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Abstract 

IDH1 and IDH2 mutations (IDH1/2Mut) are recognized as recurrent genetic alterations in acute myeloid leukemia (AML) 
and associated with both clinical impact and therapeutic opportunity due to the recent development of specific 
IDH1/2Mut inhibitors. In T-cell acute lymphoblastic leukemia (T-ALL), their incidence and prognostic implications 
remain poorly reported. Our targeted next-generation sequencing approach allowed comprehensive assessment of 
genotype across the entire IDH1 and IDH2 locus in 1085 consecutive unselected and newly diagnosed patients with 
T-ALL and identified 4% of, virtually exclusive (47 of 49 patients), IDH1/2Mut. Mutational patterns of IDH1/2Mut in T-ALL 
present some specific features compared to AML. Whereas IDH2R140Q mutation was frequent in T-ALL (25 of 51 muta‑
tions), the IDH2R172 AML hotspot was absent. IDH2 mutations were associated with older age, an immature pheno‑
type, more frequent RAS gain-of-function mutations and epigenetic regulator loss-of-function alterations (DNMT3A 
and TET2). IDH2 mutations, contrary to IDH1 mutations, appeared to be an independent prognostic factor in multivari‑
ate analysis with the NOTCH1/FBXW7/RAS/PTEN classifier. IDH2Mut were significantly associated with a high cumulative 
incidence of relapse and very dismal outcome, suggesting that IDH2-mutated T-ALL cases should be identified at 
diagnosis in order to benefit from therapeutic intensification and/or specific IDH2 inhibitors.
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Introduction
T-cell acute lymphoblastic leukemia (T-ALL) is aggres-
sive neoplasms resulting from the proliferation of 
T-lymphoid progenitors blocked at thymic stages of dif-
ferentiation and account for 15% and 25% of pediatric 
and adult ALLs, respectively [1]. T-ALL is associated 
with a wide range of acquired genetic abnormalities that 
contribute to developmental arrest and abnormal pro-
liferation [2]. Although intensive treatment protocols 

have markedly improved the outcomes of children with 
T-ALL, cure rates remain below 60% for adults and 85% 
for children [3–5]. The prognosis is particularly poor in 
relapsing patients, justifying the development of novel 
targeted therapies [6, 7]. For example, alterations affect-
ing epigenetic factors may offer novel targeted therapeu-
tic approaches in high-risk T-ALL [8].

Whole-genome sequencing of AML identified acquired 
mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) 
[9]. These paralogous genes encode two enzymes with 
distinct localizations (cytoplasmic for IDH1 and mito-
chondrial for IDH2). Both catabolize the conversion 
of isocitrate to α-ketoglutarate (α-KG). Gain-of-func-
tion IDH1/2 mutations (IDH1/2Mut) confer a neomor-
phic activity on the encoded enzymes, leading to the 
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conversion of α-KG to 2-hydroglutatarate (2-HG) in a 
NAD phosphate-dependent manner [10]. Accumulation 
of the oncometabolite 2-HG induces multiple cellular 
alterations, including chromatin methylation and cellular 
differentiation, by inhibiting α-KG-dependent enzymes 
related to DNA methylation, such as Tet oncogene fam-
ily members (TET2, TET3) [11]. IDH1/2Mut have been 
reported in 10 to 20% of AML cases, when they are 
predominantly located in the active site of the enzyme 
(IDH1R132, IDH2R140Q and IDH2R172). IDH1/2Mut in AML 
are associated with prognostic impact influenced by the 
genetic context [12, 13]. Importantly, specific drugs tar-
geting mutant IDH1 or IDH2 have recently shown prom-
ise in IDH1/2Mut refractory or relapsed AML patients [14, 
15].

In T-ALL, IDH1/2Mut have been partially explored and 
their prognostic impact poorly reported [16, 17]. We now 
provide the first comprehensive analysis and oncoge-
netic landscape of IDH1/2Mut in a cohort of 1085 T-ALL 
patients, when the nearly 4% of IDH1/2Mut are associ-
ated with extremely poor prognosis, specifically in IDH2-
mutated cases.

Methods
Patient’s protocol and clinical trials
Diagnostic peripheral blood or bone marrow samples 
from 1085 adults and children with T-ALL were ana-
lyzed after informed consent was obtained at diagno-
sis according to the Declaration of Helsinki. Among 
the 1085  T-ALL analyzed, 215 adult patients aged from 
16–59  years were included in the GRAALL03/05 trials 
(details provide in supplementary) which were registered 
at clinicaltrials.gov (GRAALL-2003, #NCT00222027; 
GRAALL-2005, #NCT00327678). and 261 pediat-
ric patients aged from 1 to 19  years were treated in 10 
French pediatric hematology departments, members 
of the FRALLE study group, according to the FRALLE 
2000  T guidelines (Additional file  2: Fig. S5 and Addi-
tional file 1: Table S3).

Gene mutation screening
A custom capture Nextera XT gene panel (Illumina, 
San Diego, CA) targeting all coding exons and their 
adjacent splice junctions of 80 genes was designed, 
based on available evidence in hematological neo-
plasms (Additional file  1: Table  S1). DNA Libraries 
were prepared using Nextera Rapid Capture Enrich-
ment protocol and underwent 2 × 150  bp paired-end 
sequencing on Illumina MiSeq sequencing system with 
MiSeq Reagent Kit v2 (Illumina). Briefly, sequence 
reads were filtered and mapped to the human genome 
(GRCh37/hg19) using in-house software (Polyweb, 
Institut Imagine, Paris). Annotated variants were 

selected after filtering out calls according to the fol-
lowing criteria: (1) coverage < 30×, < 10 alternative 
reads or variant allelic fraction (VAF) < 7%; (2) poly-
morphisms described in dbSNP, 1000Genomes, EVS, 
Gnomad and EXAC with a calculated mean population 
frequency > 0.1%. Non-filtered variants were annotated 
using somatic database COSMIC (version 78) and 
ProteinPaint (St Jude Children’s Research Hospital – 
Pediatric Cancer data portal). Lollipop plots were gen-
erated with ProteinPaint (https://​pecan.​stjude.​org/#/​
prote​inpai​nt).

Immunophenotypic and molecular characterization 
of T‑ALL samples
Peripheral blood or bone marrow T-ALL samples were 
analyzed for immunophenotype, fusion transcripts (SIL-
TAL1, CALM-AF10), oncogenic transcripts (HOXA9, 
TLX1 and TLX3) and T-cell receptor (TCR) recombina-
tion and NOTCH1/FBXW7/RAS/PTEN mutations, as 
previously described [4, 18, 19].

Minimal residual disease assessment
Immunoglobulin/T-cell receptor (Ig/TCR) gene rear-
rangement-based Minimal Residual Disease (MRD) eval-
uation was centrally assessed for patients who reached 
complete remission after the first induction cycle, on 
BM samples after induction (MRD1). MRD was centrally 
assessed by real-time quantitative allele-specific oligo-
nucleotide PCR and interpreted according to EuroMRD 
group guidelines [20–22].

Statistical analysis
Comparisons for categorical and continues variables 
between IDH1Mut or IDH2Mut and IDHWT subgroups 
were performed with Fisher’s exact test and Mann–Whit-
ney test, respectively. Overall survival (OS) was calcu-
lated from the date of diagnosis to the last follow-up date 
censoring patients alive. The cumulative incidence of 
relapse (CIR) was calculated from the complete remis-
sion date to the date of relapse censoring patients alive 
without relapse at the last follow-up date. Relapse and 
death in complete remission were considered as competi-
tive events. Univariate and multivariate analyses assess-
ing the impact of categorical and continuous variables 
were performed with a Cox model. Proportional-hazards 
assumption was checked before conducting multivariate 
analyses. In univariate and multivariate analyses, age and 
log10(WBC) were considered as continuous variables. 
All analyses were stratified on the trial. Variables with a 
p value less than 0.1 in univariate analysis were included 
in the multivariable models. Statistical analyses were per-
formed with STATA software (STATA 12.0 Corporation, 
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College Station, TX). All p-values were two-sided, with 
p < 0.05 denoting statistical significance. Circos plots 
were generated using R software.

Results and discussion
Incidence of IDH1 and IDH2 mutations in 1085 T‑ALL
A total of 51 (4%) mutations, mainly clonal, in either 
IDH1 or IDH2 were apparent in 49 cases (Fig.  1a and 
Additional file  1: Table  S2, Additional file  2: Figs. S2, 

b

a
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Fig. 1  IDH1 and IDH2 mutations in the GRAALL03/05 and FRALLE2000 studies. a Lollipop plots indicating the observed mutations for each 
IDH gene and their consequences. b Oncoplot depicting the genetic anomalies observed in IDH1/2-Mutated or Wild type T-ALL cases of the 
GRAALL03/05 and FRALLE2000 studies. Genes are classified by functional groups. The right panel indicates the overall frequency of alterations per 
gene. c The circos plots depict the co-occurrences in genetic lesions observed in IDH1 (left panel) and IDH2 mutated T-ALL (right panel). d Clinical 
impact of IDH1 and IDH2 mutations in the GRAALL0305 and FRALLE2000 studies. Overall survival (left panel) and cumulative incidence of relapse 
(right panel). The red curve represents the IDH2-mutated patients, the green curve the IDH1-mutated patients and the black curve the IDHWt 
patients



Page 4 of 7Simonin et al. J Hematol Oncol           (2021) 14:74 

S3). IDH1 mutations were identified in 19  T-ALL cases 
(2%) and IDH2 mutations in 32 cases (3%). IDH1/2Mut 
were mutually exclusive except in 2 cases. The IDH2R140Q 
mutation was the most prevalent mutation affecting 
IDH2 (n = 25, 78%). We identified 7 IDH1 mutations 
located in the R132 hotspot (37% of IDH1 mutations), 
3 cases with IDH1R132C mutation, 2 with IDH1R132S, 1 
with IDH1R132H and IDH1R132G mutation. The most com-
mon IDH2 mutations in AML occur at R140 followed 
by residue IDH2R172. The latter mutation is virtually the 
only IDH mutation found in angio-immunoblastic T cell 
lymphoma, reported in about 30% of cases (Additional 
file  2: Fig. S1) [23]. IDH2R172 mutation has also been 
rarely and inconsistently described in peripheral T-cell 
lymphoma not otherwise specified (NOS) with T-fol-
licular helper (TFH) phenotype [24, 25]. In striking con-
trast, IDH2R172 was not reported in our series of T-ALL. 
IDH1R132, the most frequent IDH1 mutation reported in 
our cohort, has recently been recognized to cooperate 
with NOTCH1 activation in a T-ALL mouse model [26]. 
These results highlight the specific consequence associ-
ated with IDH1/2Mut subtype during immature T-cell 
development.

Clinico‑biological characteristics of IDH1/2Mut in GRAALL 
and FRALLE‑treated T‑ALLs
We then investigated the clinical characteristics linked to 
IDH1/2Mut in a subset of 476 patients, including 215 adults 
enrolled in the GRAALL-2003/2005 trials and 261 chil-
dren enrolled in the FRALLE-2000 trial (Table 1 and Sup-
plemental Methods). The incidence of IDH1/2Mut in this 
cohort was 3% (15/476). IDH1 mutations were detected in 
5 patients (4 adult and 1 pediatric case), and IDH2 muta-
tions were identified in 10 (6 adult and 4 pediatric cases) 
(Additional file  2: Fig. S2). IDH2R140Q was the most fre-
quent mutation (n = 7, 70%) and was most prevalent in 
adults’ patients (n = 6/7, 86%). Overall, IDH1/2Mut were 
observed in 5% of adults and 2% of children (p = 0.1).

IDH1 and IDH2 mutations are associated with both specific 
clinical and mutational profiles
Patients with IDH2Mut were significantly older than 
IDHWT (median 47.6  years vs 15.0, p = 0.01). IDH2Mut 
were associated with an immature immunophenotype 
(5/7, 71% vs 83/407, 20%, p = 0.006) and ETP-pheno-
type (3/5, 60% vs 52/298, 17%, p = 0.04). In line with 
this, IDH2Mut correlated positively with abnormalities 
known to be associated with an immature phenotype, 
including RAS (50% vs 11%, p = 0.02), ETV6 (40% vs 3%, 
p < 0.01), DNMT3A (70% vs 3%, p < 0.01), IKZF1 (20% vs 
2%, p = 0.02) and TET2 (20% vs 2%, p = 0.04) mutations 
(Fig.  1b, c). IDH2Mut were mutually exclusive with SIL-
TAL1 + cases, associated with a mature TCRαβ lineage. 

Interestingly, contrary to IDH2-mutated cases, IDH1Mut 
did not statistically differ from IDHWT patient regarding 
age, immunophenotype or mutational co-occurrence.

IDH2 mutations, but not IDH1, are associated with a poor 
prognosis in T‑ALL
To investigate the prognostic value of IDH1/2Mut, sur-
vival analyses were performed on the 476 patient cohort. 
IDH1/2Mut cases did not differ significantly with regard 
to sex, white blood cell count (WBC) or central nerv-
ous system (CNS) involvement (Table1). Despite an ini-
tial good treatment response (IDH2Mut cases achieved 
90% complete remission rate and IDH2Mut did not con-
fer increased poor prednisone response), patients with 
IDH2Mut had an inferior outcome compared to IDH2Wt 
(Table1, Fig.  1d, Additional file  2: Fig. S4), with an 
increased cumulative incidence of relapse (CIR) (4y-CIR: 
78% vs 29%; specific hazard ratio (SHR) 4.3, 95%CI (2.0–
9.2); p < 0.001) and a shorter overall survival (OS) (4y-OS: 
30% vs 71%; hazard ratio: 3.6, 95%CI (1.7–7.7); p = 0.001). 
In multivariate analysis considering variables associated 
with CIR and OS in univariate analyses as covariates, 
IDH2Mut predicted a trend for lower OS (HR: 1.98, 95%CI 
(0.86–4.57); p = 0.11) and statistically higher CIR (SHR, 
4.06, 95%CI (1.84–8.96), p = 0.001) even after adjustment 
on the 4-gene NOTCH1/FBXW7/RAS/PTEN (NFRP) 
classifier which identified poor prognosis patients in both 
GRAALL and FRALLE trials [3, 4]. Conversely to IDH-
2Mut, IDH1Mut was not associated with poor prognos-
tic impact in T-ALL (4y-CIR: 25% vs 29%, p = 0.75 and 
4y-OS: 80% vs 71%, p = 0.61).

We provide the largest comprehensive analysis of IDH1 
and IDH2 mutations in T-ALL and highlight for the first 
time both their clinical profile and, most importantly, the 
extremely poor prognosis impact associated with IDH-
2Mut. We describe the specific oncogenetic landscape of 
IDH1/2Mut and interestingly report that IDH2Mut T-ALL 
conversely to IDH1Mut were associated with an immature 
phenotype and alterations such as RAS mutations, tran-
scription factors alterations (ETV6, IKZF1) and epige-
netic regulators alterations (TET2, DNMT3A).

Recent studies have shed light on new prognostic fac-
tor in T-ALL allowing sharper prediction of the risk 
of relapse (e.g., NFRP classifier, level of MRD1, IKZF1 
alterations) [3, 4, 27]. Despite this, a significant number 
of T-ALL relapses remain unpredicted, so new predictive 
markers are needed, given the extremely poor prognosis 
associated with T-ALL relapse. We therefore consider 
that IDH2Mut T-ALL cases should be identified at diag-
nosis to benefit from therapeutic intensification and/or 
specific IDH2Mut inhibitors [15].
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Table 1  Clinico-biological and outcome characteristics of adult and pediatric T-ALL (GRAALL and FRALLE protocols) according to 
IDH1/2 status

p-values < 0.05 are indicated in bold

MRD1 correspond to MRD evaluation after induction and was performed by allele-specific oligonucleotides polymerase chain reaction. T-cell receptor status and 
oncogenic were performed as described in supplemental methods. IDH1Mut and IDH2Mut were statistically compared to IDH1WT and IDH2WT patients, respectively

T-ALL: T-cell acute lymphoblastic leukemia; WBC, white blood count; CNS, central nervous system; ETP, early thymic precursor; High Risk classifier, NOTCH1/FBXW7-RAS/
PTEN classifier as previously described [3, 4]; CR, complete remission; MRD, minimal residual disease; Allo-HSCT, allogenic hematopoietic stem cell transplantation; CIR, 
cumulative incidence of relapse; OS, overall survival; HR: hazard ratio, SHR: specific hazard ratio, CI: confidence interval
1 Statistics presented: Median (Minimum–Maximum)
2 Statistical tests performed: Fisher’s exact test; Wilcoxon rank-sum test
3 Univariate and multivariate Cox analyses stratified on protocol

Variable IDH2Mut (n = 10) p value2 Overall (n = 476) p value2 IDH1Mut (n = 5)

Male 7/10 (70%) 0.72 357/476 (75%) 0.34 5/5 (100%)

Age (y)1 47.6 (3.6–59.1) 0.01 15.3 (1.1–59.1) 0.26 21.6 (5.4–56.5)

WBC (G/L)1 9 (1–400) 0.01 64 (0–980) 0.60 80 (4–110)

CNS involvement 1/10 (10%) 0.99 51/474 (11%) 0.99 0/5 (0%)

Immunophenotype

ETP phenotype 3/5 (60%) 0.04 56/307 (18%) 0.54 1/4 (25%)

Immature (IM0/δ/γ) 5/7 (71%) 0.006 89/419 (21%) 0.99 1/5 (20%)

Cortical (IMB, preαβ) 0/7 (0%) 0.007 211/419 (50%) 0.68 2/5 (40%)

Mature TCRαβ 1/7 (14%) 0.99 66/419 (16%) 0.99 0/5 (0%)

Mature TCRγδ 1/7 (14%) 0.99 53/419 (13%) 0.12 2/5 (40%)

Oncogenetic classification

TLX1 0/8 (0%) 0.60 54/415 (13%) 0.99 0/5 (0%)

TLX3 1/8 (12%) 0.99 72/415 (17%) 0.21 2/5 (40%)

SIL-TAL1 0/8 (0%) 0.61 57/415 (14%) 0.99 0/5 (0%)

CALM-AF10 0/8 (0%) 0.99 13/415 (3%) 0.99 0/5 (0%)

High-risk classifier 8/10 (80%) 0.03 209/476 (44%) 0.99 2/5 (40%)

Treatment response

Rapid prednisone response 3/10 (30%) 0.12 259/467 (55%) 0.66 2/5 (40%)

Complete Remission 9/10 (90%) 0.54 440/476 (92%) 0.32 4/5 (80%)

MRD1 > 10–4 1/1 (100%) 0.36 123/340 (36%) 0.99 1/4 (25%)

Allo-HSCT 2/10 (20%) 0.99 101/456 (22%) 0.99 1/5 (20%)

Outcome

4-year CIR (95% CI) 78% (49;97)  < 0.0013 29% (25;33) 0.753 25% (4;87)

4-year OS (95% CI) 30% (7;58) 0.0013 71% (67;75) 0.613 80% (20;97)

Univariate and multivariate analysis3

Univariate Multivariate

CIR SHR 95%CI p SHR 95%CI p

Age 1.01 (0.98; 1.03) 0.57 - - -

CNS 1.57 (0.85; 2.59) 0.08 1.33 (0.80; 2.20) 0.28

Log(WBC) 1.62 (1.2; 2.18) 0.002 1.63 (1.20; 2.22) 0.002

Prednisone response 0.67 (0.47; 0.95) 0.03 1.00 (0.68; 1.46) 0.99

High-risk Classifier 2.78 (1.94; 3.99)  < 0.001 2.62 (1.81; 3.79)  < 0.001

IDH2Mut 4.28 (1.99; 9.23)  < 0.001 4.06 (1.84; 8.96) 0.001

OS HR 95%CI p HR 95%CI p

Age 1.03 (1.01; 1.05) 0.001 1.04 (1.02; 1.07)  < 0.001

CNS 2.00 (1.28; 3.14) 0.002 1.67 (1.02; 1.07) 0.03

Log(WBC) 1.99 (1.48; 2.67)  < 0.001 2.00 (1.46; 2.76)  < 0.001

Prednisone response 0.54 (0.38; 0.76)  < 0.001 0.85 (0.59; 1.24) 0.41

High-risk Classifier 2.93 (2.06; 4.17)  < 0.001 2.90 (2.00; 4.19)  < 0.001

IDH2Mut 3.56 (1.66; 7.65) 0.001 1.98 (0.86; 4.57) 0.11
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