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Newport Myophage Melville
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ABSTRACT Multiple antimicrobial-resistant strains of Salmonella enterica serovar
Newport have been recorded. Study on phages infecting S. Newport may provide new
therapeutics or diagnostics for this pathogen. Here, we describe the complete genome
sequence of the T4-like phage Melville that uses S. Newport as one of its hosts.

he CDC listed Salmonella enterica serovar Newport as one of the top three Salmo-
nella serotypes associated with human infections (1) and foodborne outbreaks (2,
3) in the United States. However, several strains of S. Newport display resistance to
multiple classes of antimicrobials, including expanded-spectrum cephalosporins (4-6).
The study of S. Newport phages will provide insights into the control of Salmonella
bacteria.
Myophage Melville was isolated from a mixed wastewater sample from Austin, TX in
August 2016 using S. Newport as the host. Host bacteria were cultured on tryptic soy
broth or agar (Difco) at 37°C with aeration. The phage was isolated and propagated by
the soft agar overlay method (7). Phage genomic DNA was prepared using a modified
Promega Wizard DNA cleanup kit protocol (8). Pooled indexed DNA libraries were
prepared using the lllumina TruSeq nano low-throughput (LT) kit, and the sequence
was obtained from the lllumina MiSeq platform using the MiSeq v2 500-cycle reagent
kit, following the manufacturer’s instructions, producing 667,982 paired-end reads
for the index containing the phage genome. Quality-controlled (FastQC; http://www
.bioinformatics.babraham.ac.uk/projects/fastqc/) trimmed (FASTX-Toolkit 0.11.6; http://
hannonlab.cshl.edu/fastx_toolkit/) reads were assembled using SPAdes 3.5.0 (9) into a
contig at 132.8-fold coverage. The genome sequence was completed by PCR using
primers (5'-TCTTCATAGCATGGGCACATATC-3' and 5'-GGCGGGTGGTTTGAAGTAA-3’)
facing off the ends of the assembled contig and Sanger sequencing of the resulting
product, with the contig sequence manually corrected to match the resulting Sanger
sequencing read. Protein-coding genes were predicted by Glimmer 3.0 (10) and
MetaGeneAnnotator 1.0 (11), with manual correction. tRNA genes were analyzed using j'tza(;"g"cz:;lglefegg:Ogiae’;ugné'e“o’\f" Gill
ARAGORN 2.36 (12). Protein functions were predicted based on sequence homology by Solmonella enterica serovar "
BLASTp 2.2.28 (13). Conserved domain searches were conducted in InterProScan 5.15- myophage Melville. Microbiol Resour Announc
5.40 (14). All analyses were conducted at default settings via the Center for Phage %gggff;g' mitgdatene /O I
Technology (CPT) Galaxy (15) and WebApollo (16) interfaces (https://cpt.tamu.edu/).
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The Melville genome (159,323 bp) has a G+C content of 37%, a level lower than that Chicago
of Salmonella spp. (~50%) (17). Genes encoding dCMP hydroxymethylase that produce Copyright © 2019 Zhang et al. This is an open-
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presence of the inner membrane protein imm (immunity) gene in Melville indicates the Published 25 April 2019
ability to exclude superinfecting phage.
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Melville is a T4-like phage and belongs to the genus S76virus. Melville encodes

homologs of the protector from prophage-induced early lysis genes rll/A and rliB, as
is common among T4-like phages. It shares 93.9% and 90.5% whole-genome DNA
sequence identity by BLASTn with the Salmonella phage STML-198 (GenBank
accession numbers NC_027344) and Salmonella phage vB_SenMS16 (S16; GenBank
accession number NC_020416), respectively. As is the case with phage S16, Melville
contains a tandem gene duplication of the predicted capsid vertex protein (GenBank
accession numbers ATN93139 and ATN93140). The long tail fiber distal subunit of
Melville (GenBank accession number ATN93217) has 76% identity with that of phage
S16, which recognizes the outer membrane protein OmpC and has an unusually broad
host range within the genus Salmonella (18).

Data availability. The genome sequence of phage Melville was deposited under

GenBank accession number MF957259. The associated BioProject, SRA, and BioSample
accession numbers are PRINA222858, SRR8788210, and SAMN11259695, respectively.
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