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Current state-of-the-art approaches to computational protein de-
sign (CPD) aim to capture the determinants of structure from
physical principles. While this has led to many successful designs, it
does have strong limitations associated with inaccuracies in
physical modeling, such that a reliable general solution to CPD has
yet to be found. Here, we propose a design framework—one based
on identifying and applying patterns of sequence–structure compat-
ibility found in known proteins, rather than approximating them
from models of interatomic interactions. We carry out extensive
computational analyses and an experimental validation for our
method. Our results strongly argue that the Protein Data Bank is
now sufficiently large to enable proteins to be designed by using
only examples of structural motifs from unrelated proteins. Because
our method is likely to have orthogonal strengths relative to existing
techniques, it could represent an important step toward removing
remaining barriers to robust CPD.

protein design | data-driven protein design | structure-based analysis |
protein structure | structure search

The robust engineering of protein molecules is a highly sought-
after capability, with implications for a range of areas, from

therapeutics to materials. Computational protein design (CPD)
could be a particularly attractive means of fulfilling the need for
such robust engineering, but CPD techniques have thus far
lacked the reliability needed to incorporate them as “black-box”
tools in downstream research and technology development. The
basic idea behind the most ubiquitous approaches to CPD is to
model structural phenomena (e.g., folding and binding), to the
extent possible, based on physical principles. Since the initial
demonstration of this concept by the Mayo group in the late
1990s (1), many groups have implemented significant advance-
ments on the idea (2–8). Notably, the Baker laboratory de-
veloped and has continually refined the widely used Rosetta
modeling suite, forming an entire community of researchers and
programmers actively contributing to the project (2, 3). Ad-
vancements introduced over the years have aimed to improve the
treatment of a range of physical effects toward a more realistic
representation of proteins (3, 9–21). Nevertheless, despite many
examples of successful designs in the literature (18, 22–31), it is
still the case that CPD methods are not robust. State-of-the-art
techniques, even in the hands of experts, fail too frequently,
showing that significant inaccuracies are still present in the un-
derlying models and motivating the development of alternative
solutions.
In this work, we consider the possibility of performing protein

design by directly observing and learning from sequence–structure
relationships present in available protein structures, rather
than aiming to synthesize them from atomistic interactions. This
type of methodology is likely to have entirely orthogonal strengths
and weaknesses, relative to the standard CPD approach. If suffi-
cient structure and sequence data are available, a data-driven
approach may be difficult to outperform in terms of robustness.
However, it is unclear what “sufficient” means in this context and

how close we may be to this threshold today. Thus, the 2 main
objectives of this work are 1) to develop a general-purpose CPD
framework that relies solely on previously available protein struc-
tures, and 2) thoroughly benchmark this framework as a means of
understanding to what extent the present Protein Data Bank
(PDB) is sufficiently large to support practical protein design.
As of March 2019, over 150,000 entries have been deposited

into the PDB, with a yearly increase of ∼10,000. Experimental
structures have always been a key source of fundamental insights
on protein structure–sequence relationships, with degeneracies
in structure space—i.e., repeated structural patterns or motifs
and associated sequence preferences—proving especially insight-
ful (11, 32–36). In a recent study, we showed that structural de-
generacy extends beyond local-in-sequence motifs (e.g., backbone
fragments) and into tertiary and quaternary geometries (37).
Specifically, we found that local-in-space motifs, which we dubbed
TERMs (tertiary motifs), are highly recurrent in the structural
universe (37).
Here, we present a CPD framework dTERMen (design with

TERM energies) that takes advantage of this degeneracy. As
shown in Fig. 1, it systematically breaks the target structure into
its constituent TERMs and accounts for the sequence prefer-
ences of each by analyzing sequences of closely matching back-
bone fragments in the PDB, identified using our structure search
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engine MASTER (38). With this information, a sequence-level
pseudoenergy table is generated, enabling the scoring of any se-
quence for compatibility with the target backbone, identification
of the optimal sequence, and other optimization or search tasks.
The idea of data-driven CPD has been explored before. First,

any statistical potential can be placed into this category of
techniques, such that almost any existing CPD method can be
thought of as partially data-driven (39–47). A fundamental dif-
ference between dTERMen and prior statistical approaches is
that dTERMen goes beyond simple geometric descriptors and
analyzes apparent sequence preferences in the context of larger
well-defined backbone motifs, relying on their apparent quasi-
digital nature (i.e., the “TERM hypothesis”). On the other hand,
it is different from machine-learning (ML) approaches in that
the TERM hypothesis effectively serves as a strong “prior” on
the functional form of the model, which allows the method to
bridge data sparsity issues.
In contrast to ML, it does not necessitate a model training

step. The modularity of TERMs enables dTERMen to exploit
entirely unrelated protein structures, broadening its applicability
to a great extent. Furthermore, the potential for increased ac-
curacy is effectively built into the method. More structures in the
database produce more accurate and refined sequence prefer-
ences and, ultimately, more accurate sequence landscapes. Thus,
we can expect better performance with time, as the PDB con-
tinues to grow.

Results
Results are organized as follows: the first 5 sections describe a
series of computational benchmarks of dTERMen, and the sixth
section presents the results of applying the method to the total
surface redesign of mCherry. Details of experimental and com-
putational procedures are provided in Materials and Methods.

dTERMen Procedure Summary. Given a target protein structure for
which an appropriate amino acid sequence is needed, dTERMen
works by building a table of effective pseudoenergies: self en-
ergies describe amino acid preferences at each position of the
target, while pair energies capture effective interactions between
amino acids at pairs of positions. The framework also supports
the calculation of higher-order energies that describe collective

contributions of amino acids at larger clusters of positions, but
these were not considered in this study. We collectively refer to
these pseudoenergy contributions as energy parameters (EPs)
and their values are deduced from the statistics of structural
matches in the PDB to appropriately defined TERMs compris-
ing the target (Fig. 1 and Materials and Methods). The resulting
pseudoenergy table is effectively a description of the sequence
landscape associated with the target conformation, and can be
used to obtain the optimal sequence for the target or perform
other optimization or sampling tasks.

dTERMen Predicts Native-Like Sequence from NMR or X-ray Backbones.
We first subject dTERMen to the classical “native sequence re-
covery” benchmark for CPD methods (21). The idea behind this
test is that when presented with a native protein structure, a
“good” method should propose sequences similar to the corre-
sponding native sequence.
To this end, we curated a set of 90 X-ray and 31 NMR struc-

tures of globular proteins, ranging in length from 50 to 150 resi-
dues (Materials and Methods). dTERMen was applied to each
backbone, and the globally optimal sequence was obtained by
integer linear programing (ILP) optimization. For comparison, the
same backbones were also used in designs by Rosetta, using the
talaris2013 energy function (48) (Materials and Methods). Table 1
summarizes the resulting native sequence recovery rates. The
2 methods perform similarly, with dTERMen giving slightly less
native-like sequences for X-ray backbones (∼29% relative to
Rosetta’s ∼33%, on average) and slightly more native-like ones for
NMR backbones (∼24% relative to Rosetta’s ∼22%, on average).
Thus, dTERMen performs on par with the state of the art, of
which Rosetta Design is a great representative. Interestingly, how-
ever, the specific sequences proposed by dTERMen and Rosetta
are quite different (see the fifth row of Table 1). This is in line with
the fact that the 2 methods choose sequences based on entirely
different principles, but it makes the comparable performance on
native sequence recovery more interesting.
That dTERMen exhibits somewhat higher native sequence re-

covery rates on NMR backbones, compared to Rosetta, is con-
sistent with its “fuzzier” interpretation of backbone coordinates
(as sequence statistics are discovered in the context of similar, but
not identical backbone structural matches). To investigate this

Fig. 1. Diagram of dTERMen procedure. Target structure (A) is decomposed into TERMs guided by the graph of its coupled residues (B, Top) and the graph of
residue-backbone influences (B, Bottom). Close matches to each TERM from the structural database are identified (note, higher-order TERMs were not
considered in this study) (C), and the sequence alignments implied by these matches are used to estimate EPs governing the sequence–structure relationship
in the target structure (D). Combinatorial optimization is then used to produce the optimal sequence for the target (E) or can also be used to build a library of
design variants or for other tasks.
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apparent insensitivity to backbone noise, we compared sequences
designed on alternative NMR backbones as well as those designed
on X-ray and NMR structures of the same protein (Materials and
Methods). Alternative NMR models or X-ray vs. NMR structures
of the same protein can be seen as different experimental models
of the same exact native state. An ideal CPD method should thus
predict very similar sequence landscapes given these different
structures. As shown in SI Appendix, Table S1, dTERMen is quite
consistent across such experimentally equivalent backbones, pro-
ducing sequences with 40 to 50% sequence identity, on average.
Rosetta, on the other hand, shows much greater variability, with
sequence identities from equivalent backbones in the range of
20 to 30%.
A closer look at native sequence recovery based on the degree

of burial reveals that Rosetta’s high performance for X-ray
backbones is dominated by core positions, where the method
achieves the very high rate of ∼52%, on average, whereas the
performance of dTERMen is more uniform across position types
(SI Appendix, Table S2). The performance of the 2 methods is
comparable for interfacial positions and dTERMen produces
slightly higher rates for surface positions (see Materials and
Methods for position type definitions). Relative trends are similar
for NMR structures, with the overall performance shifted toward
dTERMen (SI Appendix, Table S2).
As shown in Table 1, dTERMen has a high rate of disulfide-

bond recovery—e.g., 24 out of 80 disulfides (30%) were recovered
from X-ray structures (the rate is lower for NMR structures, but it
is out of only 7 disulfides occurring in this set). The rate seems
especially high when considering that it refers to the simultaneous
recovery of 2 residues (in fact, based on the 0.8% frequency of
cystines in dTERMen designs, the random expected disulfide re-
covery rate would be 6.7 × 10−5). Modeling the energetics of
disulfide-bond formation, and balancing it with conformational
energetics of the protein, is a challenge and generally an unsolved
problem. By contrast, dTERMen effectively sidesteps this chal-
lenge, enabling the design of disulfides as a special case in the
general strategy of inferring sequence–structure patterns observed
in the database.
In addition to proposing native-like sequences for native back-

bones, the model underlying dTERMen also predicts a pattern of
amino acid utilization that is quite close to the native amino acid
distribution (see Fig. 2 and SI Appendix, Figs. S9 and S10; detailed
analysis in SI Appendix, Supplementary Results). While this is not
entirely unexpected, given that dTERMen is based on native in-
stances to TERM matches, the result nevertheless validates the
specific statistical framework used to extract effective pseudoenergy
contributions from structural data.
Because dTERMen is entirely based on structural statistics, we

reasoned that it may be less capable of making good amino acid
choices in regions with few structural representatives in the PDB.
However, we do not find a discernable correlation between how

structurally well represented a given template is and the rate of
native sequence recovery when designing on the template (SI
Appendix, Fig. S12). Analyzing this on a per-position level, we
see that residues with few local structural matches are, on av-
erage, slightly more likely to be assigned the native amino acid by
dTERMen, than residues with a large number of local matches (SI
Appendix, Fig. S13; detailed analysis in SI Appendix, Supplemen-
tary Results). This may suggest that common motifs are inherently
more designable, in that they are compatible with a broader se-
quence space, which makes identifying the native residue more
difficult. Loop residues also appear to have a higher sequence
recovery rate compared to all positions (SI Appendix, Table S7),
which is consistent with many loop conformations known to have
strong positional amino acid preferences.

dTERMen-Designed Sequences Predicted to Fold to Desired Structures.
Folding into the correct structure involves not only forming fa-
vorable interactions in the context of the target backbone, but also
requires the sequence to disfavor the multitude of available alter-
native conformations. The latter property, which has been referred
to as “fold specificity” (49), is particularly difficult to achieve in
CPD, and this is a likely reason behind many design failures. The
best way to assess this and other qualities of a designed sequence is
to characterize it experimentally. Short of spending the time and
resources toward this, however, one can assess whether the
designed sequence is at least predicted to fold into the desired
structure in silico, using cutting-edge structure prediction methods.
Of course, such a prediction cannot serve as ground truth on its
own. However, if such a test by structure prediction is performed
on a large set of designed sequences, emerging from diverse tem-
plates, and used to compare sequences produced by different CPD
methods, then statistically significant differences in performance
may be interpreted as meaningful.
We performed de novo structure prediction for each sequence

from the previous section using a standalone copy of I-TASSER,
making sure that data from homologs of the protein whose
backbone was used as the design target did not contribute to the
calculation (Materials and Methods). Each I-TASSER run, which
took ∼20 CPU hours on average, was asked to produce 10
models and each was subsequently compared with the desired
target structure to extract its template modeling (TM) score (50).
Each dTERMen and Rosetta designed sequence was subjected
to the same treatment, with Fig. 3A comparing the results. As
expected, TM scores were not usually close to 1.0, which rep-
resents both the difficulty of structure prediction and the fact
that some designs may not fold into the desired structure.
However, dTERMen design performed better, on average, with
their TM scores exceeding the TM score of the corresponding
Rosetta design in 58% of cases. The mean TM scores over
dTERMen and Rosetta designs were 0.48 and 0.45, respectively
(P = 0.003), with medians showing a similar trend (Table 2).
Furthermore, 43.2% of dTERMen designs exhibited a TM score
over 0.5 (a value typically chosen for delineating a roughly cor-
rect fold), and only 38% of Rosetta designs reached this value.
Models derived from dTERMen sequences also exhibited higher
fractions of correct secondary-structure types (Fig. 3B).
To address how significant the above differences may be (be-

yond mere statistical significance) and how good the performance
is in an absolute sense, we ran a control calculation, repeating the
above analysis for native sequences. Because native sequences do,
in fact, fold to the desired structure, their performance in the
test can be thought of as that of a “perfect” design method,
allowing us to quantify both how far from ideal the methods are
and how significant their performance differences are. Fig. 3 C
and E compare the performance of native sequences with that
of dTERMen designs and Rosetta designs, respectively, with sum-
mary metrics shown in Table 2. Native sequences perform better
than both dTERMen and Rosetta, validating our test, dTERMen

Table 1. dTERMen and Rosetta propose distinct, similarly
native-like sequences given native backbone

X-ray (90) NMR (31)

Sequence identity
dTERMen vs. native 28.6 ± 5.8% 23.9 ± 6.1%
Rosetta vs. native 32.6 ± 6.9% 22.2 ± 6.3%
dTERMen vs. Rosetta 26.8 ± 5.7% 22 ± 4.1%

Disulfide identity
dTERMen vs. native 24/80 (30%) 1/7 (14.3%)
Rosetta vs. native 0/80 (0.0%) 0/7 (0.0%)

Shown are means and SDs of sequence identities between designed and
native sequences, within respective datasets. The last 2 rows show the rate
of recovering disulfide bonds (i.e., 2 cystine residues designed at locations
occupied with disulfide-bonded cystines in the native structure).
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is second best, and Rosetta is third. Furthermore, the performance
of dTERMen, by all metrics, is about halfway between native se-
quences and Rosetta. For example, 51% of models from native
sequences have a TM score above 0.5, while this number is 43%
and 38% for dTERMen and Rosetta sequences, respectively. This
suggests that the difference between dTERMen and Rosetta se-
quences is indeed significant. Finally, the difference between
dTERMen and native sequences is at the edge of statistical sig-
nificance. For example, mean TM score is 0.51 for native se-
quences and 0.48 for dTERMen sequences (P value of 0.05; Table
2). In fact, in terms of recovery of the correct secondary structures,
dTERMen sequences perform slightly better than native ones,
while Rosetta sequences perform worse than native ones (com-
pare D and F in Fig. 3).

dTERMen Statistical Energy Indicates Design Quality. In a recent
tour-de-force study, Baker and coworkers (26) designed de novo
and experimentally characterized ∼16,000 sequences for 4 distinct
topologies (SI Appendix, Fig. S2 A–D, Top). Each design, along
with an approximately equal number of negative-control se-
quences, was tested, in high throughput, for the ability to form
folded, stable, protease-resistant structures. These data represent
an unprecedented opportunity for testing design methods, and we
apply them to test dTERMen here. De novo design is a chal-
lenging task. So, while each of the ∼16,000 designs represented a
sequence predicted to be well compatible with the desired target
backbone by Rosetta, most designs failed to fold (26). We sought
to test whether dTERMen would distinguish between successful
and failed designs. To this end, we ran dTERMen on each of the
∼16,000 backbone structures deposited by Baker and coworkers
(one for each of their designs) (26). Next, the dTERMen energy
score was computed for each designed sequence on its respective
backbone, divided by sequence length to facilitate comparison
across different topologies. SI Appendix, Fig. S2 A–D shows, for
each of the 4 topologies, the correlation between the resulting
score and the experimental “stability score”—a protease resistance-
based metric the authors developed to estimate design stability in
high throughput, having shown it to correlate closely with thermo-
dynamic stability (26). In each case, the correlation is highly sta-
tistically significant (P values in legends; SI Appendix, Fig. S2 A–D).
In contrast, Rosetta scores for these sequences, computed using the
scoring function used to design them (talaris2013), exhibit notably
weaker correlations that are statistically insignificant or of the wrong
sign in 3 out of 4 cases (SI Appendix, Fig. S2 E–H). Rocklin et al.
also deposited scores from a different Rosetta scoring function,
beta_nov15, which they had found to perform much better in

postevaluating designs in this study. Accordingly, we found that this
scoring function exhibits higher and statistically significant correlations
in all cases (SI Appendix, Fig. S2 I–L), beating dTERMen in
3 out of 4 cases. Perhaps more interestingly, dTERMen and
beta_nov15 scores, across all designed sequences, are highly
correlated (unlike dTERMen and talaris2013; SI Appendix, Fig.
S8). This is especially remarkable given how fundamentally dif-
ferent the 2 scoring approaches are. The apparent confluence of
molecular mechanics-based and structural statistics-based eval-
uations is encouraging for both types of approaches.
Despite the above correlation, the dTERMen best-scoring

sequences for each of the ∼16,000 designed backbones differed
considerably from the corresponding Rosetta-based designs (i.e.,
on average, only ∼16% of positions were identical between Rosetta-
and dTERMen-chosen sequences). The fact that dTERMen scores
quantify design quality even for sequences that are far from the
optimality region of its own predicted sequence landscape vali-
dates the generality of the method and the sequence–structure
relationships it quantifies. SI Appendix, Fig. S3 further shows that
the dTERMen score correlates closely with thermodynamic
stability, using the same 120 sequence variants of 4 native do-
mains that Rocklin et al. (26) used to establish the quantitative
nature of their experimental stability score.
Thus, dTERMen scores appear competitive with state-of-the-

art atomistic scoring functions on the highly challenging task of
evaluating design quality (especially when the best scoring
function to use is not known a priori). Importantly, atomistic
scoring functions are applied in conjunction with structural re-
laxation (i.e., enabling the starting template to minimize, in the
context of the specific sequence being evaluated, before com-
puting the final score). This is absolutely required to achieve any
reasonable predictability (and the scores for both talaris2013 and
beta_nov15 were calculated after such relaxation). In contrast,
dTERMen scores were derived from the design template, as it was
deposited by the authors, without the need for relaxation with
respect to the dTERMen scoring function. Thus, to some extent,
dTERMen accounts for structural relaxation implicitly, by deriving
statistical energies from similar but not identical matches to
template substructures. We have previously demonstrated the
advantages of such structural “fussiness” in the context of pre-
dicting and designing protein–peptide interactions (51).

A Case Study in De Novo Design by dTERMen. Since dTERMen
designs sequences based on information from available native
protein structures, would the method still apply if the design
target is a de novo generated backbone and not a native one? To

Fig. 2. Pattern of amino acid substitutions predicted by dTERMen is consistent with native amino acid utilization. Shown in A is the mutational matrix
predicted by dTERMen. Each entry in the matrix is the conditional probability pðXjYÞ, as described in the main text, where X and Y are the amino acids
indicated on the x and y axes, respectively. Color indicates value in accordance with the show color bar. In B, the stationary amino acid distribution implied by
the matrix in A is plotted against the native amino acid distribution found in the PDB. Analogous results obtained with Rosetta Design are shown in
SI Appendix, Fig. S1.
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interrogate this issue, we considered one of the de novo gener-
ated backbones for which Rocklin et al. (26) reported a suc-
cessfully designed sequence in their recent large-scale design
study (SI Appendix, Fig. S4A). Running dTERMen on this spe-
cific backbone, letting it choose any natural amino acid at any of
the positions (for a total sequence space of ∼1052), identifies the
solution shown in SI Appendix, Fig. S4B as optimal. The modeled
structure of the designed sequence looks biophysically reason-

able upon close inspection (SI Appendix, Fig. S4B). Furthermore,
submitting the designed sequence to HHpred, a powerful
structure prediction method that relies on the ability to identify
remote “homologies” between the modeled sequence and a
protein of known structure (52, 53), reveals PDB entry 5UP5 as
the closest match (with a probability of over 97% and alignment
coverage of 90%)—the very experimental structure of the corre-
sponding sequence designed by Rocklin et al. (26) (SI Appendix,

Fig. 3. Testing of dTERMen-designed sequences in structure prediction using I-TASSER. Structures were predicted for 3 sequences corresponding to each
target structure (dTERMen-designed, Rosetta-designed, and native), with I-TASSER being asked to predict top 10 models. Models for each sequence were
numbered (in the order returned by I-TASSER), allowing us to compare the ith model between any 2 sequences (e.g., the top model by dTERMen vs. Rosetta).
Each point in each plot represents a comparison between some model i ði∈ ½1; 10�Þ for 2 sequences from the same template (gray and black points map below
and above the diagonal, respectively). (A and B) Compare dTERMen and Rosetta sequences, (C and D) compare native and dTERMen sequences, and (E and F)
compare native and Rosetta sequences. In A, C, and E, the comparison is by TM score of the model relative to the native structure; in B, D, and F, the
comparison is by fraction of residues with the correct secondary-structure classification. The legend of each plot indicates the fraction of times one set of
compared sequences outperforms the other.
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Fig. S4C). Importantly, 5UP5 was not itself used in the database
of proteins from which dTERMen sought TERM-based se-
quence statistics (and, because it itself is a de novo design, no
homologs of it were in the database either). Incidentally, the
second match revealed by HHpred, PDB entry 1UTA, is a
native structure with a fold highly reminiscent of the target (SI
Appendix, Fig. S4D). This strongly suggests that the dTERMen-
designed sequence has the necessary features to be especially
favoring of the target structure.

Redesign of mCherry Surface. Protein surfaces—i.e., the set of
residues exposed to solvent—are important in determining a
multitude of biophysical properties, including solubility, immu-
nogenicity, self-association, propensity for aggregation, stability,
and fold specificity. It is, therefore, sometimes useful to redesign
just the surface of a given protein, so as to modulate one or more
of these properties, while preserving its overall structure and
function. As an example, let us consider the task of redesigning
the surface (resurfacing) of a red fluorescent protein (RFP).
RFPs are proteins that naturally fluoresce, with the emission
spectrum centered around ∼600 nm. Like other fluorescent
proteins (FPs), RPFs are of high utility as biological imaging tags
and in optical experiments (54). It may therefore be useful to
modulate the surface residues of an RFP depending on the en-
vironment (or cell type) in which it has to function.
The crystal structure of RFP mCherry [PDB code 2H5Q (55)]

was used as the design template. A total of 64 positions were
chosen as being on the surface (corresponding approximately to
positions with values of our freedom metric above 0.42; SI Ap-
pendix, Supplementary Methods); these are shown as spheres in
SI Appendix, Fig. S5A. dTERMen was used to compute a sta-
tistical energy table, allowing all of the 64 surface positions to
vary among the 20 natural amino acids, with the remaining po-
sitions fixed to their identities in the PDB entry 2H5Q. ILP was
used to optimize over the resulting space of 2064 ≈ 2·1083 se-
quences. The globally optimal-scoring sequence, with 48 out of
the 64 variable positions modified relative to mCherry, is shown
in SI Appendix, Table S3. Comparing surface shapes and in
vacuo electrostatic potentials between the original mCherry
and the design model (SI Appendix, Fig. S5 B and C) reveals the
latter to be a significant perturbation.
The designed sequence was cloned into Escherichia coli, fol-

lowed by expression and purification using standard techniques.
Size exclusion chromatography (SEC) showed the protein to be
monomeric in solution, just as the native mCherry (Fig. 4 A and
B), and the far-UV circular dichroism (CD) spectrum was con-
sistent with a native-like secondary-structure distribution (SI Ap-
pendix, Fig. S6). Despite harboring 48 mutations and despite the
fact that preservation of optical properties was not an explicit
design constraint, the design still exhibited the chromophore fea-
tures characteristic of the original protein (Fig. 4C). Furthermore,

the designed protein was still fluorescent, with an emission spec-
trum of the same shape (but lower intensity) as that of mCherry
(Fig. 4D). Finally, chemical denaturation by guanidinium hydro-
chloride (GuHCl) revealed that the protein’s structure protects its
chromophore approximately as well as the original mCherry—a
hyperstable, highly engineered protein in its own right (SI Ap-
pendix, Fig. S7). Thus, by all measures, the designed protein pre-
served the original structure and even function. The ability to
generate such diversity can be easily exploited to quickly engineer
variants of RFP or other proteins that possess a range of desired
properties.

Discussion
That protein structure can be designed computationally was first
established some time ago (1) and demonstrated many times
since (22, 56). It is also true that reliance on prior structural data
has been broadly explored, both in terms of various statistics-
based methods (39, 42, 45, 46) as well as in the creation of chi-
meras by the fusion of domains or larger fragments of structure
(57–60). What is exciting about our results here is the marriage
between the generality of our approach (i.e., its ability to design
sequences for arbitrarily-defined structures) and its reliance on
motif-based structural data. This combination is made possible
by the fact that protein structure is not “analog” but “digital” in
its nature (37, 61, 62)—local-in-space structural motifs, TERMs,
tend to be broadly reused across unrelated proteins. These mo-
tifs are small enough to be well sampled in the PDB, but large
enough to contain nontrivial sequence determinants of structure.
One can thus consider an entirely novel structural template as a
design target, while still relying purely on existing structures to
select sequences well suitable for folding into it.
Our sequence recovery results, which compare performance

on NMR vs. X-ray backbones (Table 1), alternative structures of
the same protein (SI Appendix, Table S1), and dissect perfor-
mance by position burial (SI Appendix, Table S2), suggest that,
relative to dTERMen, Rosetta derives much insight from geo-
metric fit. This is a consideration that arose as important early in
the history of protein design, as researchers observed that X-ray
structures generally exhibited jigsaw puzzle-like packed cores (63).
However, such ideal packing is only feasible in the context of a
ground state-like structure. When it comes to room temperature
ensembles, the requirement for a crystalline packed core may not
be appropriate. Backbone flexibility techniques have been pro-
posed to address the issue that while rotamer-based methods are
effectively modeling the ground state, a prespecified template may
not represent such a state for any designed sequence (9, 64). In
dTERMen, this issue is addressed implicitly, to an extent, by the
fact that sequence statistics are gathered from ensembles of close
TERM matches. Our extensive tests here (from native sequence
recovery, Table 1 and SI Appendix, Table S1, to the prediction of
design success and thermodynamic impacts of mutations, SI Ap-
pendix, Figs. S2 and S3, to a de novo design example, SI Appendix,
Fig. S4, and the redesign of mCherry, Fig. 4 and SI Appendix, Figs.
S5–S7) support this approach. As further support, when dTERMen-
designed sequences are relaxed in Rosetta, they usually produce all-
atom scores that are as good or better than corresponding native
sequences relaxed in the same way (SI Appendix, Fig. S11 and
Materials and Methods). However, more work is needed to identify
the best means of representing the ensemble nature of structure
while data mining in the context of TERMs.
In a traditional atomistic approach to design, specific important

aspects of the physics underlying protein structure are recognized,
parameterized, and included as part of the scoring function. Then,
sequences are chosen based on this quantitative (albeit highly
approximate) model. In dTERMen, the fundamental “reasons”
behind sequence choice are not described beyond observed biases
in sequence distributions among database substructures. This can
be seen as a disadvantage. The corresponding advantage, however,

Table 2. Summary of structure prediction performance of
dTERMen-designed, Rosetta-designed, and native sequences

% with TM > 0.5* Mean TM† Median TM‡

Native 50.7% 0.508 0.503
dTERMen 43.2% 0.484 0.474
Rosetta 38.0% 0.449 0.427

*Fraction of models built from either sequence set that achieved a TM score
above 0.5 (relative to the native structure).
†Mean TM score across all predicted models within each sequence set. The P
values for the null hypothesis that the true means of underlying distributions
are identical are 0.05 for comparing dTERMen and native sequences,
0.003 for comparing dTERMen and Rosetta sequences, and 0.000002 for
comparing Rosetta and native sequences.
‡Median TM score across all predicted models within each sequence set.
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is that complex effects can be included without the need for un-
derstanding of their origin (or even being aware of them). A good
example of this is disulfide bonds. The physics of these covalent
bonds between sidechains of cystine residues is not trivial to
model, and to strike the right balance between when to include
such bonds and when not to in designing proteins is also not easy.
However, as shown in Table 1, dTERMen frequently places
disulfide bonds at locations where they appear natively. Impor-
tantly, this is not because dTERMen chooses cystines too often—in
fact, Cys occurred at a frequency of ∼1% in dTERMen-designed
sequences in this study, compared to the rate of ∼2.5% within
corresponding native sequences. In addition, in general, amino acid
utilization implied by the dTERMen model is in good agreement
with the native distribution of amino acids (Fig. 2).
When inspecting design models manually, we frequently see

other examples of dTERMen automatically recognizing and
utilizing well-known sequence–structure patterns, such as helix-
capping motifs (65), salt-bridge patterns within different secondary-
structure combinations (66), β-turn preferences (34, 67), and
π–cation interactions (68). However, these are just some of the
patterns that we recognize, based on our experience with protein
structure. It is interesting to consider what other important
sequence–structure patterns—those not already well known (by
us)—may be automatically included in dTERMen designs.
In summary, the evidence presented here strongly points to

the fact that design of protein structure based entirely on se-
quence patterns mined from the PDB is feasible and practical.
A recent study further validates dTERMen on the challenging
task of designing protein–protein interactions (69). Based on
extensive benchmarking, our general-purpose design framework
dTERMen performs on par with or better than the state of the
art in CPD. What is most exciting about this finding is that the
“top-down” TERM-based insights that dTERMen relies upon
are quite distinct from the “bottom-up” molecular mechanics
(MM)-based models that are typically used in CPD. We can thus
reasonably expect that the 2 methodological classes will have

orthogonal strengths and weaknesses. There should be ample
opportunity to improve the overall robustness of CPD as a whole
by combining TERM- and MM-based insights and by further
optimizing the specifics of TERM-based structure mining.

Code Availability
dTERMen is implemented as a Python-based program that
makes extensive use of our structure search engine MASTER
(38) to identify TERM matches and extract their sequence sta-
tistics. The code is freely available for noncommercial purposes
from https://grigoryanlab.org/dtermen.

Materials and Methods
dTERMen Procedure. The procedure recognizes several types of effective
energetic contributions at play in defining protein sequence–structure re-
lationships: the propensity of an amino acid residue for the general envi-
ronment of a position, such as the burial state (environmental energy);
interactions between an amino acid at a position and its surrounding back-
bone, which are further broken into contribution from its local-in-sequence
backbone fragment (the own-backbone component) and contributions from
spatially proximal backbone fragments (the near-backbone component); and
interactions between pairs and higher-order clusters of amino acids (note,
higher-order interactions were not considered in this study). Environmental
own-, and near-backbone energies are self contributions, whereas the
remaining ones constitute pair and higher-order contributions.

Once the target structure, D, is appropriately decomposed into a set of
overlapping TERMs (see below and Fig. 1), and structural matches are
identified for each TERM from the database, EP values are deduced fol-
lowing 2 general principles. Principle 1 states that sequence statistics within
TERM matches are driven only by the EPs involving positions contained in
the TERM (e.g., a pair EP influences the statistics of a TERM if and only if the
corresponding pair of positions are contained within the TERM). This as-
sumption is reasonable in cases where the matches arise from a large di-
versity of structural backgrounds, such that context effects average out.
Certain redundancy-removal steps are key to making sure that this as-
sumption holds well in practice (see below). It follows from principle 1 that
EP values should be sought to maximally describe the sequence data ob-
served in TERM matches. Principle 2 stipulates that higher-order parameters
be involved only when needed—i.e., models involving only lower-order

Fig. 4. Solution properties of designed mCherry. Shown in A and B are the size exclusion chromatograms of wild-type mCherry and the redesigned variant,
respectively, run under identical conditions. The design elutes at a nearly identical volume as the wild type (difference in the ratios between absorbances at
280 and 587 nm reflect the lower brightness of the design). C and D further demonstrate that redesigned mCherry preserves photo properties of the wild-type
fluorophore. In C, absorbance spectra of wild-type and redesigned mCherry are compared (absorbance values shown on the left and right y axes, respectively),
while D compares fluorescence spectra of the 2 (left and right y axes, respectively). Spectra in both C and D were taken at equivalent concentrations for the
2 proteins, with y-axes units reflective relative intensities.
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parameters are preferred, all else being equal. This means that higher-order
EPs act as correctors to lower-order contributions. For example, pair energies
are needed only to describe those aspects of sequence statistics that are not
satisfactorily described with self contributions.
TERM decomposition: Main idea. Within the sequence space compatible with
folding into D, some residue pairs are coupled—i.e., the optimal amino acid
identity of one residue depends on the identity of the other. Such coupled
positions can be identified through the structure of D, by finding position
pairs capable of hosting amino acids that have an influence on each other
via direct or indirect physical interactions (see below). In addition, in some
systems with sufficiently large multiple sequence alignments, evolutionary
covariation can suggest coupled positions. Finally, experimental evidence
identifying specific coupled position pairs may also be available.

Whatever the source of the inference, the coupling relationships in D can
be thought of as an undirected graph, where nodes represent residues and
edges signify coupling, with edge weights optionally indicating the strength
of coupling (inferred from structure or known); let us call this graph G. The
final pseudoenergy model should involve self contributions for all nodes,
pair contributions for all edges, and (optionally) higher-order contributions
for a subset of connected subgraphs of G. Furthermore, to describe near-
backbone interactions, we define a directed graph, B, in which nodes rep-
resent residues and a directed edge between a and b, a→b, signifies that the
backbone of b can influence the amino acid choice at a. As with coupling,
such pairs of positions can be identified through a structural analysis of D
(see below). A TERM decomposition of D should respect the structures of G
and B and enable the extraction of EPs for the above contribution types.
Specifically, a complete set of TERMs describing D must be such that every
residue and every pair of coupled residues be covered by at least one TERM.
In addition, if higher-order coupling contributions are desired, TERMs cov-
ering corresponding connected subgraphs of G should be included as well.
Similarly, if higher-order near-backbone contributions for position i are
desired, TERMs covering i and all (or a subset of) nodes to which it has di-
rected edges in B should be included as well.
TERM decomposition: Specifics. Here, we describe the specific TERM de-
composition procedure used in this study (Fig. 1), noting that many other
procedures that follow the above principles can be appropriate. We define
TERMs via connected subgraphs of G or B. If a subgraph includes the node
corresponding to residue i, then the resulting TERM includes residues ði−nÞ
through ði+nÞ, where n is a parameter (we generally use n= 1 or 2, and
exclusively n= 1 in this study) (Fig. 1). We first define a TERM for each node
in isolation (i.e., treating it as a one-node subgraph); we refer to these as
singleton TERMs. Singletons are used to deduce own-backbone contribu-
tions (see below). Next, to capture near-backbone contributions at residue i,
we create a TERM that involves node i and all nodes to which it has directed
edges in B; let us call this set βðiÞ—the “influencing” residues. If such a TERM
does not have a sufficient number of close structural matches in the data-
base (see below for details of match definition), the effect of the neigh-
boring backbone on i needs to be captured with multiple TERMs. In
particular, we start by defining TERMs containing i and each residue in βðiÞ,
independently. Of these TERMs, the one with the most structural matches
[suppose it is the one containing nodes i and j∈ βðiÞ] is chosen for expansion,
with each remaining node k∈ βðiÞ∩ j considered for inclusion into the sub-
graph, one at a time. Once again, of these, the one with the most matches is
selected, and this procedure is repeated until no more nodes can be included
into the growing subgraph. Once this occurs, the expanded TERM is ac-
cepted into the overall TERM decomposition, with all of the influencing
residues involved in it marked as covered. The procedure is then repeated,
using only uncovered influencing residues, until all residues in βðiÞ are cov-
ered. This technique is a generalization of considering a single TERM that
covers i and all βðiÞ, splitting the near-backbone effect into as few TERMs as
needed to retain sufficiently good sequence statistics, while capturing as
much of the near-backbone environment simultaneously as possible. TERMs
generated for capturing near-backbone effects are referred to as near-
backbone TERMs (Fig. 1).

We next define one TERM for each pair of nodes in G connected by an
edge. These are referred to as pair TERMs and used to deduce pair in-
teraction EPs. Finally, higher-order TERMs are defined for select connected
subgraphs of G and used in deducing higher-order interactions. Individual
higher-order subgraphs can either be chosen manually, based on prior
knowledge of the system or inspection of structure D, or automatically using
an appropriate structure-based rule (e.g., only fully connected 3-residue
subgraphs, potentially filtered by edge weights). These TERMs are only in-
cluded if they possess a sufficient number of structural matches (see below
for details). While our method can extract higher-order couplings (provided
enough data are available), we have generally found it unnecessary to do so

in practice, and all of the examples presented in this study included only up
to pair contributions.
Computing EPs. Following the 2 general principles outlined in dTERMen
Procedure, many specific computational procedures can be formulated to
extract EP values from the data provided by a TERM decomposition (i.e.,
TERM matches and their sequence statistics). Here, we employ a procedure
that considers pseudoenergetic contributions in a hierarchy, with each next
type of contribution introduced only to describe what is not already cap-
tured by previous ones. By including higher-order contributions later in the
hierarchy, we make sure that these are only used as correctors (to the extent
necessary) over what is already described by lower-order contributions.
Furthermore, the earliest contributions in the hierarchy are those associated
with the strongest sequence statistics, such that highest-confidence effects
are captured first, relatively unaffected by statistical noise. The specific order
of contributions in the hierarchy used here is: 1) amino acid backbone φ=ψ
dihedral angle propensities, 2) amino acid backbone ω dihedral angle pro-
pensities, 3) pseudoenergy associated with the general environment (burial
state) of a residue, 4) own-backbone contributions, 5) near-backbone con-
tributions, 6) residue pair contributions, and 7) any considered higher-order
contributions (not computed in this study). The details of pseudoenergy
calculation are presented in SI Appendix, Supplementary Methods.

Native Sequence Recovery. To arrive at the list of templates used in native
sequence recovery tests, the full list of domains in the CATH database (version
4.2.0) was downloaded on February 11, 2018 (70). The list was filtered using
the following criteria: 1) each domain had to be an entire chain of the
corresponding PDB entry that was nondeprecated and monomeric (i.e., both
biological and asymmetric units containing a single chain), 2) domains in the
“few secondary structures” CATH class were excluded, 3) domains corre-
sponding to membrane-protein PDB entries [i.e., those listed in the OPM
database (71)] were excluded, 4) only domains ranging from 50 to 150 resi-
dues in lengths, consisting entirely of natural amino acids (including MSE,
HSC, HSD, HSE, and HSP), and with no missing nonhydrogen backbone atoms
were allowed, and 5) for X-ray PDB entries, only those with resolution of 2.6 Å
or better were allowed. The resulting list was split into 10 bins by domain
length (i.e., [50, 60), [60, 70), [70, 80), ..., [130, 140), and [140, 150]), with 8
X-ray and 2 NMR structures selected from each bin manually, making sure
that structures chosen from the same bin belonged to different CATH to-
pologies. This gave a set of 100 monomeric, single-domain, water-soluble
structures with 80 X-ray and 20 NMR entries (set I; SI Appendix, Table S4).

We also considered the 11 pairs of structures, each pair representing one
NMR and one X-ray structure of the same protein, curated in our earlier work
[i.e., sets X-ray-2 and NMR-2 from Mackenzie et al. (37)], here referred to as
set II (SI Appendix, Table S5). Tests comparing design performance on NMR
vs. X-ray structures or alternative NMR models used set II structures, while all
other sequence-recovery tests used the union of set I and set II, containing 90
X-ray and 31 NMR structures (X-ray entry 1TTZ occurred in both set I and set
II). Matching entries 3IBW (X-ray) and 2KO1 (NMR) from set II are homo-
dimers (all others being monomeric), so one of the monomers was kept at its
wild-type sequence during design with both dTERMen and Rosetta. Each
NMR entry in set II contained 20 models, so each gave rise to 190 model-to-
model comparisons, giving a total of 2,090 such comparisons across set II. For
NMR-to-X-ray comparisons, each X-ray entry was compared to each of the
20 models of the corresponding NMR entry.

Positions were classified into surface, interface, and core using solvent-
accessible surface area (SASA) values computed in the context of the na-
tive protein used as the template. Specifically, Stride (downloaded on June
24, 2018) was used to calculate absolute SASA values for each residue (72),
and these were divided by “standard” reference SASA values for each amino
acid type to obtain relative SASAs. Standard values were taken from GetArea
(i.e., for each residue type X, its solvent-accessible surface area in the tri-
peptide Gly-X-Gly, averaged over a set of 30 random conformations) (73).
Residues were labeled as surface if the relative SASA exceeded 40%, as core
if the value was below 20%, and interface for cases between 20% and 40%.

Disulfide bonds in native structures were identified as instances of 2
cystine residues with SG atoms within 3.0 Å of each other, resulting in a
total of 80 and 7 Cys–Cys bonds in all X-ray and NMR structures consid-
ered, respectively. Disulfide bond recovery was computed as the fraction
of times the designed sequences retained 2 cystines at position pairs that
were natively disulfide bonded.

Design and Relaxation with Rosetta. We used pyRosetta (Linux release
r56316.64Bit) in all Rosetta Design tests, as well as to repack dTERMen-
designed sequences onto target backbones (e.g., for visualization in SI Ap-
pendix, Fig. S5). Specifically, we performed fixed-backbone design using the
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talaris2013 force-field and default parameters in pyRosetta via “standard_
packer_task” and “PackRotamersMover” objects (for building structural
models of dTERMen designs, only the single amino acid from the designed
sequence was allowed at each position). Specifically, the relevant portion of
Python code we used is shown in SI Appendix, Table S6. Rosetta Relax protocol
(74–77) (Rosetta 3.8 Linux release 2017.08.59291) was used to minimize both
native and repacked dTERMen-designed structures, with beta_nov15 as
scoring function.

Structure Prediction Test. Sequences designed for the 100 structures in set I (SI
Appendix, Table S4), as well as their native counterparts, were subjected to
structure prediction using standalone I-TASSER (version 5.1, downloaded on
June 4, 2018) (78). Specifically, I-TASSER was run in fast mode, with at most
5 h for each round of simulation, producing at most 10 final models. In-
formation from homologs of the protein used as the design template (i.e.,
the native sequence) was excluded from I-TASSER prediction. To this end, we
used blastpgp from the standalone BLAST packages (version 2.2.26) to
search the PDB (i.e., the preformatted BLAST database file pdbaa down-
loaded from National Center for Biotechnology Information on June 6,
2018) for homologs of the native sequence using the E-value cutoff of 1 (79).
Chains corresponding to any matches, as well as the design template itself,
were then removed from the I-TASSER template library during runs using
the -temp_excl flag. With these settings, an I-TASSER run took around ∼20-h
wall-clock time, on average.

All of the predicted models were further compared to their respective
design templates via TM score and secondary structure recovery. The former
was calculated using TM-align (downloaded on June 24, 2018) (80). Stride
(downloaded on June 24, 2018) was used to identify the secondary structure
for each residue in models and native structures (72).

While I-TASSER was asked to return up to 10 best models for each se-
quence, fewer models were produced in some cases (due to the inability of
the method to identify a sufficient number of structural templates). When
comparing models across different sequences categories (e.g., in Fig. 3 and
Table 2), the same index model was always compared. For example, model
3 for the dTERMen sequence designed on the backbone of protein X was
compared with model 3 of the Rosetta sequence designed on this backbone.
Thus, if (for example) the dTERMen sequence resulted in 10 models and the
Rosetta sequence produced 9 models, only the first 9 were compared. In
total, there were 481 models that were successfully produced for all 3 se-
quence types (dTERMen, Rosetta, and native), and all comparisons were
made using only these. This included models for 83 targets (I-TASSER pro-

duced no models in 13/100, 13/100, and 15/100 cases for dTERMen, Rosetta,
and native sequences, respectively).

Experimental Characterization of mCherry Design. Both wild-type and design
mCherry construct genes were synthesized, sequence-verified, and cloned
into plasmids by Gen Script (pUC57 for wild-type mCherry and a modified
pET28b for the design variant; in this modified plasmid, the factor Xa
cleavage site was replaced with a tobacco etch virus or TEV protease site).
Wild-type mCherry was subcloned into a standard pET28b using Agilent’s
QuikChange Lightning site-directed mutagenesis kit through a PCR insertion
method relying on distal end homology between insert and template. The
cloned construct sequence was confirmed by DNA sequencing (Dartmouth
College Molecular Biology Core Facility).
Protein expression and purification. Both proteins were expressed in E. coli
Rosetta 2 (DE3) cells made competent in-house. Expression was carried out
through induction for 17 h at 20 °C by addition of 0.2 mM IPTG at an OD600

around 0.7 to 0.9. Cells were subsequently harvested by centrifugation at
3,000 rpm for 25 min, and the pellets were resuspended in 30 mL of FPLC
binding buffer (50 mM Tris·HCl, 250 mM sodium chloride, 20 mM imidazole,
pH 8.0). Cells were lysed using a Microfluidizer. The soluble protein fraction
was cleared by centrifugation at 20,000 rpm for 40 min. The proteins from
the lysed cultures were purified by means of affinity chromatography on a GE
Healthcare Akta PureM FPLC system on Ni-NTA–conjugated resin (GE Health-
care HisTrap HP 5-mL column) followed by SEC on a GE Healthcare Superdex-
75 16/600 prep-grade column or a Superdex Increase 10/300 GL column.
CD. Folding and stability of wild-type and design mCherry constructs were
assessed by CD on a Jasco J-815 instrument. All samples contained 10 to 20 μM
protein in 25 mM sodium phosphate, 150 mM sodium chloride, pH 7.5. CD
scans were acquired at 20 °C with 4 accumulations each in the 250- to 200-nm
UV range, at 100 nm/min, and with a 1-nm bandwidth, and a pitch
of 0.1 nm.
Fluorescence. Fluorescence spectra were recorded on a synchronous scanning
Jasco FP-8000 fluorometer. All samples contained either 38 μM protein (wild
type) or 150 μM protein (design variant) in 25 mM sodium phosphate,
150 mM sodium chloride, pH 7.5. Scans were acquired over a wavelength
range of 400 to 700 nm, with excitation and emission bandwidths of 5 nm, a
50-ms response time, and a 200-nm/min scan speed.
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