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Abstract

Pseudomonas aeruginosa is a human pathogen associated with both acute and chronic infections. While intensively studied, the basic
mechanisms enabling the long-term survival of P. aeruginosa in the host, despite massive immune system attack and heavy antimicro-
bial treatment, remain to be identified. We argue that such infections may represent niche invasions by P. aeruginosa that influence the
microenvironment by depleting host-derived substrate and activating the immune response. Bacteria embedded in cell aggregates
establish a microenvironmental niche, where they endure the initial host response by slowing down their metabolism. This provides
stable, lasting growth conditions with a constant, albeit slow supply of substrate and electron acceptors. Under such stable conditions,
P. aeruginosa exhibits distinct adaptive traits, where its gene expression pattern reflects a life exposed to continuous attack by the host
immune system and antimicrobials. Here, we review fundamental microenvironmental aspects of chronic P. aeruginosa infections and
examine how their structural organization influences their in vivo microenvironment, which in turn affects the interaction of P. aerug-
inosa biofilm aggregates with the host immune system. We discuss how improving our knowledge about the microenvironmental
ecology of P. aeruginosa in chronic infections can be used to combat persistent, hard-to-treat bacterial infections.
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Introduction
Pseudomonas aeruginosa is a prominent opportunistic pathogen in-
volved in chronic bacterial infections of, e.g. wounds and the respi-
ratory tract, or associated with implants. Numerous studies have
demonstrated the large genetic versatility and phenotypic plas-
ticity of P. aeruginosa (Shen et al. 2006, Turner et al. 2015). There
is also abundant literature on specific biochemical pathways or
molecular characteristics of P. aeruginosa or the host immune re-
sponse [recently reviewed in La Rosa et al. (2019) and Moser et
al. (2021)]. However, the mechanisms governing the persistence
of P. aeruginosa in chronic infections remain elusive. In this re-
view, we assess fundamental knowledge about growth patterns
of P. aeruginosa in chronic infections and their microenvironment,
and discuss how these are affected by the host immune response.
The latter is a surprisingly underexplored topic that may reveal
essential insights into the long-term persistence mechanisms of
chronic P. aeruginosa infections despite a strong immune response
and antibiotic treatment. Increased understanding of the ecolog-
ical niche that P. aeruginosa inhabits after successful colonization
and consecutive infection of the human body may also identify
important new targets for both diagnosis and treatment of chronic

infections. While we focus on the well-studied species of P. aerug-
inosa, we also draw parallels to other important pathogens where
appropriate.

The conditions leading up to a chronic infection are not caused
by the bacteria themselves but a dysfunction in the host that cre-
ates conditions promoting subsequent bacterial invasion and in-
fection (Bjarnsholt et al. 2021). For example, in patients suffering
from the hereditary condition cystic fibrosis (CF), a malfunction
in the chloride channels leads to dehydrated mucus in the lower
respiratory tract, causing an impaired mucociliary clearance of
inhaled microbes (Høiby et al. 2010). For chronic wounds, a low-
ered or impaired vascularization and other impairments followed
by a breach in the skin lead to abnormal healing and opportuni-
ties for persistent infection (Singer and Clark 2008). Additionally,
the insertion of a foreign body and the subsequent destabilization
of tissue can create niches for infection development (Jakobsen et
al. 2018). While none of these conditions necessarily are the di-
rect cause of infection, they involve formation of a matrix of ab-
normal host material, such as thickened mucus in the CF lung or
slough in chronic wounds, wherein intruding bacteria may then
gain a foothold and cause infection. Bacterial colonization can
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arise from exogenous sources or from the existing microbiome of
the hosts, and can involve single cells or small aggregates (Jelsbak
et al. 2007, Hansen et al. 2012).

Most of our knowledge about the initial events leading up to
a chronic infection is derived from patient samples. These are
obtained either after the establishment of a chronic infection,
typically in its late stages, or from acute infections that will not
progress into the chronic state. The precise conditions that lead to
chronic infections, whether bacteria- or host-specific, are there-
fore, still debated.

For bacteria, numerous in vitro studies have concluded that
bacterial aggregation leads to increased tolerance toward antibi-
otics and the host immune defense response (Jensen et al. 2010,
Goltermann and Tolker-Nielsen 2017, Ciofu and Tolker-Nielsen
2019, Moser et al. 2021). In vivo animal studies have demonstrated
similar mechanisms (Pedersen et al. 1990, Lebeaux et al. 2013,
Reizner et al. 2014, Jensen et al. 2019a). However, most animal
models fail to mimic a native chronic infection, since the animal
has to be manipulated into infection. Such models are also poor at
emulating a persisting chronic infection, as the bacteria are usu-
ally either eradicated by the host or the animal succumbs to the
infection over the experimental time interval. Besides attaining
an increased tolerance toward antibiotics and host immune eva-
sion, we know that: (i) bacteria gather in small colonies, or biofilms
(Rudkjøbing et al. 2012, Bjarnsholt et al. 2013, Bay et al. 2018); (ii)
the bacteria display much slower growth rates within the patients
than subsequent in vitro growth rates (Yang et al. 2008, Kragh et
al. 2014); (iii) the conditions within the host material are anoxic
or hypoxic (Worlitzsch et al. 2002, Kolpen et al. 2010, James et al.
2016, Jensen et al. 2017); and (iv) the genetic diversity of bacteria
is large and differs from the reference or environmental strains
of the same species (Smith et al. 2006; Yang et al. 2011a,b, Jir-
icny et al. 2014, Vanderwoude et al. 2020, Armbruster et al. 2021;
Fig. 1).

The structural organization of bacteria in
infections
In a range of laboratory biofilm models (flow cells, drip-flow reac-
tors, and alike), bacteria are grown in a manner that allows for de-
velopment of complex structures and many studies have shown
that bacteria are capable of organizing themselves in 3D biofilm
landscapes (Hall-Stoodley et al. 2004). This concept is not novel or
controversial in any way, and the fossil record shows that some
of the oldest known biotic structures, i.e. stromatolites, were or-
ganized as microbial biofilms communities (Garwood 2012). Such
structural organization has been explained as a response to the
physicochemical microenvironment surrounding the structures.
For example, researchers have shown that architecture was gov-
erned by an optimal diffusive exchange of solutes in a hot-spring
microbial mat, where the biomass was structured as stromatolite-
like pillars (Petroff et al. 2010). However, in many cases bacterial
growth is characterized by flat slabs or simple aggregates (Bridier
et al. 2010).

While there is a good understanding of such structure–function
relationships in many natural biofilm communities (e.g. Depetris
et al., 2021, 2022), the question remains how bacteria are orga-
nized in chronic infections and whether a complex 3D structural
organization and derived changes of their microenvironment con-
fer any advantage for their persistence and resilience to the im-
mune response or antibiotic treatment.

Surface-attached biofilms remain relevant to numerous sys-
tems such as fouling of industrial equipment (Flemming 2011)
and aquatic plants (Noisette et al. 2020), stream biofilms (Besemer
et al. 2012, Depetris et al. 2021), oral biofilms (Bowen et al. 2018),
and implant-associated infections (Arciola et al. 2018). However,
in most types of bacterial infections it is now becoming widely
accepted that biofilms are not necessarily attached directly to a
surface but rather suspended in an extracellular matrix (Bjarn-
sholt et al. 2013, Kragh et al. 2016). In the CF lung, aggregates are,
thus located endobronchially, with one report showing that ∼95%
of the bacteria are located more than 5 μm away from the ep-
ithelial surface (Worlitzsch et al. 2002). In wounds, bacteria ag-
gregate in a host- or self-produced matrix (Kirketerp-Møller et al.
2008), whereby different species appear to inhabit different niches
in the wound (Fazli et al. 2009). How bacteria come to be dis-
tributed in chronic wounds remains unclear, but their nonrandom
distribution (Fazli et al. 2009) could be linked to differences in the
microenvironment and the availability of electron acceptors for
respiration between the surface and deeper parts of the wound
(James et al. 2016). In acute wounds, it has been shown that bacte-
rial aggregates form at the wound edges and in the crevices of the
stratum corneum, whereas no bacteria were found in the acute
wound bed (Bay et al. 2018).

It has been proposed that even multispecies infections are pri-
marily composed of small monospecies aggregates spatially sep-
arated from each other by the host material (Burmølle et al. 2010,
Rudkjøbing et al. 2012, Kvich et al. 2020). In most types of hu-
man biofilm infections, the dominating aggregate diameters are
found to be 5–200 μm (Bjarnsholt et al. 2013). Here, catheter-
associated biofilm patches are an exception reaching up to 1200
μm, possibly due to the large abiotic surface presenting a distinct
niche for microbial colonization (Jakobsen et al. 2018). It, thus ap-
pears that there is an upper size limit of biofilms in human infec-
tions, which is significantly lower than seen for laboratory-grown
surface-bound biofilms that can easily cover several square cen-
timeters of surface. The factors that govern this apparent size
limit are still not understood but may arise as a balance between
phagocytosis by leucocytes and resource depletion decreasing the
bacterial growth rate (Stewart 2003, Aristotelous et al. 2015, 2018).

The dynamics of phagocytosis by leucocytes has mainly been
studied using single particles, where an increase in target size
has been shown to prolong engulfment time and interestingly,
nonspherical shapes also resulted in much slower engulfment
than spherical particles (Paul et al. 2013). In contrast, the dynam-
ics of phagocytosis of bacterial aggregates remain almost unex-
plored. A recent study demonstrated a negative correlation be-
tween the probability of phagocytosis by single polymorphonu-
clear neutrophils (PMNs) and the biofilm aggregate diameter (Al-
hede et al. 2020a), while another study showed that aggregates
> 50 μm2 resisted killing by human neutrophils (Pettygrove et al.
2021). It, thus appears that attaining a certain bacterial aggregate
size can present a selective advantage. The main determinant for
the switch from acute to chronic infections has been assumed to
be correlated with bacterial aggregation (Bjarnsholt et al. 2012),
but this paradigm was recently challenged. It was, thus shown
that the biomass proportion of individual bacterial cells and those
in biofilm aggregates were equal between acute- and chronic pul-
monary infections (Kolpen et al. 2022). Rather than aggregation
being the distinguishing factor of acute versus chronic infection,
it was argued that metabolic activity might play a more central
role, where acute infections are characterized by higher bacterial
growth rates.



Lichtenberg et al. | 3

Figure 1. Conceptual drawing of the microenvironment of infections in the lung (left) and wound (right). Colonization by bacteria leads to innate
immune activation by recognition of pathogen-associated molecular patterns (PAMP) and biofilm-associated molecular patterns (BAMP) by pattern
recognition receptors (PRR) and the release of proinflammatory cytokines. Immune cell activation leads to increased O2 consumption for the
respiratory burst which, along with bacterial respiration, leads to lowered O2 tension. In wounds, bacteria are found as monospecies aggregates
separated from each other where different species appear to inhabit different zones of the wound. In lungs of CF patients, bacteria are found
intraluminally embedded in thickened sputum. Bacterial interactions occur if signaling molecules reach high enough concentrations to elicit a
response. The quorum sensing (QS) system has been shown to be lost or inactive in late infection stages.

Factors shaping the microenvironment
within infections
The growth limitation imposed by insufficient electron acceptor
availability is influenced by the metabolic activity of the bacteria
themselves, as well as human immune cells that consume O2 for
their respiratory burst (Jensen et al. 2017). Bacteria, thus influence
their own microenvironment and larger aggregates will have less
O2 toward their center (Ploug et al. 1997, Kühl et al. 2007, Søn-
derholm et al. 2018). The minimum aggregate size necessary to
deplete O2 in the center can be calculated by simple diffusion–
reaction models (Ploug et al. 1997, Stewart 2003). Here, we used
the formulation of Stewart (2003) to explore how bacterial aggre-
gate size varies according to the bacterial growth rate and the O2

availability at the surface of the aggregate. The strong influence
of O2 concentration at the surface of aggregates on oxygen pen-

etration and the subsequent growth rate of bacteria is illustrated
in Fig. 2.

Even at low growth rates observed in vivo in the lungs of CF
patients (0.217 divisions hour–1; range: −0.10 to 0.67; Kragh et al.
2014), only aggregates with a very small radius (0–35 μm) are fully
aerobic. This modeling assumes steady-state O2 concentration at
the surface as well as an equal growth rate of all bacteria in the ag-
gregate. This of course is not the case in vivo, where other types of
electron acceptors are also present. Electron acceptors are used
in succession based on their bioenergetic potential. At low O2

tension, P. aeruginosa is known to switch to denitrification if ni-
trate or nitrite is available (Hasset et al. 2009, Kolpen et al. 2014b),
and long-term survival of P. aeruginosa on pyruvate and arginine
fermentation has previously been documented (Schreiber et al.
2006). However, the precise regulation of respiratory pathways
is complex and is dependent on multiple factors such as sub-
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(A) (B)

Figure 2. (A) Modeling of the radius of aggregates at which the O2 concentration in the aggregate center goes to zero depending on the growth rate of
bacteria (divisions hour–1) and the O2 concentration at the surface of the aggregate using the expressions from Stewart (2003). We used a yield
coefficient of biomass on O2, YxO2 = 0.85 mg mg–1, a biomass density of bacteria in aggregates of 2.0·105 mg l–1, a diffusion coefficient of O2 in water,
Daq = 2.0·10–5 cm2 s–1, and an effective diffusion coefficient in the biofilm, De/Daq = 0.2. (B) The two examples of the influence of the growth rate and
surface O2 concentration on the aggregate size where the center exactly becomes anoxic.

strate availability, affinities of terminal oxidases, and inhibitor
molecules (Kawakami et al. 2010, Trunk et al. 2010, Lichtenberg et
al. 2021). This complicates attempts to extend this type of mod-
eling to chronic infections in vivo. Yet it seems, at least to some
extent, that electron acceptor availability could explain the upper
size limit of bacterial aggregates. At the same time, such aggre-
gates may gain an advantage from attaining a certain size because
the risk of being eliminated by phagocytosis is decreased (Alhede
et al. 2020a).

The susceptibility to antibiotics is determined by the bacte-
rial growth rate (Tuomanen et al. 1986, Evans et al. 1991), their
metabolic state (Meylan et al. 2017, Lopatkin et al. 2019, Stokes et
al. 2019), and the availability of O2 (Brochmann et al. 2014, Dwyer
et al. 2014). Thus, the uptake of O2 by inflammatory cells has the
potential to significantly affect the outcome of treating biofilm in-
fections with antibiotics. It is difficult to distinguish between the
O2 consumption of inflammatory cells and bacterial cells in the
infectious biofilm, and the resulting O2 profiles in infected tissue,
thus depend on the concerted action of both host cells and the
bacterial biofilm (Wu et al. 2018). It should be noted, however, that
in infected anaerobic endobronchial secretions from CF patients
with chronic P. aeruginosa lung infection (Worlitzsch et al. 2002),
the overall O2 consumption is dominated by the host response,
while the contribution of bacterial aerobic respiration to the to-
tal amount of O2 consumed is apparently minimal (Kolpen et al.
2010).

The host response to biofilm infections has been thoroughly
investigated in CF patients with chronic P. aeruginosa lung infec-
tions and from P. aeruginosa-specific infection models (Lorenz et al.
2016). Pathogen-associated molecular patterns (PAMPs) expressed
on P. aeruginosa are recognized by PMNs and macrophages through
pattern recognition receptors (PRRs). Further, biofilm-associated
molecular patterns (BAMPs) constitute a subpopulation of PAMPs
that when expressed in biofilm, induces a distinct innate im-

mune response (Moser et al. 2021). Accordingly, components of
the extracellular polysaccharide matrix components in P. aerugi-
nosa biofilm may qualify as BAMPs by inducing distinct responses
by PMNs. In contrast, flagella failed to qualify as BAMPs due to
the absence of an increased PMN response to P. aeruginosa biofilm
with expression of flagella, even though the expression of flag-
ella by planktonic cells increased the PMN response (Rybtke et al.
2020, Moser et al. 2021). Binding of molecular patterns to PRRs
activate the innate immune response, leading to the attraction of
macrophages and a multitude of PMNs (Moser et al. 2021). Further
activation steps involve stimulation of the respiratory burst by the
PMNs, leading to intense consumption of O2 for the production of
reactive oxygen species (ROS; Kolpen et al. 2010) and nitric oxide
(NO) (Kolpen et al. 2014a). Additional innate responses include the
PMN-mediated secretion of proteases that cause proteolytic tissue
lesions (Wilgus et al. 2013) and the release of proinflammatory cy-
tokines, such as tumor necrosis factor alpha (TNF-α) interleukins
(IL)-1, IL-6, IL-8, and IL-12 by macrophages, which may further en-
hance the inflammatory response (Lavoie et al. 2011, Sweere et al.
2020).

As the adaptive immune response matures, the T-cells and the
B-cells reside distantly, such as in the secondary lymphoid organs,
while the plasma cells are located in the bone marrow. Activated
T-cells release cytokines that reinforce the inflammation by stim-
ulating the accumulation and activation of PMNs and production
of IgG, causing further immune complex-mediated stimulation of
the PMNs and activation of the classical complement pathway
(Moser et al. 2017). Thus, the chronicity of biofilm infections pro-
vides the time span needed for the adaptive immune response to
develop and contribute to the host response by further increas-
ing the accumulation and activation of PMNs. This leads to the
acceleration of local inflammation, resulting in collateral tissue
damage but without eradicating the infectious biofilm (Jensen et
al. 2010).
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The ability of activated PMNs to deplete O2 limits bacterial
aerobic respiration, which may determine bacterial growth. Ac-
cordingly, the growth of P. aeruginosa is inversely correlated to the
amount of PMNs surrounding the biofilms in CF patients with
chronic lung infection (Kragh et al. 2014). The O2 consumption
by the host response may also slow down the bacterial growth
of pathogens other than P. aeruginosa (Jensen et al. 2017). Diverse
methodologies, such as rRNA fluorescence in situ hybridization
and trace incorporation of heavy water, have indicated the slow
growth of Stenotrophomonas maltophilia (Kolpen et al. 2015), Achro-
mobacter xylosoxidans (DePas et al. 2016), and Staphylococcus aureus
(Kopf et al. 2016) in expectorated sputum from CF patients with
chronic lung infections. Because of the association of slow bacte-
rial metabolism with low susceptibility to antibiotics, the O2 con-
sumption by the PMNs may play a significant role in the recalci-
trance of chronic biofilm infections to intense antibiotic treatment
in CF patients (Lopatkin et al. 2019). Besides the increased toler-
ance imposed by low substrate-availability, antibiotic treatment
may also cause low level mutations in metabolic genes confer-
ring increased resistance by lowering basal respiration (Lopatkin
et al. 2021).

The contribution of bacterial biofilms to the poor healing
of chronic wounds is increasingly recognized (Bjarnsholt et al.
2008, James et al. 2008) and has been confirmed in experimen-
tal wounds infected with P. aeruginosa biofilms (Seth et al. 2012,
Watters et al. 2013). The incidence of bacterial biofilms in chronic
wounds may exceed 80% (Malone et al. 2017). The microenviron-
ment of chronic wounds with biofilm infections may also be hy-
poxic as evidenced by the presence of steep O2 gradients (Schreml
et al. 2014), transcriptomic profiling (James et al. 2016), and the
occurrence of many anaerobic bacteria (Dowd et al. 2008) and
metabolites (Debats et al. 2006).

The key mechanisms of O2 depletion in infected wounds re-
main elusive, but the accumulation of PMNs is increased in
wounds with biofilm infection (Fazli et al. 2011, Trøstrup et al.
2013). The concerted activity of biofilms and the summoned PMNs
may, thus cause the steep O2 gradients found in chronic wounds
(Wu et al. 2018). The consumption of O2 by PMNs is evidenced from
the relation between the extent of the respiratory burst and the
bacterial load in infected wounds (Belotsky et al. 1990), but the
influence of the adaptive immune response remains largely un-
known (Moser et al. 2021). While the resulting lack of O2 may con-
tribute significantly to delayed wound healing (Hunt et al. 1969,
Gottrup et al. 2017, Frykberg et al. 2020), the influence of hy-
poxia on the outcome of antibiotic treatment in chronic wounds
is largely unknown. Apart from the concerted O2 consumption
of inflammatory cells and bacteria in wounds, the hypoxic con-
ditions may be further exacerbated by impaired vascularization
in patients suffering from conditions such as atherosclerosis and
diabetes. This impairment may also lead to inadequate delivery
of systemically administered antibiotics possibly resulting in sub-
MIC concentrations of therapeutic drugs being delivered at the in-
fection site (Bue et al. 2017, Jensen et al. 2019a).

Bacterial interactions in infections
Bacterial interactions in infections are most likely important both
within aggregates and between aggregates in close proximity (Az-
imi et al. 2020). However, a study of the distribution and diversity
of bacteria in chronic venous leg ulcers showed that the diversity
of bacteria in the wound could not be captured if only one biopsy
was investigated (Thomsen et al. 2010), which is indicating a het-
erogeneous distribution of different bacteria into biofilm aggre-

gates that are spatially separated (Burmølle et al. 2010, Kvich et
al. 2020). Other studies have shown that P. aeruginosa and S. aureus
colonize different depths within wounds (Fazli et al. 2009), and
the overall species diversity in wounds is low and only comprises
a handful of species (Thomsen et al. 2010). The majority of aggre-
gated bacteria in infections are surrounded by PMNs (Høiby et al.
2010, Kragh et al. 2014), and thus the interaction with the host is
more likely to be the predominating form of direct cell–cell inter-
action at the level of single aggregates.

Inter and intraspecies signaling
Due to the obvious complications of measuring calling distances
in vivo in humans, the scale and importance of inter and intraspe-
cific cell–cell signaling in infections remains unknown. However,
interspecies interactions and calling distances have been fre-
quently studied in the laboratory in well-shaken cultures or in
dense biofilms of both P. aeruginosa and other microbes (Egland et
al. 2004, Weigert and Kümmerli 2017, Darch and Koley 2018). The
scale of calling distance may be dependent on the surrounding en-
vironment and the specific microbe. For rhizobacteria one study
e.g. reports that calling distances frequently approach 4–5 μm,
while extending up to 78 μm in some cases (Gantner et al. 2006).
Others studies argue that diffusible signals for interspecies inter-
actions only function over very short distances of ∼1 μm in open
systems, which means that they effectively only reach neighbor-
ing cells (Egland et al. 2004).

The redox-active phenazine pyocyanin, which is controlled by
the quorum sensing (QS) system and secreted extracellularly by
P. aeruginosa, can be a good indicator of sharing distances be-
tween cells. By using P. aeruginosa colonies attached to a surface,
the sharing distances of the phenazine pyoverdine was reported
to be at least 100 μm when the surface was soft, although they
were reduced on a hard surface (Weigert and Kümmerli 2017).
In a CF lung infection model, it was estimated that aggregates
of ∼2000 pyocyanin-producing P. aeruginosa cells were unable to
interact with neighboring aggregates, while clusters containing >

5000 cells could interact with others over longer distances of up
to 176 μm (Darch et al. 2018). Even though impressively large call-
ing distances relative to the size of individual bacteria have been
recorded (e.g. Gantner et al. 2006), these distances are still short
compared with the distribution of bacteria in infections (Thomsen
et al. 2010). Furthermore, we note that even aggregates contain-
ing only 2000 bacteria are still twice as large as the aggregates
observed in the CF lung (Darch et al., 2017, 2018), suggesting that
the small clusters observed in vivo (Bjarnsholt et al. 2013) have a
limited capacity for interaggregate interactions.

We still know very little of the potential interactions between
cells over micrometer-scales in chronic infections and how differ-
ent microenvironments can affect the calling distance of differ-
ent molecules. Along with the complex task of untangling signal-
response networks, the signaling molecules themselves are char-
acterized by different diffusion coefficients and chemical stabili-
ties (Yates et al. 2002), which makes the calling distance of indi-
vidual molecules unique.

Interkingdom host–bacteria signaling
Several indications of a hormonal interaction between microor-
ganisms and their hosts exist (Singh et al. 2000). The first signs
of interkingdom signaling were shown when N-acyl homoserine
lactone (AHL) signaling molecules were found capable of modu-
lating mammalian cell signal transduction (Telford et al. 1998),
and hormones from the host were observed to modulate bacterial



6 | FEMS Microbiology Reviews

gene expression (Sperandio et al. 2003). Purified AHLs have been
reported to increase IL-8 in respiratory epithelial cells (DiMango
et al. 1995), to inhibit lymphocyte proliferation, and to downreg-
ulate the production of TNF-α and IL-12 in lipopolysaccharide-
stimulated macrophages (Telford et al. 1998). Phenazines from P.
aeruginosa have been shown to bind to the aryl hydrocarbon re-
ceptor (AhR), a highly conserved ligand-dependent transcription
factor in mammalian cells, affecting the expression of several host
genes e.g. for production of chemokines, cytokines, and detoxify-
ing enzymes (Moura-Alves et al. 2014). A recent study by the same
group demonstrated a qualitative and quantitative interaction of
QS molecules and phenazines with AhR in zebrafish, mice, and
humans (Moura-Alves et al. 2019). While numerous studies have
shown a multitude of indications for interkingdom signaling be-
tween bacteria and host, it remains uncertain whether such in-
teractions are important in infections, where only a small num-
ber of pathogenic bacteria are present. Most studies use cell lines
and purified test compounds such as AHL signaling molecules to
show a response, which makes it difficult to extrapolate the find-
ings directly to P. aeruginosa infections.

Genetic changes in P. aeruginosa signaling
systems during infection
For P. aeruginosa, it has been observed that certain genes mutate
over infection periods (Diaz Caballero et al. 2015), which affect
the functionality of the QS system in particular, as well as the
secondary signaling system cyclic diguanylate (c-di-GMP; Jiricny
et al. 2014). In CF sputum samples especially, mutations seem to
develop over long infection periods (Jelsbak et al. 2007, Bjarnsholt
et al. 2010, Folkesson et al. 2012, Armbruster et al. 2021). For the
QS system, mutations in the lasR gene (Smith et al. 2006, Ciofu et
al. 2010, Folkesson et al. 2012) as well as mutations in mucA also
leading to QS repression (Ryall et al. 2014) have been reported in P.
aeruginosa infections. In addition, transcription of the las QS sys-
tem has been shown to be significantly lower in patient samples
from different infections, compared to in vitro P. aeruginosa biofilms
(Cornforth et al. 2018).

The observed increase in lasR mutants during infection has
been the subject of speculation in recent decades (Feltner et al.
2016, Kostylev et al. 2019). It has been suggested that lasR mutants
are selected for by an apparent increased metabolic advantages
by upregulation of catabolic metabolism (D’Argenio et al. 2007)
and a lowered probability of lytic death in stationary growth phase
(Heurlier et al. 2006). Another suggestion is that lasR mutants can
spread in populations with QS-proficient bacteria, where the QS
mutants might behave as social cheaters, avoiding the costs of
producing messenger molecules, which leads to a mixed popula-
tion (Diggle et al. 2007). Alternatively, bacteria adjust to a mixed
population over time followed by a complete loss of a functional
QS system in the entire population later in the infection period.
Such dynamics have previously been observed in clinical settings
(Köhler et al. 2010). It has also been suggested that LasR deficient P.
aeruginosa prevent robust neutrophil extracellular trap (NET) for-
mation in neutrophils via transcriptional regulation of LasA pro-
tease and LasB elastase (Skopelja-Gardner et al. 2019), while an-
other study suggested that most host-derived eDNA, in vivo, is not
a result of NETosis (Alhede et al. 2020b) in accordance with the
increased proportion of lasR mutants observed in infections.

A total of two well-known examples of QS-regulated com-
pounds produced by P. aeruginosa are rhamnolipid, the rhamnose-
containing glycolipid biosurfactant, and phenazines, which are

extracellular redox-active compounds. Rhamnolipid can cause ly-
sis of PMNs (Jensen et al. 2007) and macrophages (McClure and
Schiller 1992), while pyocyanin can impose oxidative stress in hu-
man airway cells, by generating superoxide leading to the deple-
tion of intracellular NADPH stores (Rada et al. 2008).

Functional mutations in above-mentioned systems can thus
potentially change the local microenvironment surrounding the
bacteria in the infection sites.

The nucleotide-based intracellular signaling molecule c-di-
GMP works as a switch between a motile bacterial state and a
sessile, biofilm mode of growth (Boyd and O’Toole 2012). Low in-
tracellular concentrations of c-di-GMP favor cell motility, whereas
a high concentration increases the expression of adhesion factors
and extracellular matrix components, leading to cell aggregation.
Pseudomonas aeruginosa isolated from CF patients displaying the
rugose small-colony variant (RSCV) phenotype exhibit an elevated
level of c-di-GMP caused by mutations in the wsp and yfi loci caus-
ing a hyperinflammatory phenotype (Starkey et al. 2009, Malone
et al. 2010, Pestrak et al. 2018). This leads to high levels of c-di-
GMP, which suggests a selection for the biofilm phenotype in pro-
longed infections (Smith et al. 2006, Blanka et al. 2015). However, it
has recently been reported that aggregates and single cells can be
found in equal proportions in a range of acute and chronic pul-
monary diseases (Kolpen et al. 2022). C-di-GMP regulates many
other cellular functions besides aggregation, so it remains unre-
solved whether the same mutations are found across both aggre-
gates and single cells in long-term infections.

Treatment of biofilms based on
microenvironmental characteristics
Tolerance toward antibiotics in biofilms is recognized as a ma-
jor cause of therapeutic failure during chronic infection, but the
mechanisms of antimicrobial tolerance in vivo are not completely
understood (Walters et al. 2003). As part of the respiratory burst
of PMNs attempting to eradicate bacteria, O2 is consumed in the
formation of ROS and reactive nitrogen species (RNS; via the in-
ducible NO synthase; Kolpen et al., 2010, 2014a). Decreased O2 ten-
sion in the biofilm environment induces reduced, hibernation-like
metabolism characterized by anaerobic respiration (Kolpen et al.
2015). Consequently, the efficacy of antibiotics targeting metaboli-
cally active bacteria is reduced (Sønderholm et al. 2017, Van Acker
and Coenye 2017, Crabbé et al. 2019, Jensen et al. 2019b).

Limited O2-supply in bacterial biofilms has been demonstrated
in several infections, such as necrotizing soft-tissue infections
(NSTI; Siemens et al. 2016), cerebral abscesses, certain implant-
related cerebral infections, refractory osteomyelitis, chronic is-
chemic ulcers, and pulmonary lung infections (Bartek et al. 2018,
Moon 2019). Therefore, bacteria are subject to a hypoxic or even
anoxic microenvironment affecting their sensitivity to certain
types of antibiotics intended for infection control (Sønderholm et
al. 2017, Jensen et al. 2019b).

Stratification of O2 in biofilm aggregates grown in vitro con-
fers tolerance to several commonly used antibiotics due to lim-
ited O2 availability toward the center of the aggregates (Walters et
al. 2003, Pamp et al. 2008). Common types of antibiotics, such as
aminoglycosides, beta-lactams, and quinolones, target processes
linked to the tricarboxylic acid (TCA) cycle in metabolically ac-
tive bacteria, leading to formation of toxic ROS that contribute to
the bactericidal activity of the antibiotic during aerobic respira-
tion (Pakman 1971, Van Acker et al. 2013, Brochmann et al. 2014,
Dwyer et al. 2014, Jensen et al. 2014, Haj et al. 2021). The bacteri-
cidal activity of quinolones and aminoglycosides decreases when
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Figure 3. Bacterial colonization can lead to acute infections, which in healthy individuals are usually cleared by the immune response and in some
cases with the aid of antibiotics. In immunocompromised patients, the infection can progress into a chronic state characterized by a continuous
inflammatory response with collateral tissue damage, hypoxic conditions, and low bacterial growth rates, resulting in low antibiotic susceptibility.
Alternative antipathogenic strategies include the use of QS inhibitors or quorum quenching enzymes to decrease bacterial expression of virulence
factors and biofilm formation. The QS system has been shown be lost or inactive in late infection stages so the efficacy of using QS inhibitors is most
likely restricted to a certain time window. The low growth rates and high antibiotic susceptibility of bacteria in chronic infections can be reversed by
treating with supplemental O2 by breathing pure oxygen in either normo or hyperbaric conditions. The associated higher tissue concentrations of O2

will lead to increased bacterial growth rates and higher susceptibility toward antibiotics targeting metabolically active bacteria. Alternatively,
inhalation of NO can lead to upregulation of phosphodiesterases that break down the biofilm promoting molecule cyclic-di-GMP resulting in
disaggregation.

the availability of O2 is reduced (Borriello et al. 2004, Brochmann
et al. 2014). The slow bacterial growth associated with low levels
of O2 (Schreiber et al. 2007) may, therefore, contribute to tolerance
against both quinolones and aminoglycosides in biofilms as well
as in planktonic cultures (Cozens et al. 1986, Tuomanen et al. 1986,
Evans et al. 1991).

Hyperbaric oxygen treatment
To overcome antibiotic tolerance in biofilms, introducing more O2

may activate aerobic respiration and, thus increase the suscep-
tibility of pathogens to several antibiotics that target metaboli-
cally active bacteria (Fig. 3). The addition of extra O2 by hyper-
baric oxygen treatment (HBOT) can significantly enhance the effi-
cacy of antibiotic treatment in vitro (Mader et al. 1980, Lima et al.
2015, Kolpen et al. 2016) and has been shown to enhance antibi-
otic activity during experimental in vivo biofilm infections (Stew-
art et al. 1999, Kolpen et al. 2016, Özkan et al. 2016). Biofilm infec-
tions that may become susceptible to antibiotics through the use
of oxygenation include endocarditis (Özkan et al. 2016, Lerche et
al. 2017), osteomyelitis (Yu et al. 2011), brain abscesses (Bartek et
al. 2016, Kutlay et al. 2005), and device-related infections (Bartek
et al. 2018). However, the clinical effects of HBOT treatment on
infections are mainly available from pro and retrospective case-
control studies (Thom 2011), whereas randomized, controlled tri-
als are still lacking. Traditionally, the rationale for the use of HBOT,
especially for necrotizing soft tissue infections, is based on retro
and prospective clinical and preclinical data showing a bacterio-
static effect on anaerobic bacterial growth and reduction in the
production of bacterial toxins (Moon 2019). However, recent pre-
clinical data suggest that it is the combination of HBOT with cer-
tain types of antibiotics that contributes to infection control, as
bacteria are subject to metabolic adaptations to the biofilm envi-
ronment in which O2 is involved (Sønderholm et al. 2017, Jensen
et al. 2019b).

The amount of dissolved O2 is proportional to its partial pres-
sure at a specific temperature, according to Henry’s law (Trayhurn

2019). Therefore, the standard therapy of HBOT exploits this phe-
nomenon by increasing the pressure and reducing the volume of
gas-filled spaces according to Boyle’s law (Thom 2011). The state of
hyperoxia obtained using HBOT is a treatment modality, in which
patients breathe 100% O2 at increased atmospheric pressure (ATA)
of up to 2.0–2.8 bar to enhance the amount of O2 dissolved in the
body tissues. During HBOT, arterial O2 tension typically exceeds
2000 mmHg, and levels of 200–400 mmHg occur in tissues (Thom
1989, Choudhury 2018).

Reoxygenation by HBOT in an agarose P. aeruginosa biofilm
model with slow-growing bacterial subpopulations in O2-free
zones leads to increased susceptibility to antibiotics (Kolpen et
al., 2016, 2017, Møller et al. 2019). In combination with tobramycin
treatment, reoxygenation with HBOT enhanced the killing of clin-
ical P. aeruginosa isolates from CF patients grown as biofilm more
than a million times (Møller et al. 2019), while a combination
HBOT and ciprofloxacin treatment enhanced the eradication of P.
aeruginosa biofilm more than 100 times (Kolpen et al., 2016, 2017).
HBOT also reduced the amount of tobramycin needed to achieve
the clinically relevant biofilm bactericidal concentration (BBC) by
more than 50% (Møller et al. 2019).

NO treatment
Another potential treatment of infections involves NO, which is
an effective dispersal agent of bacterial biofilms that can lead
to increased susceptibility to antimicrobials (Barraud et al. 2006).
Here, NO acts as a signaling molecule leading to upregulation
of phosphodiesterases that break down the biofilm promoting
molecule cyclic-di-GMP (Barraud et al. 2009). In a randomized clin-
ical trial, adjunctive NO was shown to decrease P. aeruginosa aggre-
gate sizes in lungs of CF patients and to induce biofilm dispersal
and decreased tolerance toward tobramycin and ceftazidime ex
vivo (Howlin et al. 2017). Furthermore, NO is a potential CF thera-
peutic due to its mucolytic and bactericidal properties (Reighard
et al. 2017, Ahonen et al. 2019), where NO can e.g. be released
by polymers or nanoparticles with superior bactericidal and mu-



8 | FEMS Microbiology Reviews

colytic action (Yepuri et al. 2013, Barraud et al. 2015, Rouillard et
al. 2020).

QS inhibition
Novel antipathogenic strategies beyond the use of antibiotics have
gained considerable attention over the past few decades as alter-
native methods alleviating the increasing challenge from antibi-
otic resistance and tolerance in bacterial infections. Degradation
of signal molecules to change the functionality of the QS system
using enzymes (quorum quenching) and chemical compounds
for inhibiting the functionality of the system (QS inhibitors, or
QSIs) are two ways of targeting bacterial virulence (Fig. 3). Several
studies have identified potent QSIs with highly diverse molecu-
lar structures originating both from natural sources (Jakobsen et
al. 2012a,b, Chatterjee et al. 2017, Cheng et al. 2020) and synthetic
compound libraries (Borlee et al. 2010, de Lima Pimenta et al. 2013,
Starkey et al. 2014). The change from QS-proficient to QS-deficient
P. aeruginosa isolates due to increasing lasR mutants during in-
fection (Jiricny et al. 2014, Cornforth et al. 2018) raises questions
about targeting the QS system for the treatment of chronic infec-
tions in particular. However, the loss of a functional Las system
supports the Rhl and Pseudomonas quinolone signal (PQS) parts of
the QS system as a focus for treatment, maybe especially in the
early infection state. A range of other possible limitations in the
use of QSIs have been identified. For example, low selectivity of
quorum quenching substances could possibly lead to disturbance
of the commensal microbiome and opposing effects on virulence
have been reported, where some species showed increased aggre-
gation (see Krzyżek 2019 for a recent review).

Conclusion
In summary, the structural organization of bacteria in chronic in-
fections and derived microenvironmental consequences for the
pathogens are still not completely resolved, and the involved bac-
teria are not necessarily organized solely as aggregates but also
as single cells (Kolpen et al. 2022). Bacterial biofilm aggregates
are typically small and surrounded by host immune cells (Bjarn-
sholt et al., 2009, 2013, Jensen et al. 2017), and individual ag-
gregates in multispecies infections are mainly composed of sin-
gle species (Burmølle et al. 2010, Kvich et al. 2020). The growth
rates of bacteria in infections are slow due to substrate limita-
tion (Kragh et al. 2014), hypoxic zones are often present (Worl-
itzsch et al. 2002, James et al. 2016), and high doses of antibi-
otics are not able to eradicate all bacteria in such cases (Jensen
et al. 2019a).

It is of paramount importance to improve our understanding
of the infectious microenvironment, which is highly dynamic as
the infection progresses and exhibits distinct changes in both
physico-chemical properties as well as the gene expression pro-
files of both host and microbe. We argue that such information
should be put into context, depending on the scientific question
asked, and adapted for relevant in vitro models. New tools are be-
ing developed to validate in vitro models against the transcrip-
tome of both bacteria and host cells in infections (Cornforth et al.
2020). The use of alternative interventions for biofilm eradication
is still in its infancy compared to conventional antibacterial ther-
apies and clinical trials are missing to get a better understanding
of their efficacy. Further, we suggest that a better simulation of
the infectious microenvironment, combined with relevant in vitro
testing of clinical isolates, is needed for the development of opti-
mized treatment strategies.
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