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Abstract: Reducing the costs associated with water management, improving water quality and the
environment are fundamental requirements of sustainable development. Maintaining the optimal
level of phosphorus has a direct impact on water quality and the biological system. Current methods
used in tertiary wastewater treatment for phosphorus removal present several disadvantages that
influence the final water processing cost. Therefore, it is essential for water quality and food safety to
develop ecological, cheap and highly efficient materials. This study reported the first comparative
assessment of three different types of materials (magnetic, semiconductors and composite) as environ-
mentally friendly, cheap adsorbents for phosphorus removal from wastewater. Several experiments
were done to investigate the influence of adsorbent type, dosage and contact time on the efficiency of
the processes. The adsorption process was fast and equilibrium was reached within 150 min. We
found that the phosphorus adsorption efficiency on of these materials was higher than the chemical
method. The obtained results indicated that specific surface area directly influences the performance
of the adsorption process. EDS analysis was used to analyze adsorbents composition and analyze the
type and content of elements in the substrate before and after reaction with wastewater.

Keywords: pollution; phosphorus; wastewater treatment; nutrient; adsorbents; EDS spectroscopy

1. Introduction

The constant growth of the world’s population, the expansion of urban areas and
excessive industrialization including agriculture are just some of the most important
causes that have had a strong negative impact on non-renewable natural resources and
the environment, dramatically affecting water quality, soil productivity, security food and
quality of life.

According to a recent estimation, about one-fifth of the world’s population has limited
water resource. The pollutants in surface waters come mostly from industrial activity:
heavy metals, dyes, fats, antibiotics, hormones and other pollutants [1–24].

Water management and sustainable management of natural resources directly influ-
ences the quality of life and food security. In this context, remedying water problems and
streamlining water resources to protect natural ecosystems is a necessity [1,2,25–33].

In recent years, mainly due to anthropological activities, there has been a continuous
decline in non-renewable natural resources and an increase in environmental damage
(water quality, soil productivity), both reflected implicitly in food security.

However, the prevention of the food crisis by expanding intensive industrialized
agriculture and excessive soil fertilization (over 50% more than necessary) have affected
the natural ecosystem.
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Phosphorus and nitrogen are water pollutants with a negative impact on the biological di-
versity of ecosystems but have a positive effect on agricultural production [1,2,6,8,9,11,12,15–65].

The discharge of these pollutants in excessive amounts causes eutrophication of water,
which manifests, at first, in overgrown algae, aquatic plants and cyanobacteria. That water
becomes hypoxic and reduces the natural habitat of fish. The process is then followed
by the decomposition of flora with the production of carbon dioxide and decreasing pH,
which affects the growth and development of the respective fauna (fish, molluscs).

Eutrophication is a phenomenon that affects the ecosystem, as well as economic, social
and recreational activities, over time.

The substantial decrease effect of modern agricultural industrialization make it possi-
ble to design and develop sustainable technologies for efficient recovery and recycling of
the nitrogen and phosphorus from wastewater [1,3,6,8,9,11,12,15,17–37,40–65].

In the last half-century, the concentration of phosphorus in wastewater that has
reached effluents has reached alarming levels, causing deterioration in water quality. Its
presence causes many water quality problems, including increased purification costs,
decreased leisure and conservation value of accumulation, animal losses, and the possibly
lethal effect of algae toxins in drinking water [4,6,8,11–26,34–38,44–55,63–69].

It is noteworthy that phosphorus is an essential, non-renewable resource, which
cannot be produced or replaced by chemicals and which has a worldwide price that is
trending upward due to the expansion of agricultural demand and limited supply.

On the other hand, worldwide, the phosphorus consumption to fertilize soil represents
approximately 85% (15 million tons/year) of the entire amount of extracted phosphate
rock (Ca5(PO4)3(F,Cl,OH)), and it is appreciated that the globally natural reserves will be
depleted in the next 50–100 years [5].

It is estimated that a period of about 10–15 million years to regenerate the natural
reserve of phosphorus is necessary [1–4,6,8–55]. The main sources of phosphorus produc-
tion are of the biotic or abiotic types (fertilizers), which contribute to the increase of its
concentration in the water reserves and implicitly to their eutrophication. Controlling
the concentration of phosphorus discharged from municipal and industrial wastewater
treatment plants is a key factor in preventing eutrophication of surface water.

Municipal wastewater has an average total content of 5–20 mg/L phosphorus, in which
1–5 mg/L has an organic nature and the rest of it has an inorganic nature [1–4,6,8–51,55,65–69].

Consequently, it is necessary to develop and improve methods of phosphorus re-
moval [1–51,55,65–69].

Phosphorus removal can be achieved by physical (membrane separation technologies),
chemical or biological methods [1–51,55,65–69].

The most commonly used method is the chemical precipitation of phosphorus with
iron and aluminum salts, or lime. However, chemical dephosphorization results in high
operational costs and increases the volume of sludge by over 40% [1–51,55,65,66,68,69].

The disadvantage of chemical precipitation consists of reagent consumption, the cost
of which varies. Moreover, the phosphate recovery from the resulting sewage sludge is not
effective yet [70,71].

Phosphorus removal can be performed using a biological method or combined with a
chemical treatment. Compared to the chemical removal of phosphorus, biological phos-
phorus removal is more advantageous, efficient and ecological but leads to the formation
of large quantities of sludge whose further processing is reflected in the cost of wastewater
treatment [1–51,55,65–69].

Worldwide, intense efforts are being made to identify high-performance and efficient
materials that will ensure not only the reduction of water treatment costs but also the reuse
of nutrients recovered from wastewater [1–51,55,65–69].

At present, several more or less efficient wastewater treatment technologies are known
and applied in the world, which, in most cases, often affect water quality and, moreover, do
not allow the removal of nutrients. In this respect, we can mention the following methods:
water chlorination, ozonation, different types of membranes, osmosis, etc. [1–51,55,65–69].
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The latest studies in the field of water treatment have focused on the development
of nanotechnology, which are estimated to have a major impact in the very near fu-
ture [26,27,66]. Due to their special properties, the field of use of nanoparticles is ex-
tremely diverse: environmental protection, medicine, IT, energy, biotechnology, agriculture,
construction, etc.

The implications of developing efficient nanotechnology for the tertiary stage of
wastewater treatment are particularly promising, especially due to the minimization of the
number of by-products resulting from the process [1–51,55,65–69,72,73].

Currently, four types of nanomaterials are used for wastewater treatment: dendrimeric
compounds, metallic nanoparticles, zeolites and respectively carbon-based nanomaterials.

A recent development in nanomaterials means that they are especially effective in
removing heavy metals (ferrite, magnetite or zinc oxide). A particular interest was paid
to magnetic nanoparticles due to their properties and large specific surface area, which
determines unique adsorption properties that allow easily removing the pollutants from
wastewater [1–57,64–69,74–77].

Most research in the wastewater decontamination field used semiconductor materials
to obtain various photocatalysts. There are limited studies on the use of semiconductors as
adsorbents [72,75–82].

The literature describes different studies on zeolite and magnetite nanoparticles,
titanium dioxide, and zinc oxides adsorbent capacity to remove pollutants from wastewater
(heavy metals, compounds with nitrogen, dyes, organic compounds) [72–82].

The use of adsorbent materials with high efficiency in removing phosphorus can be
a simple and more environmentally friendly option than the chemical method. A par-
ticularly important aspect of this is the synthesis method efficiency. So far, phosphorus
removal/recovery studies have demonstrated the increased capacity of magnetic nano-
materials. However, they have the disadvantage of the high cost of synthesis. Therefore,
cheap and very efficient adsorbents represent the essential condition for a possible large-
scale technical implementation of this method in wastewater treatment plants. In this
study, a comparative evaluation of phosphorus removal capacity and efficiency of three
different adsorbents—magnetic materials (magnetite, cobalt ferrite), semiconductors (zinc
oxide, titanium dioxide) and composite material (mordenite zeolite)—was conducted for
the first time. Subsequently, series of experiments have been conducted to explore the
effect of adsorbent dosage, and the contact time as well as the adsorption isotherm were
also evaluated.

Furthermore, studies on the use of cobalt ferrite for phosphorus removal are relatively
few and mainly refer to various materials that contain cobalt ferrite. To our best knowledge,
this study is the first to report on the possible use of cobalt ferrite to remove phosphorus
from wastewater [83–85].

Another novelty of this study is that, for the first time, these materials are evaluated
together with two classical reagents used for phosphorus precipitation. Each of the materi-
als selected for this study is environmentally friendly and allows the simultaneous removal
of other organic or biological pollutants (zeolite, ZnO, TiO2) and even the possibility of
recovery and reuse of phosphorus in the case of magnetic materials. The adsorbents’ phos-
phorus removal capacity under similar operational conditions with coagulation agents was
investigated using synthetic wastewater.

The proposed materials were characterized in terms of composition and specific
surface area. Subsequently, a series of experiments have been conducted to explore the
effect of adsorbent type, dosage and contacting time on the adsorption efficiency.

2. Materials and Methods
2.1. Chemicals

All used reagents and solvents were analytical grade and were acquired from commer-
cial sources (Merck, Darmstadt, Germany, WWR, Wien, Austria, Sigma-Aldrich, Darmstadt,
Germany) and used without a further purification. Magnetite (nanoparticle size: 23 nm)
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was offered by the National Research & Development Institute for Non-ferrous and Rare
Metals, Romania. Mordenite zeolite (chemical structure: (Na2,Ca,K2)4(Al8Si40)O96·28H2O,
nanoparticle size: 42 nm and specific surface area > 400 m2/g) was obtained from Clariant
International, Switzerland ZnO (nanoparticle size: 37 nm). Titanium dioxide nanoparticle
(nanoparticle size: 54 nm) and cobalt ferrite nanoparticles (nanoparticle size: 16 nm) were
offered by the Research Institute for Renewable Energies, Timisoara.

In this study, a synthetic phosphorus solution was prepared for the adsorption test. A
stock phosphorus solution of 400 mg/L was prepared by dissolving the chemically pure
phosphate salt (Na2HPO4·2H2O) in an appropriate amount of distilled water. The pH of
the solution was adjusted until at pH 7.5. Standard 0.1 M HCl and 0.1 M NaOH solutions
were used for pH adjustment.

2.2. Experimental Procedure

The specific procedure used to investigate the influence of different types of materials
was as follows: For each set of analysis, five different samples (S1 = 0.01 g; S2 = 0.03 g;
S3 = 0.05 g; S4 = 0.07 g and respectively S5 = 0.1 g) were weighed from every type of
material: coagulants (FeCl3 and AlCl3) or adsorbents (cobalt ferrite, maghemite, zinc oxide,
titanium dioxide and zeolite). To each material sample (S1–S5) 10 mL of sodium phosphate
solution (synthetic wastewater) was added. The resulting suspended solutions were stirred
at room temperature (23 ◦C) for 24 h. Then, they were centrifuged, decantated and filtered
(Φ185 mm filter paper), and solid residues obtained were dried in an oven at 105 ◦C for
24 h. Initial and final phosphate concentration after the precipitation or adsorption were
analyzed using the colorimetric method with ammonium molybdate and ascorbic acid
on a UV-VIS-NIR spectrometer (950 Lambda UV-Vis-NIR Perkin Elmer) at a wavelength
of 880 nm [71,86]. All testing was performed with water at room temperature and a
pH 7.5 [87].

The dry residues from each sample were characterized by SEM/EDAX scanning
electron microscope (Quanta 400 FEG, FEI, Holland) to determinate the presence of phos-
phorus on the surface of materials investigated. The resulting solutions after filtration were
centrifuged (450 r/min). UV–Vis analysis was conducted using a UV-VIS-NIR spectrometer
(950 Lambda UV-Vis-NIR Perkin Elmer, Waltham, MA, USA) to determine the efficiency of
phosphate precipitation versus adsorption using different materials [87]. In order to obtain
reproducible experimental results, the adsorption experiments were carried out at least
3 times and averaged, and the obtained data and the result is accurate to 0.01%.

Statistically significant differences between the adsorbents used in this study: magnetic
materials (magnetite, cobalt ferrite), semiconductors (zinc oxide, titanium dioxide) and
composite (mordenite zeolite) were conducted using analysis of variance (ANOVA). The
level of accepted statistical significance was p < 0.001 [88].

All standard phosphorus solutions with the selected concentration were prepared by
diluting the stock phosphorus solution (synthetic wastewater, 400 mg/L) with distilled water.

The UV-VIS calibration curve of eight standards was plotted in the phosphorus con-
centration range of 0.0 mg/L and 2.0 mg/L (0.25 mg/L, 0.50 mg/L, 0.75 mg/L, 1.00 mg/L,
1.25 mg/L, 1.50 mg/L, 1.75 mg/L and 2.0 mg/L) at wavelength 880.00 nm. The cor-
relation coefficient R2 = 0.9951 demonstrates the accuracy of this linear line. Function:
Y = 0.5431X + 0.0209.

2.3. Effect of Adsorbent Dosage

To determine the effect of adsorbent dosage, we carried out a series of experiments.
For each set of analysis, five different samples (S1 = 0.01 g; S2 = 0.03 g: S3 = 0.05 g; S4 = 0.07 g
and respectively S5 = 0.1 g) from every type of adsorbent material were weighed. To each
adsorbent sample (S1–S5), 15 mL phosphorus solution with concentration of 400 mg/L was
added. The mixture was stirred at 200 rpm at room temperature for 24 h and then filtered
(0.45 µm). The final phosphorus concentration was analyzed using the colorimetric method
with ammonium molybdate and ascorbic acid on a UV-VIS-NIR spectrometer (950 Lambda
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UV-Vis-NIR Perkin Elmer) at a wavelength of 880 nm [86]. In order to obtain reproducible
experimental results, the adsorption experiments were carried out at least 3 times.

2.4. Adsorption Isotherms

Freundlich and Langmuir isotherms were selected to evaluate the five selected materi-
als’ phosphorus adsorption behavior. A batch equilibrium adsorption test was conducted
as follows: in 50 mL covered Erlenmeyer flasks, 25 mL working solution and 0.05 g of
adsorbent with various phosphate concentrations (5–400 mg/L) was stirred at 180 rpm for
24 h to ensure approximate equilibrium. After phosphorus adsorption, the solution was
filtered through a 0.45 µm membrane filter and then analyzed for P concentration.

Langmuir and Freundlich models were used for the analysis of adsorption isotherms
(Equations (1) and (2)).

Ae =
Qm − KL Ce

1 + KLCe
(1)

Ae = KFKL
1/n (2)

where Ae represents the adsorption removal capacity (mg/g), Ce is the phosphorus con-
centration in the solution at equilibrium (mg/L), Qm is maximum adsorption capacity in
Langmuir isotherm, KL = adsorption constant in Langmuir isotherm, KF = the constant of
Freundlich isotherm, n = heterogeneity factor of Freundlich isotherm.

Phosphorus adsorption capacities and phosphorus removal efficiency, R, (%) were
determined from the Equations (3) and (4) respectively:

q = V(C0 − Ce)m ( mg P / g ) (3)

Pr (%) = 1 − Ce

C0
100% (4)

where V (mL) represents the working solution volume, C0 and Ce (mg/L) are the concen-
trations in the working solution (initial phosphorus concentration) and filtrate (equiibrum
phosphorus solution), respectively, and m (g) is the adsorbent amount [89].

Furthermore, using the Langmuir model, it was determined that the separation factor,
RL, from the next Equation (5) is as follows:

RL =
1

1 + KLC0
(5)

(C0 is the initial phosphorus concentration).

2.5. Phosphorus Adsorption Capacity

The specific procedure was as follows: 0.1 g of each adsorbent material was weighed
into a 50 mL Erlenmeyer flask, 15 mL of a set concentration of phosphorus solution
was added, and the pH of the solution was adjusted to 7.5 with 0.1 mol/L hydrochloric
acid or 0.1 mol/L sodium hydroxide solution. The solution was shaken in a constant
temperature shaker at 180 r/min and 25 ◦C for 24 h. A syringe was used to take out 10 mL
of the supernatant from the Erlenmeyer flask and filter it with a 0.45 µm filter membrane;
the phosphorus concentration in the filtrate was determined by ammonium molybdate
spectrophotometry (950 Lambda UV-Vis-NIR Perkin Elmer, Waltham, MA, USA), and the
removal capacity of phosphorus and phosphorus removal efficiency of each adsorbent was
calculated according to Equations (3) and (4) [83,89]. A single-factor analysis method was
used and blank and two parallel experiments were carried out.

2.6. Effect of Reaction Time on Adsorption Capacity

For each adsorbent material the following procedure was used: 150 mL of a 400 mg/L
phosphate solution was mixed with 0.1 g of adsorbent (adsorbent to solution ratio = 1:25)
size in a series of 200 Erlenmeyer flasks. The pH of solution was 7.5 (adjusted with
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0.1 mol/L hydrochloric acid or 0.1 mol/L sodium hydroxide solution) [83,89]. The flasks
were kept at room temperature (25 ◦C) and 180 rpm, and samples were collected at differ-
ent time intervals; phosphorus concentration was determined by ammonium molybdate
spectrophotometry, and the corresponding removal capacity was calculated [83]. The calcu-
lation formula used to determine the phosphorus removal capacity (mg/g) is Equation (3).

2.7. Effect of Contact Time on Phosphorus Removal Efficiency

The effect of contact time on phosphorus adsorption was observed for each adsor-
bent material according to the following procedure: in five different Erlenmeyer flasks
(250 mL) 0.1 g adsorbent material was added; the phosphorus solution was added in 15 mL
phosphorus solution with concentration of 400 mg/L and pH 7.5 (adjusted with 0.1 mol/L
hydrochloric acid or 0.1 mol/L sodium hydroxide solution) [83]. The flasks were kept
at room temperature (25 ◦C) and 180 rpm, and samples were collected at different times
(0–400 min). After the water sample was left and centrifuged, the phosphorus content
in the solutions was determined by ammonium molybdate spectrophotometry, and the
corresponding removal capacity was calculated [83]. The calculation formula used to
determine the removal efficiency (%) is Formula (4).

3. Material Characterization

Nitrogen adsorption/desorption isotherms were recorded at 77K on a NOVA 2200 appa-
ratus. The specific surface area was calculated by Brunauer–Emmett–Teller (BET) theory
from multi-point regression in the 0.08–0.3 relative pressure range [85,90,91]. The results
are shown in Table 1.

Table 1. Material specific surface area determinate by Brunauer–Emmett–Teller theory (BET).

Absorbent Type Cobalt
Ferrite Magnetite Zinc Oxide Titanium

Dioxide
Mordernite

Zeolite

Specific Surface
Area (m2/g) 110 130 29.7 48.25 413.2

3.1. UV-VIS Spectroscopy

The evaluation of the efficiency of each material used for phosphorus removal was
done by Perkin Elmer, Lambda UV-Vis spectroscopy 950 (colorimetric method with am-
monium molybdate). Phosphate reacts with ammonium molybdate in the presence of a
reducing agent (ascorbic acid) to form a colored complex (blue), the intensity of which is
directly proportional to the concentration of phosphate in the solution to be analyzed. The
color was measured at 800 nm [86].

3.2. Energy-Dispersive Spectrometry (EDS)

The study of adsorbents morphology was performed through scanning electron
microscopy (FEI Quanta 250 FEG) using the energy dispersive X-ray analysis detector
(EDX). EDX facility was used for the semiquantitative elemental analysis.

4. Results and Discussions
4.1. Characterization of Adsorbents before and after P-Adsorbtion
4.1.1. Specific Surface Area

Table 1 lists the specific surface area of each adsorbent used in this study. The specific
surface area values determined experimentally correspond with the data in the litera-
ture [72–74,78–80,82–85,90–97].

4.1.2. Energy Dispersive X-ray Analysis

Figures 1–5 present EDX graphs of the adsorbents before (Figures 1a, 2a, 3a, 4a and 5a)
and after the phosphorus adsorption (Figures 1b, 2b, 3b, 4b and 5b). The EDAX spectrum



Materials 2021, 14, 4371 7 of 19

of adsorbents’ particles after phosphate adsorption were also analyzed, and the P element
occurred in the each EDAX spectrum (Figures 1b, 2b, 3b, 4b and 5b), indicating that it was
fixed on the surface of the adsorbents after phosphorus adsorption.
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Comparative experimental studies have been performed on the conventional (precipi-
tation) and alternative dephosphorization method (adsorption). The chemical precipitation
of phosphorus was performed comparatively by means of two usual reactants in the ter-
tiary stage of wastewater treatment: ferric chloride and aluminum chloride respectively.
In parallel, the phosphorus removal capacity has been studied on three different types
of materials: magnetic (cobalt ferrite, magnetite), semiconductors (zinc oxide, titanium
dioxide) and composite (zeolite).

Two different methods were proposed to determine the phosphorus removal per-
formance efficiency of these materials: the colorimetric assay method and a chemical
microanalysis technique based on energy dispersive X-ray spectroscopy (EDX).

4.1.3. Investigation Adsorbents Performance through UV-Vis Spectroscopy

The colorimetric assay method based on molybdenum blue phosphorus is a sensitive
and highly accurate technique [86,98]. The determination of phosphorus was performed by
the colorimetric method with ammonium molybdate. Phosphorus reacts with ammonium
molybdate in the presence of the reducing agent (ascorbic acid solution) to form a blue
complex. The blue color intensity of which is directly proportional to the content of
phosphorus in final wastewater solutions (after adding coagulants or adsorbents) measured
with UV-Vis spectrometer.

4.1.4. Influence of Magnetic Materials on Phosphorus Removal

In the next figure (Figure 6), the influence of the conventional method (chemical
precipitation with AlCl3 and FeCl3) versus adsorption on magnetic materials (cobalt ferrite
and magnetite) is shown.
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The results show that the highest performance of phosphorus removal was achieved
for adsorption method with magnetite. The lowest absorbance value was achieved with
the aluminum chloride. According to the Figure 6, the phosphorus removal performance
of cobalt ferrite was slightly lower than that of magnetite. This is due to the difference
between the specific surfaces of the two magnetic materials used in this study. Magnetite
has a specific surface area higher than that of cobalt ferrite (Table 1) and consequently has
more adsorption sites than this [90,99].

4.1.5. Influence of Semiconductor Materials on Phoshorus Removal Performance

In Figure 7, the comparative results of phosphorus removal performance obtained
for coagulant agents and semiconductor type adsorbents (zinc oxide/titanium dioxide)
are presented.
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materials) on phosphorus removal performance from wastewater.

The results show that the highest performance of phosphorus removal was achieved
for the adsorption method with titanium dioxide. And the lowest yield was achieved
with the aluminum chloride. According to Figure 7, the phosphorus removal performance
of zinc oxide was slightly lower than of titanium dioxide. This is due to the difference
between the specific surfaces of the two semiconductor materials used in this study. The
specific surface area of titanium dioxide is about three times larger than that of zinc oxide
(Table 1). This may explain the difference of phosphorus removal performance between
these semiconductors [75,86,97].

4.1.6. Influence of Composite Material on Phosphorus Removal Performance

The difference of phosphorus removal performance between the coagulation agents
and adsorption on mordenite zeolite is depicted in Figure 8.

It can be seen from Figure 8 that phosphorus adsorption on zeolite was more efficient
than both conventional coagulation agents used in this study. It is well known that zeolite
is one of the most effective adsorbents. In fact, it is used successfully in the process of
removing various heavy metals or nitrogen compounds from wastewater. Moreover, the
crystalline, highly porous structure of zeolite represent key factors in adsorption process
efficiency [81,95,96].
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4.1.7. Effect of Different Type of Adsorbents on Phosphorus Removal Performance

To investigate how the performance of the phosphorus adsorption process depended
on the absorbers’ type, a series of adsorption experiments were conducted on three distinct
categories of materials: magnetic, semiconductors and composite (Figure 9).
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Figure 9. Comparison of different adsorbents used for phosphorus removal.

The adsorption curves shown in Figure 9 indicate that the yield of the adsorption is
directly proportional to the specific surface area of the adsorbent material. It is known
that a material with a large specific surface area can act as an effective adsorbent. And
according to the adsorption curves depicted in Figure 9, this fact is confirmed. Thus, the
best efficiency was obtained for zeolites, followed by magnetite and cobalt ferrite. And the
lowest performance was for zinc oxide. The phosphorus adsorption performance for TiO2
was slightly higher than for zinc oxide.

4.1.8. Effect of Adsorbent Dosage

The influence of adsorbent dosage is shown in Figure 10. The adsorbent mass was
varied from 0.01 g to 0.1 g.
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It was found that increasing the adsorbent dosage lead increased the P-adsorption
removal yield. The maximum yield was obtained for mordenite zeolite, followed by
magnetic materials semiconductors and coagulation agents.

These results suggest that the optimal dosage of adsorbents can efficiently remove
phosphorus from wastewater. At the same time, it interesting to note that magnetic materials
could favorably influence the effectiveness of phosphorus recovery and reuse as a fertilizer in
agriculture. A high dosage addition of the other adsorbents used, such as zinc oxide, titanium
dioxide or zeolite, could be beneficial considering their antibacterial properties.

4.2. Adsorption Isotherms

The Langmuir and Freundlich models were employed to obtain information on the
characteristics of the adsorption process as well as on the optimum use of each adsorbent
used in this study. Table 2 summarizes the results.

Table 2. The adsorbents Langmuir and Freundlich isotherm parameters.

Adsorbent Material
Langmuir Model Freundlich Model

Qm KL R2 Kn n R2

Magnetite 3.966 0.00128 0.990 0.0164 1.381 0.988

Cobalt ferrite 3.387 0.00124 0.981 0.0141 1.388 0.977

Titanium dioxide 3.317 0.00113 0.978 0.0138 1.327 0.974

Zinc oxide 3.275 0.00101 0.975 0.0092 1.277 0.973

Zeolite 3.898 0.00322 0.998 0.0172 1.395 0.996

The results indicate that both Langmuir and Freundlich models fitted the experimental
data well. Nevertheless, the higher value of the correlation coefficient R2 is shown by
the Langmuir model, which suggests that this model is more appropriate to describe
the adsorption on the five materials investigated in the study (magnetite, cobalt ferrite,
titanium dioxide, zinc oxide and mordenite zeolite). Simultaneously, the constant n in
Freundlich model has super unit values for all five adsorbents used, indicating that the
phosphorus adsorption is nonlinear. Moreover, the separation factor values, RL, for all
adsorbents used in these studies falls within the range 0.00101 < RL < 0.00322 indicated the
favorability of the adsorption process [85,100].

The adsorption isotherms of the three types of materials investigated in this study are
presented in Figure 11.
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The results suggest that the phosphorus adsorption capacity increases directly in
proportion to the adsorbent concentration. A maximum adsorption capacity of 1.31 mg/g of
the composite material (zeolite) used was obtained at the initial phosphorus concentration
of 400 mg/L. The adsorption capacity of magnetite at the same experimental condition is
1.16 mg/g, and the lowest value (0.89 mg/g) was obtained for zinc oxide.

4.2.1. ANOVA Test

Table 3 presents the results of the ANOVA single factor test.

Table 3. Statistical parameters obtained from the ANOVA test.

Source Sum of Square
(SS)

Degree of
Freedom (df)

Mean Squares
(MS) F p-Value F Crit

Between Groups 3.165918 4 0.791479 8.015178 1.57 × 10−4 2.479015

Within Groups 8.393544 85 0.098748 - - -

Total 11.55946 89 - - - -

The results (F = 8.015178 and p = 1.57 × 10−4) showed a value for F higher than 4,
and the p-value is lower than 0.05, which suggests that the differences in in phosphorus
removal (mg P/g) differed significantly across the adsorbents used [100].

4.2.2. Phosphorus Adsorption Capacity

The relationship between initial concentration and adsorbents’ phosphorus adsorption
capacity is depicted in the Figure 12.

As can be seen from Figure 12, with the increase in the initial phosphorus concentra-
tion, the overall adsorption capacity of adsorbents showed an upward trend. Compared to
the previous figure (Figure 11), a slight increase in the adsorption capacity manifested by
all adsorbents investigated was found. This can be explained by the fact that it worked
with a double amount of adsorbent (0.1 g) and thus has more adsorption sites [101].
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Thus, at the initial phosphorus concentration of 400 mg/L., it was found that the
maximum adsorption capacity of zeolite is 1.58 mg/g, followed by magnetite with a
maximum of 1.39 mg/g. And, in this case, the semiconductor materials confirmed that
they have a lower phosphorus adsorption capacity compared to the zeolite and magnetic
materials used. However, from the shared analysis of the two figures (Figures 11 and 12), a
small variation of the maximum of the adsorption capacity in the case of semiconductor
materials was found even under conditions in which the initial amount of adsorbent was
higher. These results indicate that the adsorption is dependent on the chemical composition
and morpho-structural properties of the adsorbent (specific surface, porosity) [85,90].

4.3. Effect of Time of P-Removal Capacity of Adsorbants

Figures 6–10 show that for all adsorbent materials, the best performance was obtained
at the highest amount used (0.1 g). In order to determine the effect of contacting time
on P-adsorption, further experiments were carried out using 0.1 g of each adsorbent, at
room temperature and pH 7.5, with the contacting time varying in the range of 2–12 h
(Figure 13).

Figure 13 shows the effect of contacting time on the phosphorus removal capacity
of magnetite, cobalt ferrite, titanium dioxide, zinc oxide and mordenite zeolite. In the
early stage, the removal capacity of each absorbents increases. And then, after 8 h, the
removal capacity of three of the adsorbents evaluated (magnetite, cobalt ferrite and titanium
dioxide) reach the set stage, and after 10 h, a slight decrease occurs. However, zinc oxide
removal capacity was slightly lower than that of the other adsorbents in the whole range
of time investigated. It can also be observed that only the removal capacity of zeolite was
extremely high and remained constant in the whole range of the time investigated. Hence,
prolonged time may promote the access of ions to active sites on the surface of adsorbent.
And it is obvious that the efficiency of phosphorus removal will decrease in proportion to
the adsorbents’ specific surface. Under the above-mentioned conditions, the maximum
removal capacity was obtained for zeolite followed by magnetite, cobalt ferrite, titanium
dioxide and zinc oxide.
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4.4. Effect of Contact Time on Phosphorus Removal Efficiency

The variation in phosphorus removal efficiency with contact time at 400 g/L initial
phosphorus concentration is presented in Figure 14.
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It may be observed from the figure above (Figure 14) that for zeolite and magnetite, the
rapid phosphorus adsorption took place within 90 min; then adsorption becomes slow and
almost attains equilibrium after 150 min. Significant change in the extent of adsorption was
not observed (>1%) for an even further increase in contact time of up to 360 min. Instead, in
the case of the other materials used, (cobalt ferrite, titanium dioxide and zinc oxide) it can
be it can be seen that there is a rapid adsorption that takes place up to 150 min, after which
the process becomes very slow close to equilibrium and only >4% changes in adsorption
efficiency occur. Therefore, the rest of the experiments were conducted for 3600 min. A
total of 96% adsorption for zeolite was obtained, and 88% for magnetite. The phosphorus
percentage removal decreases for semiconductors: 71% for titanium dioxide and only 58%
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for zinc oxide. This indicates that the rate of phosphorus removal increases rapidly in
proportion to the specific surface area of the material, and as time proceeds, the number of
active sites were decreased and then ad-sorption becomes increasingly slowed down.

5. Conclusions

In the present study, the possibility of removing phosphorus from wastewater using
nanomaterials or composite materials was investigated: magnetite, cobalt ferrite, zinc
oxide, titanium dioxide and mordenite zeolite under identical experimental conditions.
The efficacy of some adsorbents (selected for this study) and conventional coagulation
agents used in the tertiary wastewater treatment were compared. The effects of different
reaction parameters: the initial phosphorus concentrations, reaction time, adsorbents
dosage on phosphorus adsorption capacity and efficiency were investigated through
different analytical techniques: UV-Vis spectroscopy, BET and EDS analyses. Present
results suggest that the efficiency of the adsorbent of phosphorus removal was superior
compared to ferric chloride and aluminum chloride. Under the experimental conditions
(temperature (23 ◦C) with pH 7.5), phosphorus adsorption was strongly dependent on
the surface area of adsorbent, adsorbent dosage and contact time. Mordenite zeolite
and magnetic materials exhibit high phosphorus adsorption capacity and adsorption
efficiency compared with the semiconductor materials used in this study. The phosphorus
adsorption efficiency decreases in the following order: composite material (mordenite
zeolite 96%), magnetic materials (magnetite 88%, cobalt ferrite 80%) and semiconductor
materials (titanium dioxide 71% and 51% zinc oxide). At room temperature (25 ◦C), both
the Langmuir and Freundlich equation can reasonably describe the adsorption, and the
maximum adsorption capacity fitted by the Langmuir equation was 1.31 mg/g for zeolite,
which decreased at 1.16 mg/g for magnetite, 1.05 mg/g for cobalt ferrite, 0.99 mg/g
for titanium dioxide and 0.89 mg/g for zinc oxide. The proposed adsorbents present
the possibility of recovering phosphorus and reusing it as a fertilizer (adsorbents of a
magnetic nature) or other organic or biological pollutants removal (TiO2, ZnO and zeolites).
Adsorption performance analysis can provide valuable information, representing the
practical value of these materials as an effective, convenient alternative within the circular
economy model for water pollution mitigation and management.
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44. Klapetek, P.; Valtr, M.; Nečas, D.; Salyk, O.; Dzi, P. Atomic force microscopy analysis of nanoparticles in non-ideal conditions.

Nanoscale Res. Lett. 2011, 6, 514. [CrossRef] [PubMed]
45. Directiva 98/83/CE a Consiliului din 3 Noiembrie 1998 Privind Calitatea Apei Destinate Consumului Uman. Jurnalul Oficial al
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