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Abstract
Bacterial infections cause 300 million cases of severe illness each year
worldwide. Rapidly accelerating drug resistance further exacerbates this threat
to human health. While dispersed (planktonic) bacteria represent a therapeutic
challenge, bacterial biofilms present major hurdles for both diagnosis and
treatment. Nanoparticles have emerged recently as tools for fighting
drug-resistant planktonic bacteria and biofilms. In this review, we present the
use of nanoparticles as active antimicrobial agents and drug delivery vehicles
for antibacterial therapeutics. We further focus on how surface functionality of
nanomaterials can be used to target both planktonic bacteria and biofilms.
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Introduction
Bacterial infections cause 300 million cases of severe illness every 
year with 16 million, including 2 million children, killed1. Infections 
caused by multi-drug-resistant (MDR) bacteria greatly increase the 
threat generated by bacterial infections. In addition to acute illness, 
bacterial infections can result in chronic disease states, where bacte-
rial colonization develops into a biofilm, a complex three-dimensional 
bacterial community2. The complexity of the biofilm matrix makes 
biofilm-associated diseases more clinically challenging than plank-
tonic bacteria in both diagnosis and treatment3. Finally, there has 
been a significant decrease in the number of approved antibiot-
ics recently, contributing to the urgency of developing alternative 
antimicrobial agents4.

Nanoparticles (NPs) are emerging as weapons in our antimicrobial 
arsenal owing to their unique nanoscale physical and chemical prop-
erties5,6. For example, NP size is commensurate with biomolecular 
and bacterial cellular systems, providing a platform where nano-
material-bacteria interactions can be fine-tuned through appropri-
ate surface functionalization7,8. Moreover, the high surface area to 
volume ratio of nanomaterials enables high loading of therapeutics, 
with promising synergy arising from multivalent interactions. NPs 
provide a way to address the common mechanisms of antibiotic 
resistance, such as permeability regulation9,10, multi-drug efflux 
pumps11, antibiotic degradation12,13, and target site binding affin-
ity mutations14. NPs also provide alternative pathways to combat  
biofilm/MDR infections and significantly lower bacteria resistance 
over time15–17. NPs utilize multiple mechanisms to kill bacteria, mak-
ing it difficult for them to adapt existing strategies for developing 
resistance18. Following this strategy, several NP-based systems have 
been developed to improve antimicrobial efficacy (Figure 1)19–21. 
In this review, we will focus on recent studies that use engineered 
NPs as active therapeutic agents or as delivery vehicles to transport 
drugs to the site of infection.

Nanoparticle interactions with bacteria and biofilms
Engineering the interactions of nanomaterials with bacteria/biofilm 
matrices plays a crucial role in designing NP-based antimicrobial 
systems. The surface properties of NPs are highly versatile and 
can be easily modulated through ligand engineering to generate 
particles with new and emergent properties22–24. These NPs can be 
utilized for not only therapeutic applications but also fundamen-
tal studies on bacterial behavior. In early studies of NP-microbe 
interactions, Rotello and co-workers showed that cationic gold 
NPs (AuNPs) possessed toxicity against bacteria25. Subsequently, 
they demonstrated that hydrophobic, cationic AuNPs developed 
spatiotemporal aggregate patterns on the bacterial surface. The 
aggregate patterns depended upon the nature of the bacteria as 
well as the size of the NPs. In this work, 6 nm AuNPs were found 
to have low toxicity, whereas 2 nm AuNPs rapidly lysed Bacillus  
subtilis but not Escherichia coli26. In a similar study, Feng and 
co-workers further corroborated the fact that NP and bacterial sur-
face chemistry impact NP-bacteria interactions and toxicity. They 
reported that the NPs with maximal cationic charge associated 
most significantly with the bacterial surfaces, inducing the greatest 
membrane damage and toxicity27. These studies provide valuable 
insight into designing therapeutic constructs for planktonic bacteria 
treatment.

Bacteria can self-colonize to form biofilms. Biofilm infections are 
difficult to treat because the extracellular matrix produced by bacte-
ria creates a microenvironment within the host. This allows bacteria 
to evade immune responses and dramatically increase resistance 
to traditional antibiotic treatments28,29. The complex architecture, 
dynamics, and composition of extracellular polymeric substances 
(EPS) in the matrix are profoundly responsible for the low pen-
etration of therapeutic agents30. Diffusion of therapeutics inside the 
biofilm can be affected by several genetic and physiological het-
erogeneities such as the hydrophobicity of bacterial cell walls31. 

Figure 1. Nanoparticles as scaffolds and building blocks for antimicrobial agents.
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Hence, fundamentally understanding the interactions between NPs 
and complex biofilm matrices is crucial in designing materials for 
biofilm treatment.

The penetration and deposition of NPs within the biofilms are key 
components for the design of biofilm therapeutics. Peulen and 
Wilkinson reported that the penetration ability of NPs decreased 
inversely to their size due to small pore sizes within biofilms32. Fur-
thermore, NP deposition inside the biofilms is largely dependent 
upon the electrostatic interaction as well as the homogeneity of the 
charges across the biofilm surface. In a related study, Rotello and 
co-workers provided further insight on the penetration ability of 
the NPs inside the biofilms. They demonstrated that the neutral and 
anionic quantum dots (QDs) did not show any penetration inside 
the biofilms, while cationic QDs were widely distributed through-
out the biofilm. Furthermore, cationic QDs with hydrophobic ter-
minal groups were found inside the bacterial cells, whereas their 
hydrophilic counterparts remained in the EPS matrix of the biofilm 
(Figure 2)33.

Nanoparticles as active antimicrobial agents
NPs provide multiple attributes that facilitate the development 
of unique antimicrobial strategies34,35. NPs can interact with and 

penetrate bacterial cells with unique bacteriostatic and bactericidal 
mechanisms36. For example, possessing slightly larger diameters 
than drug efflux pumps, NPs can potentially reduce efflux-mediated 
extrusion37,38. Exploiting these characteristic properties, several 
NP-based systems have been employed for antimicrobial applica-
tions. Xu and co-workers demonstrated enhanced in vitro antibac-
terial activities of vancomycin-capped AuNPs (Au-Van) against 
vancomycin-resistant enterococci and E. coli strains39. Similarly, 
Feldheim and co-workers demonstrated that antimicrobial activ-
ity of NPs functionalized with non-antibiotic molecules depended 
upon their composition on the surface40. These studies indicate that 
modulating NP surfaces exhibits great potential for antimicrobial 
therapy. However, further studies on how NP surface functionality 
modulates antimicrobial activity can provide valuable information 
for future NP-based antimicrobial agents.

In a recent study, the Rotello group reported a strategy to combat 
MDR bacteria by engineering the ligands on NP surfaces. Cationic 
and hydrophobic functionalized AuNPs effectively suppressed the 
growth of 11 clinical MDR isolates at low concentrations (Figure 3). 
The minimum inhibitory concentrations (MICs) observed for these 
systems with most bacteria strains was 16 nM. Moreover, bacteria 
strains did not develop resistance against NPs, even after 20 passages 

Figure 2. Surface design controls penetration ability of nanoparticles. a) Quantum dots used in study. b) Micrographs of microtomed 
slices of the biofilm showing no penetration by anionic and neutral particles and efficient infiltration by cationic quantum dots33.
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at sub-MIC concentrations, which is far beyond that of traditional 
antibiotics41. Overall, this study provides an excellent starting plat-
form to design antibacterial therapeutics in future studies.

The antibacterial activity of silver has been well established. High 
surface area and concomitant increase in dissolution rate are key to 
its use in silver-based antimicrobials, where free Ag+ ions are the 
active agents42. However, they face certain shortcomings, such as 
high toxicity to mammalian cells and limited penetration in biofilm 
matrices43,44. Recent studies have focused on countering these issues 
by using inherent NP properties and surface functionalization as 
their toolkit. For example, Mahmoudi and co-workers developed 
silver ring-coated superparamagnetic iron oxide NPs (SPIONS) 
with ligand gaps that demonstrated high antimicrobial activity and 
remarkable compatibility with healthy cells. Additionally, these 
NPs exhibited enhanced activity against biofilm infections due to 
deeper penetration under an external magnetic field45.

Graphene NPs46, AuNPs47, and carbon nanotubes48 possess 
photothermal properties that can be utilized to design therapeu-
tic agents. These nanomaterials absorb light (700–1100 nm) and 
release heat. Ling and co-workers designed graphene-based pho-
tothermal NPs that captured and killed Staphylococcus aureus 

and E. coli bacteria upon near-infrared (NIR) laser irradiation. 
In this approach, graphene oxide was reduced and functionalized 
with magnetic NPs (MRGO). These NPs were functionalized with 
glutaraldehyde (GA) to induce excellent crosslinking properties 
with Gram-positive and Gram-negative bacteria (Figure 4). Rapid 
and effective killing of 99% of both bacterial species was achieved 
upon NIR irradiation49.

Nanoparticles as drug delivery vehicles for 
antibacterial therapy
Bacterial infections are able to evade antibiotic treatment through 
reduced bactericidal concentration or reduced antimicrobial activity 
of therapeutic agents at the site of infection50,51. Localized delivery 
of the drugs/antimicrobials can increase their therapeutic efficacy. 
Therefore, NPs can serve as promising drug delivery vehicles 
owing to their tunable surface functionality, biocompatibility, and 
high drug loading capacity17.

NPs such as mesoporous silica possess a uniquely large surface 
area and tunable pore size that make them promising candidates for 
designing drug delivery vehicles52. For example, Schoenfisch and 
co-workers designed amine-functionalized silica NPs that were able 
to readily penetrate and eradicate pathogenic biofilms through rapid 

Figure 3. Functionalized gold nanoparticles as antimicrobial agents. a) Nanoparticles studied, featuring 2 nm gold cores. b) Toxicity 
of nanoparticles to a laboratory Escherichia coli strain. c) Minimum inhibitory concentrations of nanoparticle 3 against multi-drug-resistant 
bacteria41.
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nitric oxide release53. Similarly, silica NPs have been fabricated as 
scaffolds for silver NP (AgNP) release54. Using NPs for controlled 
antimicrobial release can markedly improve their biocompatibility 
with mammalian cells and mitigate their hazardous environmen-
tal impact55–57. In one such study, biodegradable lignin-core NPs 
(EbNPs) infused with silver ions were proposed as greener alterna-
tives to AgNPs. EbNPs were coated with cationic polyelectrolytes 
and loaded with Ag+ ions. These NPs exhibited broad-spectrum bio-
cidal action against Gram-positive and Gram-negative bacteria at 
lower Ag+ ion concentrations than conventional AgNPs58.

Therapeutic selectivity is critical when designing effective drug 
delivery vehicles. Triggered release of antimicrobials from these 
nanocarriers can be an alternative strategy to diminish their 

undesirable side effects59,60. In one particular study, Langer and 
co-workers designed PLGA-PLH-PEG NPs as a carrier to deliver 
vancomycin to bacterial cells, exploiting their localized acidity. 
PLGA-PLH-PEG NPs demonstrated high binding affinity to bacte-
rial cells at pH 6.0 as compared to 7.4. Vancomycin-encapsulated 
NPs exhibited a 1.3-fold increase in the MIC against S. aureus 
as compared to 2.0-fold and 2.3-fold for free and PLGA-PEG-
encapsulated vancomycin, respectively61. In a similar study, 
pH-responsive NPs were used to deliver hydrophobic drugs to bio-
film moieties. Polymeric NPs used in this study consisted of a cati-
onic outer shell to bind with the EPS matrix and a pH-responsive 
hydrophobic inner shell to release encapsulated farnesol molecules 
on demand. These scaffolds resulted in a 2-fold increase in efficacy 
in the treatment of biofilms as compared to the drug alone62.

Apart from acidic microenvironments, NPs can be designed to trig-
ger antibiotic release upon exposure to bacterial toxins. For exam-
ple, Zhang and co-workers designed AuNP-stabilized phospholipid 
liposomes (AuChi-liposomes) that respond to bacterial toxins. 
Chitosan-functionalized AuNPs were adsorbed on the liposomal 
surfaces to provide stability and prevent undesirable antibiotic 
leakage. In the presence of α-toxin-secreting S. aureus bacteria, 
AuChi-liposomes released vancomycin that effectively inhibited 
their growth63.

Cationic NPs exhibit excellent penetration ability in biofilms64. 
Moreover, they can self-assemble at the oil-water interfaces to gen-
erate nanocapsules65. Combining these two characteristic features, 
Rotello and co-workers generated a highly effective therapeutic 
system for the treatment of bacterial biofilm infections. Pepper-
mint oil and cinnamaldehyde were chosen as the therapeutic oil 
template, owing to their inherent antimicrobial nature, in combi-
nation with amine-functionalized cationic silica NPs that stabi-
lized the oil-water interface to generate nanocapsules (CP-caps) 
(Figure 5). These capsules were further stabilized by the formation 
of hydrophobic Schiff bases upon reacting with cinnamaldehyde. 
The cationic NPs enabled the capsules to readily penetrate the 
biofilms and release the antimicrobial oils to eradicate the biofilm 
infections. Moreover, the therapeutic selectivity of CP-caps was 

Figure 4. Schematic representation of antibacterial photothermal 
treatment by mildly reduced graphene oxide functionalized with 
glutaraldehyde.

Figure 5. Nanoparticle-stabilized capsules for treatment of biofilm infections. a) Fabrication of capsules. b) Efficacy of cinnamaldehyde 
dissolved in peppermint oil capsule (CP-Cap) and controls against a clinical isolate of methicillin-resistant Staphylococcus aureus. c) Toxicity 
of CP-Cap against Escherichia coli cells while enhancing fibroblast viability66.

Page 6 of 10

F1000Research 2016, 5(F1000 Faculty Rev):364 Last updated: 16 MAR 2016



tested on a biofilm-fibroblast cell co-culture model. These studies 
showed effective biofilm infection eradication with simultaneous 
growth enhancement of fibroblast cells66.

High therapeutic selectivity makes these capsules useful antimi-
crobial agents for topical administration. Use of these nanoma-
terials systemically, however, requires an understanding of NP 
pharmacokinetics (PK) and biodistribution (BD). The PK and 
BD properties of NPs depend on several factors such as their size, 
shape, and surface functionalization67,68. Apart from their physi-
ochemical characteristics, the administration route of NPs likewise 
determines their systemic or local effect. For example, intravenous 
injection is used for targeting the liver and spleen, whereas mucoad-
hesive NPs are used for oral and nasal drug delivery69. Similarly, 
uptake and elimination of NPs in cells/tissues are dependent upon 
their physiochemical properties70. For example, cationic NPs have 
higher uptake and slower rate of exocytosis in cells as compared to 
their anionic counterparts25,71. Hence, evaluating the PK behavior of 
the current antimicrobial systems is important for their translation 
into the clinic.

Conclusion
NPs provide a versatile platform in designing materials for anti-
microbial therapy. Tunable surface functionality and multivalency 
makes them promising candidates to target planktonic bacteria. 
Moreover, excellent biofilm penetration enhances their activity 
towards a range of biofilm-based infections. NP-based antimi-
crobial agents can be readily used for ex vivo applications such 
as sterilizers for surfaces and devices. The most accessible target 
in the near future includes the topical applications of NP-based 

systems for wound healing. However, further studies at the funda-
mental, biological, and pharmacological level are required to enable 
systemic administration of these antimicrobials. In conclusion, NPs 
have offered promising avenues to design effective next-generation 
therapeutics against bacterial threats.
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