL fluid, sputum, or exhaled air, or
by performing bronchial biopsies. Although differ-
ences can be observed between different trials, these
studies have confirmed that glucocorticoid treatment
of asthmatic patients reduces the number and activa-
tion of inflammatory cells in the airways, together
with an improvement of lung function. Nowadays,
the potent antiinflammatory actions of glucocor-
ticoids are thought to underlie the clinical efficacy of

.2 12
oral glucocorticoids. ?

Effects of glucocorticoids on immunopathology

Inhaled glucocorticoids decrease the number and
activation status of most inflammatory cells in the
bronchus, including mast cells, dendritic cells, eosino-
phils, and T lymphocytes. Changes in cellular infiltra-
tion are accompanied by modulated expression of
several cytokines. Inhaled glucocorticoids have been
shown to decrease mRNA expression of GM-CSE IL-
13, IL4, and IL-5, whereas mRNA levels of IL-12 and
IFN-y increased, suggesting a shift from a Th2-
towards a more Th1dike environment.””>"?%!!

Glucocorticoid treatment is associated with a

reduction in mast cell numbers in the bron-
chus”'?7132713% and with reduced mast cell asso-
ciated mediators in BAL fluid.">>'*® This may be due
to a reduction in IL-3 and stem cell factor production,
which are necessary for the survival of mast cells in
tissue. The (IgE-dependent) release of mediators from
mast cells does not seem to be affected by gluco-
corticoid treatment.'?”'?®

Dendritic cells play an important role in presenting
antigens to (naive) T cells.®”1% Tnhaled gluco-

corticoids have been shown to reduce the number

of dendritic «cells in the human bronchial
Cpp 141
epithelium.
Increased numbers of eosinophils are a prominent
142-148

feature of asthmatic airways. In vitro studies
have shown that many eosinophil functions, includ-
ing adherence and chemotaxis, are diminished follow-
ing glucocorticoid treatment.'>® However, most data
suggest that eosinophil responses to steroids are likely
to be indirect, since eosinophil function is markedly
affected by cytokines elaborated from T lymphocytes
(IL3, 1L4, IL-5, GMCSF), endothelial cells (GM-CSF)
and epithelial cells (GM—CSF).M%153 In vivo studies
indicate that treatment with inhaled steroids reduces
the number of ecosinophils and eosinophilrelated
mediators in BAL fluid’>'**"* and the number

of (activated) eosinophils in
79,129,132,133,155

bronchial

biop-
sies. Recently, induced sputum has

been suggested as a useful tool for evaluating the
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effects of therapy on airway mucosal inflammation.
Thus far, most studies have focused on the presence
of eosinophils and eosinophil-related mediators. In
accordance with the findings in BAL fluid and
bronchial biopsies, glucocorticoid treatment was
associated with a reduction in sputum eosinophil
numbers, eosinophil cationic protein (ECP), and
eosinophil peroxidase (EPO)."*

Glucocorticoids also reduce the number of acti-
vated T lymphocytes in bronchial biopsies and BAL
fluid, 122133 134.155.157 1 addition, inhaled corticoste-
roids reduced the number of cells expressing mRNA
for IL4 or IL-5, and increased the number of cells
expressing mRNA for IFN-y,'?"1%?
the development of Th1 cells.”®

In addition to the effects of glucocorticoids on

thereby favouring

epithelial cells described above, inhaled glucocor-
ticoid therapy has been shown to reduce the shed-
ding of epithelial cells.">15?1¢% No consistent effect
of corticosteroids on the thickness of the basement
membrane has been observed.””!¢%!¢!

Besides the suppressive effects on inflammatory
cells, inhaled glucocorticoids have also shown to
inhibit mucus secretion and microvascular leakage (as
determined by the down-egulation of plasma pro-
teins in BAL fluid)."®"'®*71°® At present it is not clear
whether this is mediated via a direct effect of
glucocorticoids on endothelial or mucous cells, or via
a reduction of inflammatory mediators that increase

mucus secretion and vascular leakage.

Effects of glucocorticoids on lung function

Treatment with glucocorticoids has been consistently
shown not only to reduce the symptoms of asthma,
but also bronchial hyperresponsiveness.'*'*71% In
contrast to the rapid inhibitory effects of B,-agonists,
glucocorticoids given in a single dose are not effective
in preventing early allergen-invoked bronchoconstric-
tion, but inhibition of the late response has been

170,171 .
d. 7!'In contrast, chronic treat-

clearly demonstrate
ment with either oral or inhaled steroids attenuates
even the early bronchoconstriction to allergen,'”'™""?
an effect that probably is mediated via the anti-
inflammatory actions of glucocorticoids already
described. Although inhaled glucocorticoids con-
sistently reduce airway hyperreactivity in asthmat-

169
even after several months of treatment respon-

ics,
siveness fails to return to the normal range. This may
reflect persistence of structural changes that cannot
be reversed by steroids (such as the thickening of the
basement membrane), despite of suppression of the

inflammatory and immunological processes.

Concluding Remarks

Glucocorticoids are widely used in the treatment of
asthma and have ant-nflammatory effects. These
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effects are mediated either by direct binding of the
glucocorticoid/GR complex to GRE in the promoter
region of responsive genes, or by an interaction of this
complex with transcription factors such as AP-1 and
NE«B. Glucocorticoids inhibit the expression of a
large number of inflammation-associated molecules,
including cytokines, chemokines, arachidonic acid
metabolites, and adhesion molecules. These effects
predominantly are mediated via inhibition of NF«B
activity. In contrast, antiinflammatory mediators,
such as NEP and IL-1 receptor antagonist, often are
up-regulated by glucocorticoids. The beneficial effects
of glucocorticoid therapy in asthma is demonstrated
by in vivo studies showing that treatment of asth-
matic patients with inhaled glucocorticoids inhibits
the inflammation of the airways and simultaneously
improves their lung function. These effects may be
mediated in part by modulation of epithelial cell
functions, since many studies, both in vitro and in
vivo, have shown that glucocorticoids are able to
modulate the inflammatory functions of bronchial
epithelial cells. Further studies on the mechanism of
action of glucocorticoids will eventually lead to the
development of drugs which specifically inhibit the
transcription of inflammatory genes without having
negative side effects, and will contribute to a more
efficient treatment of asthmatic patients.
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