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Macrophages undergo profound physiological alterations when they encounter 
pathogen-associated molecular patterns (PAMPs). These alterations can result in the 
elaboration of cytokines and mediators that promote immune responses and contribute 
to the clearance of pathogens. These innate immune responses by myeloid cells are 
transient. The termination of these secretory responses is not due to the dilution of 
stimuli, but rather to the active downregulation of innate responses induced by the 
very PAMPs that initiated them. Here, we describe a purinergic autoregulatory program 
whereby TLR-stimulated macrophages control their activation state. In this program, 
TLR-stimulated macrophages undergo metabolic alterations that result in the production 
of ATP and its release through membrane pannexin channels. This purine nucleotide is 
rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and 
CD73. Adenosine then signals through the P1 class of seven transmembrane receptors 
to induce a regulatory state that is characterized by the downregulation of inflammatory 
cytokines and the production of anti-inflammatory cytokines and growth factors. This 
purinergic autoregulatory system mitigates the collateral damage that would be caused 
by the prolonged activation of macrophages and rather allows the macrophage to 
maintain homeostasis. The transient activation of macrophages can be prolonged by 
treating macrophages with IFN-γ. IFN-γ-treated macrophages become less sensitive to 
the regulatory effects of adenosine, allowing them to sustain macrophage activation for 
the duration of an adaptive immune response.
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iNTRODUCTiON

The central role that macrophages play in host defense has been well described and thoroughly 
studied. These remarkable cells can change their physiology in response to diverse environmental 
stimuli and become potent antimicrobial effectors. This property has been loosely called an “activa-
tion” response, and the receptors that induce this response are generally called pattern recognition 
receptors (PRRs) (1). More recently, the role of macrophages in mitigating inflammatory responses 
and contributing to the resolution of inflammation has become an area of intense study (2, 3). It 
is clear that the very cell type that could be a potent inducer of inflammatory pathology could be 
equally effective at reversing this pathology. The remarkable plasticity of macrophages allows this 
cell to be a primary mediator of homeostasis in the host (4, 5).

Given the remarkable differences in the physiologies of the various macrophage subsets, 
efforts are underway to characterize each. These characterizations would theoretically allow the 
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identification of each macrophage subtype in tissue during 
immunity or immunopathology. However, studies to identify 
definitive biochemical differences between inflammatory M1 
macrophages and anti-inflammatory regulatory macrophages 
(R-Mϕ) have been surprisingly underdeveloped. The in  vitro 
transcriptional responses of the so-called M1 macrophages fol-
lowing their exposure to a variety of TLR ligands, such as LPS or 
to bacteria themselves, have been reported (6–11). These studies 
have begun to reveal the molecules that macrophages express and 
the products they secrete in response to inflammatory stimuli. 
However, most of these studies lack a careful kinetic analysis of 
transcriptional responses over time. Therefore, we are left with 
“snap-shots” of transcriptional responses to stimuli, rather than 
a motion picture of the sequential transcriptional program these 
stimuli induce. The transcriptional responses of anti-inflamma-
tory macrophages have also been described (12, 13), but again 
these studies generally selected only a single time to analyze 
macrophage transcripts. In this review, we propose that one of 
the difficulties in identifying definitive biochemical differences 
between the various macrophage cell populations is due to the 
transient nature of the inflammatory response of macrophages to 
stimuli and the compensatory regulatory changes that accompany 
this activation. We describe an intrinsic program where the meta-
bolic alterations that allow for the production of inflammatory 
cytokines and mediators are the very alterations that give rise to 
the anti-inflammatory macrophage phenotype. This autoregula-
tory response depends on the generation of endogenous ATP by 
macrophages, which initiates a purinergic signaling cascade to 
terminate the inflammatory response to innate stimuli, result-
ing in a transient state of activation. Therefore, the time when 
one measures the transcriptional responses of macrophages to 
TLR stimuli is critical. We also propose that this transient state 
of macrophage stimulation can be prolonged and accentuated 
in individuals undergoing cell-mediated immune responses. 
This is due to a novel activity of IFN-γ, which interferes with 
the stimulus-dependent upregulation of adenosine receptors to 
block purinergic autoregulatory responses. In this way, IFN-γ 
prevents the transition to a regulatory macrophage and prolongs 
the activation response.

MeTABOLiC ALTeRATiONS iNDUCeD BY 
THe LiGATiON OF MACROPHAGe 
PATTeRN ReCOGNiTiON ReCePTORS

When macrophages encounter pathogen-associated molecular 
patterns (PAMPs) or damage-associated molecular patterns 
(DAMPs) they undergo dramatic changes in their metabolism 
and increase their rate of aerobic glycolysis. An increase in glucose 
uptake by these cells results in an accumulation of lactate in M1 
macrophages (12). In contrast to M1 macrophages stimulated by 
PAMPs, alternatively activated macrophages exposed to IL-4 or 
IL-13 undergo oxidative phosphorylation and electron transport. 
The metabolic alterations associated with M1 macrophage polari-
zation are believed to provide short-term, immediate access to 
energy for innate immune functions, whereas alternative activa-
tion is thought to provide a more stable long-term metabolism to 

support prolonged processes associated with wound healing (14). 
Recent work suggests that these metabolic alterations not only 
accompany differential activation but also promote the polarized 
responses of M1 and M2 macrophages (15). The rapid alterations 
in metabolism that M1 macrophages undergo are thought to 
allow these cells to produce the cytokines and mediators asso-
ciated with host defense [reviewed in Ref. (14)]. However, the 
increase in glycolysis by M1 macrophages results in an increase in 
the production of intracellular ATP by stimulated macrophages. 
A portion of cytosolic ATP generated by M1 macrophages is 
released into the extracellular milieu via pannexin-1 channels. 
The addition of inhibitors of either glycolysis or pannexin chan-
nels prevents ATP release from macrophages (16). This released 
ATP is rapidly captured and catabolized to adenosine by M1 
macrophages, allowing them to transition from an inflammatory 
to a regulatory phenotype. Thus, the very metabolic alterations 
that allow M1 macrophages to promote immune responses can 
also prevent these cells from causing immunopathology.

THe MACROPHAGe eCTOeNZYMeS, 
CD39 AND CD73

Purinergic signaling molecules released as a result of metabolic 
alterations, cell death, or tissue damage can have profound effects 
on macrophage activation. ATP concentrations in human plasma 
are typically in the nanomolar range (17) but can rise to the 
micromolar range under inflammatory conditions (18). ATP is 
constitutively released from resting parenchymal cells, and the 
levels are intrinsic to the tissue in which the cells reside (19). ATP 
release from resting macrophages is quite low, but this release is 
substantially increased upon TLR stimulation (16). The ATP that 
is released by macrophages is catabolized by macrophages in a 
coordinated two-step process. First, ATP is hydrolyzed to AMP 
by the macrophage surface ectoenzyme CD39 (E-NTPDase1) in 
a Ca2+- and Mg2+-dependent manner (20). AMP is then rapidly 
converted to adenosine by the surface Ecto5′NTase, CD73 (21). 
The expression of these two enzymes by macrophages can there-
fore determine the concentration of adenosine in the extracellular 
milieu immediately surrounding the macrophage.

CD39 and CD73 expression on macrophages can change 
depending on the macrophage activation state. In hypoxic 
conditions, CD39 and CD73 function is enhanced approximately 
sixfold (22), whereas prolonged cultivation of macrophages in 
complete medium appears to downregulate CD73 expression. 
CD39 is more highly expressed than CD73 on bone marrow 
derived macrophages, and this expression pattern remains 
relatively constant after a brief exposure of these cells to LPS. M1 
macrophages have been reported to exhibit a modest decrease 
in the expression of both CD39 and CD73 (23), while M2 mac-
rophages express higher levels of both (23). These results suggest 
that macrophages may regulate the catabolism of ATP in order to 
modulate their inflammatory profile. It has also been shown that 
CD39 is transcriptionally regulated by the cAMP/CREB second 
messenger pathway that can be induced following GPCR ligation 
(24, 25). This suggests a positive feedback loop where adenosine 
signaling upregulates CD39 to generate more adenosine. Overall, 
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this work suggests that the increased expression of either/both of 
these cell surface enzymes can result in an amplification of the 
purinergic signaling pathway in macrophages.

We recently demonstrated that the addition of exogenous 
adenosine or ATP to macrophages can induce these cells to 
assume an anti-inflammatory phenotype (16) characterized 
by a decreased production of inflammatory cytokines and an 
increased expression of angiogenic factors and anti-inflammatory 
cytokines (12). We further demonstrated that the hydrolysis of 
self-released (endogenous) ATP via macrophage CD39 allows 
that cell to transition from an inflammatory to an immunoregula-
tory state (16). Macrophages derived from CD39 knockout bone 
marrow fail to catabolize ATP following LPS stimulation. As a 
result, the production of inflammatory cytokines is sustained for 
up to 24 h poststimulation, whereas wild-type macrophages stop 
synthesizing these cytokines after a few hours (16). Similarly, the 
pharmacological inhibition of CD39 activity, using the chemical 
inhibitor POM-1, made macrophages hyperinflammatory with 
increased TNF and IL-12p40 production over the course of at 
least 16 h (16). It appears that of the two ectoenzymes involved in 
ATP hydrolysis, CD39 has more profound effects than CD73, pre-
sumably because the conversion of AMP to adenosine can occur 
in the absence of CD73. It was recently demonstrated that an 
inhibitor of CD73 did not have a substantial role in macrophage 
polarization (26).

The ability of macrophages to transition to an immunoregu-
latory state is key in controlling pathology in an LPS model of 
endotoxemia. Our lab results and others have shown that CD39 
on myeloid cells can decrease mortality in mouse models of sepsis 
(16, 27), and that the addition of CD39 knockout macrophages 
can increase mortality in this model (16). CD73 has also been 
demonstrated to be protective in mouse models of sepsis (28).

THe ReCePTORS FOR ADeNOSiNe

Macrophages respond to adenosine via four transmembrane 
G-protein-coupled receptors: A1R, A2aR, adenosine 2b receptor 
(A2bR), and A3R (29). The A1 and A3 receptors are coupled 
to the Gi family of proteins resulting in decreased cAMP upon 
stimulation. A2a receptors are high affinity Gαs-coupled recep-
tors that increase intracellular cAMP (30, 31). Similarly, the 
low-affinity A2b receptors can signal through Gαs or Gq proteins, 
also resulting in increased cAMP (30, 32). When coupled to TLR 
stimulation, adenosine promotes the transition from an inflam-
matory to a regulatory macrophage (4). Adenosine is known to 
be immunosuppressive in macrophages as adenosine treatment 
leads to increased IL-10 production and decreased TNF and 
IL-12 production (16). We recently performed high-throughput 
RNA sequencing on macrophages stimulated with LPS in the 
presence or absence of adenosine. Macrophages stimulated with 
LPS in the presence of adenosine upregulated 501 transcripts 
relative to LPS alone and downregulated 610 transcripts. Many 
of the genes that were upregulated were involved in cell growth 
and neovascularization, whereas genes involved in inflammation 
were most potently downregulated by the presence of adenosine 
(12, 13). Adenosine signaling through its Gαs-coupled receptors 
also leads to increased IL-10 production via posttranscriptional 

mechanisms (33). Adenosine is thought to inhibit the production 
of the inflammatory cytokine TNF by signaling through both the 
A2a and A2b receptors (34).

Although signaling through these GPCRs modulates levels of 
cAMP within cells, the role of the cAMP/PKA pathway in the 
regulation of inflammatory cytokines by adenosine receptor 
signaling remains somewhat unclear. One group has indicated 
that the decrease in macrophage TNF production after exposure 
to adenosine is due to a cAMP/PKA-independent pathway, which 
likely involves phosphatases (35). However, others have shown 
that cAMP/PKA levels are inversely correlated with TNF pro-
duction (36). Thus, it is possible that while cAMP itself, mainly 
investigated in the form of 8-bromo-cAMP, can downregulate 
TNF production in macrophages, adenosine may also work by 
additional mechanisms that have not yet been fully defined. It 
was shown that the A2bR interacts with NF-κB in order to inhibit 
it, and that A2bR knockout macrophages secrete less IL-10 and 
more IL-12 and TNF (37).

The adenosine receptors have been implicated in the pathol-
ogy of a variety of diseases. These receptors are widely expressed 
in the brain, heart, spleen, muscle, and lung (38, 39). In fact, 
their widespread expression is one of the challenges of develop-
ing therapeutics targeting the receptors with specificity. Studies 
have implicated a role for both A2aR and A2bR in diabetes as 
they are involved in gluconeogenesis and glucose homeostasis 
as a result of increased cAMP (40–42). There is also therapeutic 
anti-inflammatory potential for A2aR agonists in ischemia reper-
fusion injury (43). In atherosclerosis, A2aR and A2bR both play 
a role in reducing foam cell formation, which is a feature of this 
disease (44, 45). However, it has been shown that the lack of A2aR 
has a protective effect in a mouse model of hypercholesterolemia 
because macrophages remain inflammatory and are able to 
reduce atherosclerotic lesions (46). Adenosine receptors also play 
a role in wound healing and contribute to cytokine production 
by macrophages of patients with chronic obstructive pulmonary 
disease (29, 47).

iFN-γ AND THe PROLONGATiON OF THe 
MACROPHAGe ACTivATiON ReSPONSe

Priming macrophages with IFN-γ prior to TLR stimulation 
results in profound changes in their physiology and dramatically 
accentuates their inflammatory responses (48, 49). Macrophages 
exposed to IFN-γ not only make greater amounts of inflamma-
tory cytokines but also produce them for prolonged periods of 
time (50). In this way, IFN-γ prolongs the activation response 
to promote host defense against intracellular pathogens (51). 
The activation of macrophages, however, comes at a cost. 
Inflammatory macrophages exhibiting an “IFN signature” are 
observed in rheumatoid arthritis, multiple sclerosis, and many 
other autoimmune diseases, indicating that IFN-γ contributes 
to autoimmune pathogenesis by promoting chronic macrophage 
activation (52, 53). Although the ability of IFN-γ to enhance the 
inflammatory potential of TLR-activated macrophages is a well-
known phenomenon, the mechanism(s) whereby IFN-γ affects 
the intrinsic regulation of macrophage activation remain to be 
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determined. We recently identified a novel mechanism whereby 
IFN-γ sustains macrophage inflammatory responses, by attenuat-
ing their sensitivity to extracellular adenosine (50).

Following TLR stimulation, macrophages dramatically upreg-
ulate their expression of receptors for adenosine. The A2bR, in 
particular, is upregulated more than 20-fold in response to virtu-
ally any of the TLR ligands (50). The molecular mechanism(s) of 
A2bR upregulation remain to be determined, but the upregula-
tion of adenosine receptors in response to TLR stimulation 
enhances macrophage sensitivity to adenosine and leads to the 
induction of the immunoregulatory phenotype. IFN-γ priming 
of macrophages signals through STAT1 to prevent adenosine 
receptor induction. This decreases macrophage sensitivity to 
adenosine and delays the transition of macrophages to a regula-
tory phenotype. This prolongs the production of inflammatory 
cytokines such as TNFα and IL-12. Thus, we propose a novel 
mechanism whereby IFN-γ contributes to host defense, by 
desensitizing macrophages to the immunoregulatory effects of 
adenosine. This mechanism overcomes the transient nature of 
TLR activation and prolongs the antimicrobial state of the classi-
cally activated macrophage.

SUMMARY

We describe a purinergic-based autoregulatory program that 
terminates inflammatory responses of TLR-stimulated (M1) 
macrophages. When macrophages are so stimulated, they 
undergo metabolic alterations that result in ATP generation and 
release through pannexin channels. Extracellular ATP is rapidly 

hydrolyzed to adenosine by CD39 and CD73, two ectoenzymes on 
the macrophage surface. Adenosine generated in this way binds to 
macrophage adenosine receptors to initiate a signaling pathway 
that terminates the synthesis of many inflammatory cytokines 
and induces the synthesis of regulatory transcripts (Figure 1). In 
this way, the overexuberant activation of macrophages is avoided. 
We propose that this program is in place to prevent the pathologi-
cal consequences associated with chronic macrophage activation. 
We suggest that there are many ways to exploit this program to 
manipulate the phenotype of macrophages. The overexpression 
of CD39 and CD73 would be predicted to accelerate adenosine 
production by macrophages and promote a rapid regulatory 
transition. Drugs to prevent ectoenzyme downregulation 
may represent a new class of anti-inflammatory therapeutics. 
Similarly, drugs to induce adenosine receptor upregulation or 
prevent their downregulation may be developed as a way to inter-
rupt macrophage-mediated inflammation. Conversely, targeting 
macrophage CD39 would be predicted to prevent this regulatory 
transition and promote the more efficient killing of intracellular 
pathogens by macrophages.
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FiGURe 1 | Purinergic autoregulatory signaling in macrophages. Intracellular ATP, generated in response to pathogen-associated molecular patterns 
(PAMPS), is released from macrophages and converted to adenosine by the concerted action of CD39 and CD73. Adenosine signals through seven transmembrane 
receptors to terminate the production of inflammatory cytokines and to promote the production of IL-10 and growth factors (54).

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


March 2016 | Volume 7 | Article 745

Hamidzadeh and Mosser Adenosine Signaling in Macrophages

Frontiers in Immunology | www.frontiersin.org

ReFeReNCeS

1. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 
(2002) 20(1):197–216. doi:10.1146/annurev.immunol.20.083001.084359 

2. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the 
end. Nat Immunol (2005) 6(12):1191–7. doi:10.1038/ni1276 

3. Lawrence T, Willoughby DA, Gilroy DW. Anti-inflammatory lipid mediators 
and insights into the resolution of inflammation. Nat Rev Immunol (2002) 
2(10):787–95. doi:10.1038/nri915 

4. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activa-
tion. Nat Rev Immunol (2008) 8(12):958–69. doi:10.1038/nri2448 

5. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeo-
stasis and disease. Nature (2013) 496(7446):445–55. doi:10.1038/nature12034 

6. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: 
enabling diversity with identity. Nat Rev Immunol (2011) 11(11):750–61. 
doi:10.1038/nri3088 

7. Nilsson R, Bajic VB, Suzuki H, di Bernardo D, Björkegren J, Katayama S, 
et al. Transcriptional network dynamics in macrophage activation. Genomics 
(2006) 88(2):133–42. doi:10.1016/j.ygeno.2006.03.022 

8. Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, et al. 
High-resolution transcriptome of human macrophages. PLoS One (2012) 
7(9):e45466. doi:10.1371/journal.pone.0045466 

9. Price CTD, Abu Kwaik Y. The transcriptome of Legionella pneumophi-
la-infected human monocyte-derived macrophages. PLoS One (2014) 
9(12):e114914. doi:10.1371/journal.pone.0114914 

10. Bent ZW, Poorey K, Brazel DM, LaBauve AE, Sinha A, Curtis DJ, et  al. 
Transcriptomic analysis of Yersinia enterocolitica biovar 1B infecting murine 
macrophages reveals new mechanisms of extracellular and intracellular 
survival. Infect Immun (2015) 83(7):2672–85. doi:10.1128/IAI.02922-14 

11. Mavromatis CH, Bokil NJ, Totsika M, Kakkanat A, Schaale K, Cannistraci 
CV, et  al. The co-transcriptome of uropathogenic Escherichia coli-infected 
mouse macrophages reveals new insights into host-pathogen interactions. 
Cell Microbiol (2015) 17(5):730–46. doi:10.1111/cmi.12397 

12. Fleming BD, Chandrasekaran P, Dillon LA, Dalby E, Suresh R, Sarkar A, 
et al. The generation of macrophages with anti-inflammatory activity in the 
absence of STAT6 signaling. J Leukoc Biol (2015) 98(3):395–407. doi:10.1189/
jlb.2A1114-560R 

13. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et  al. 
Transcriptome-based network analysis reveals a spectrum model of human 
macrophage activation. Immunity (2014) 40(2):274–88. doi:10.1016/j.
immuni.2014.01.006 

14. Galvan-Pena S, O’Neill LAJ. Metabolic reprograming in macrophage polariza-
tion. Front Immunol (2014) 5:420. doi:10.3389/fimmu.2014.00420 

15. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick 
AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1beta 
through HIF-1alpha. Nature (2013) 496(7444):238–42. doi:10.1038/
nature11986 

16. Cohen HB, Briggs KT, Marino JP, Ravid K, Robson SC, Mosser DM. TLR 
stimulation initiates a CD39-based autoregulatory mechanism that limits 
macrophage inflammatory responses. Blood (2013) 122(11):1935–45. 
doi:10.1182/blood-2013-04-496216 

17. Gorman MW, Feigl EO, Buffington CW. Human plasma ATP concentration. 
Clin Chem (2007) 53(2):318–25. doi:10.1373/clinchem.2006.076364 

18. Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. 
Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules 
in immunity and inflammation. Pharmacol Ther (2006) 112(2):358–404. 
doi:10.1016/j.pharmthera.2005.04.013 

19. Lazarowski ER, Boucher RC, Harden TK. Constitutive release of ATP and 
evidence for major contribution of ecto-nucleotide pyrophosphatase and 
nucleoside diphosphokinase to extracellular nucleotide concentrations. J Biol 
Chem (2000) 275(40):31061–8. doi:10.1074/jbc.M003255200 

20. Kaczmarek E, Koziak K, Sévigny J, Siegel JB, Anrather J, Beaudoin AR, et al. 
Identification and characterization of CD39/vascular ATP diphosphohydro-
lase. J Biol Chem (1996) 271(51):33116–22. doi:10.1074/jbc.271.51.33116 

21. Zimmermann H, Braun N. Ecto-nucleotidases  –  molecular structures, cat-
alytic properties, and functional roles in the nervous system. Prog Brain Res 
(1999) 120:371–85. doi:10.1016/S0079-6123(08)63570-0 

22. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig 
HK, et  al. Ecto-5’-nucleotidase (CD73) regulation by hypoxia-inducible 

factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 
(2002) 110(7):993–1002. doi:10.1172/JCI15337 

23. Zanin RF, Braganhol E, Bergamin LS, Campesato LF, Filho AZ, Moreira 
JC, et  al. Differential macrophage activation alters the expression profile 
of NTPDase and ecto-5’-nucleotidase. PLoS One (2012) 7(2):e31205. 
doi:10.1371/journal.pone.0031205 

24. Liao H, Hyman MC, Baek AE, Fukase K, Pinsky DJ. cAMP/CREB-mediated 
transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 
1 (CD39) expression. J Biol Chem (2010) 285(19):14791–805. doi:10.1074/jbc.
M110.116905 

25. Baek AE, Kanthi Y, Sutton NR, Liao H, Pinsky DJ. Regulation of ecto-apyrase 
CD39 (ENTPD1) expression by phosphodiesterase III (PDE3). FASEB J 
(2013) 27(11):4419–28. doi:10.1096/fj.13-234625 

26. Eichin D, Laurila JP, Jalkanen S, Salmi M. CD73 activity is dispensable for 
the polarization of M2 macrophages. PLoS One (2015) 10(8):e0134721. 
doi:10.1371/journal.pone.0134721 

27. Csóka B, Németh ZH, Törő G, Koscsó B, Kókai E, Robson SC, et al. CD39 
improves survival in microbial sepsis by attenuating systemic inflammation. 
FASEB J (2015) 29(1):25–36. doi:10.1096/fj.14-253567 

28. Haskó G, Csóka B, Koscsó B, Chandra R, Pacher P, Thompson LF, et  al. 
Ecto-5’-nucleotidase (CD73) decreases mortality and organ injury in sepsis. 
J Immunol (2011) 187(8):4256–67. doi:10.4049/jimmunol.1003379 

29. Haskó G, Cronstein B. Regulation of inflammation by adenosine. Front 
Immunol (2013) 4:85. doi:10.3389/fimmu.2013.00085 

30. Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. 
Structure and function of adenosine receptors and their genes. Naunyn 
Schmiedebergs Arch Pharmacol (2000) 362(4–5):364–74. doi:10.1007/
s002100000313 

31. Olah ME. Identification of A2a adenosine receptor domains involved in 
selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors. 
J Biol Chem (1997) 272(1):337–44. 

32. Pierce KD, Furlong TJ, Selbie LA, Shine J. Molecular cloning and expression of 
an adenosine A2b receptor from human brain. Biochem Biophys Res Commun 
(1992) 187(1):86–93. doi:10.1016/S0006-291X(05)81462-7 

33. Németh ZH, Lutz CS, Csóka B, Deitch EA, Leibovich SJ, Gause WC, et  al. 
Adenosine augments IL-10 production by macrophages through an A2B 
receptor-mediated posttranscriptional mechanism. J Immunol (2005) 
175(12):8260–70. doi:10.4049/jimmunol.175.12.8260 

34. Kreckler LM, Wan TC, Ge Z-D, Auchampach JA. Adenosine inhibits tumor 
necrosis factor-alpha release from mouse peritoneal macrophages via A2A 
and A2B but not the A3 adenosine receptor. J Pharmacol Exp Ther (2006) 
317(1):172–80. doi:10.1124/jpet.105.096016 

35. Kreckler LM, Gizewski E, Wan TC, Auchampach JA. Adenosine suppresses 
lipopolysaccharide-induced tumor necrosis factor-alpha production by 
murine macrophages through a protein kinase A- and exchange protein 
activated by cAMP-independent signaling pathway. J Pharmacol Exp Ther 
(2009) 331(3):1051–61. doi:10.1124/jpet.109.157651 

36. Wall EA, Zavzavadjian JR, Chang MS, Randhawa B, Zhu X, Hsueh RC, et al. 
Suppression of LPS-induced TNF-alpha production in macrophages by cAMP 
is mediated by PKA-AKAP95-p105. Sci Signal (2009) 2(75):ra28. doi:10.1126/
scisignal.2000202 

37. Sun Y, Duan Y, Eisenstein AS, Hu W, Quintana A, Lam WK, et al. A novel 
mechanism of control of NFκB activation and inflammation involving 
A2B adenosine receptors. J Cell Sci (2012) 125(19):4507–17. doi:10.1242/
jcs.105023 

38. Fredholm BB, Cunha RA, Svenningsson P. Pharmacology of adenosine 
A2A receptors and therapeutic applications. Curr Top Med Chem (2003) 
3(4):413–26. doi:10.2174/1568026033392200 

39. Aherne CM, Kewley EM, Eltzschig HK. The resurgence of A2B adenos-
ine receptor signaling. Biochim Biophys Acta (2011) 1808(5):1329–39. 
doi:10.1016/j.bbamem.2010.05.016 

40. Yasuda N, Inoue T, Horizoe T, Nagata K, Minami H, Kawata T, et al. Functional 
characterization of the adenosine receptor contributing to glycogenolysis and 
gluconeogenesis in rat hepatocytes. Eur J Pharmacol (2003) 459(2–3):159–66. 
doi:10.1016/S0014-2999(02)02832-7 

41. Gonzalez-Benitez E, Guinzberg R, Diaz-Cruz A, Pina E. Regulation of 
glycogen metabolism in hepatocytes through adenosine receptors. Role 
of Ca2+ and cAMP. Eur J Pharmacol (2002) 437(3):105–11. doi:10.1016/
S0014-2999(02)01299-2 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359
http://dx.doi.org/10.1038/ni1276
http://dx.doi.org/10.1038/nri915
http://dx.doi.org/10.1038/nri2448
http://dx.doi.org/10.1038/nature12034
http://dx.doi.org/10.1038/nri3088
http://dx.doi.org/10.1016/j.ygeno.2006.03.022
http://dx.doi.org/10.1371/journal.pone.0045466
http://dx.doi.org/10.1371/journal.pone.0114914
http://dx.doi.org/10.1128/IAI.02922-14
http://dx.doi.org/10.1111/cmi.12397
http://dx.doi.org/10.1189/jlb.2A1114-560R
http://dx.doi.org/10.1189/jlb.2A1114-560R
http://dx.doi.org/10.1016/j.immuni.2014.01.006
http://dx.doi.org/10.1016/j.immuni.2014.01.006
http://dx.doi.org/10.3389/fimmu.2014.00420
http://dx.doi.org/10.1038/nature11986
http://dx.doi.org/10.1038/nature11986
http://dx.doi.org/10.1182/blood-2013-04-496216
http://dx.doi.org/10.1373/clinchem.2006.076364
http://dx.doi.org/10.1016/j.pharmthera.2005.04.013
http://dx.doi.org/10.1074/jbc.M003255200
http://dx.doi.org/10.1074/jbc.271.51.33116
http://dx.doi.org/10.1016/S0079-6123(08)63570-0
http://dx.doi.org/10.1172/JCI15337
http://dx.doi.org/10.1371/journal.pone.0031205
http://dx.doi.org/10.1074/jbc.M110.116905
http://dx.doi.org/10.1074/jbc.M110.116905
http://dx.doi.org/10.1096/fj.13-234625
http://dx.doi.org/10.1371/journal.pone.0134721
http://dx.doi.org/10.1096/fj.14-253567
http://dx.doi.org/10.4049/jimmunol.1003379
http://dx.doi.org/10.3389/fimmu.2013.00085
http://dx.doi.org/10.1007/s002100000313
http://dx.doi.org/10.1007/s002100000313
http://dx.doi.org/10.1016/S0006-291X(05)81462-7
http://dx.doi.org/10.4049/jimmunol.175.12.8260
http://dx.doi.org/10.1124/jpet.105.096016
http://dx.doi.org/10.1124/jpet.109.157651
http://dx.doi.org/10.1126/scisignal.2000202
http://dx.doi.org/10.1126/scisignal.2000202
http://dx.doi.org/10.1242/jcs.105023
http://dx.doi.org/10.1242/jcs.105023
http://dx.doi.org/10.2174/1568026033392200
http://dx.doi.org/10.1016/j.bbamem.2010.05.016
http://dx.doi.org/10.1016/S0014-2999(02)02832-7
http://dx.doi.org/10.1016/S0014-2999(02)01299-2
http://dx.doi.org/10.1016/S0014-2999(02)01299-2


March 2016 | Volume 7 | Article 746

Hamidzadeh and Mosser Adenosine Signaling in Macrophages

Frontiers in Immunology | www.frontiersin.org

42. Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, et al. 
The A2B adenosine receptor modulates glucose homeostasis and obesity. PLoS 
One (2012) 7(7):e40584. doi:10.1371/journal.pone.0040584 

43. Chhabra P, Linden J, Lobo P, Okusa MD, Brayman KL. The immuno-
suppressive role of adenosine A2A receptors in ischemia reperfusion 
injury and islet transplantation. Curr Diabetes Rev (2012) 8(6):419–33. 
doi:10.2174/157339912803529878 

44. Reiss AB, Rahman MM, Chan ESL, Montesinos MC, Awadallah NW, 
Cronstein BN. Adenosine A2A receptor occupancy stimulates expression 
of proteins involved in reverse cholesterol transport and inhibits foam cell 
formation in macrophages. J Leukoc Biol (2004) 76(3):727–34. doi:10.1189/
jlb.0204107 

45. Gessi S, Fogli E, Sacchetto V, Merighi S, Varani K, Preti D, et al. Adenosine 
modulates HIF-1{alpha}, VEGF, IL-8, and foam cell formation in a human 
model of hypoxic foam cells. Arterioscler Thromb Vasc Biol (2010) 30(1):90–7. 
doi:10.1161/ATVBAHA.109.194902 

46. Wang H, Zhang W, Zhu C, Bucher C, Blazar BR, Zhang C, et al. Inactivation 
of the adenosine A2A receptor protects apolipoprotein E-deficient mice 
from atherosclerosis. Arterioscler Thromb Vasc Biol (2009) 29(7):1046–52. 
doi:10.1161/ATVBAHA.109.188839 

47. Montesinos MC, Desai-Merchant A, Cronstein BN. Promotion of wound 
healing by an agonist of adenosine A receptor is dependent on tissue 
plasminogen activator. Inflammation (2015) 38(6):2036–41. doi:10.1007/
s10753-015-0184-3 

48. Porta C, Riboldi E, Ippolito A, Sica A. Molecular and epigenetic basis of 
macrophage polarized activation. Semin Immunol (2015) 27(4):237–48. 
doi:10.1016/j.smim.2015.10.003 

49. Schultze JL. Reprogramming of macrophages  –  new opportunities for 
therapeutic targeting. Curr Opin Pharmacol (2015) 26:10–5. doi:10.1016/j.
coph.2015.09.007 

50. Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN-gamma 
prevents adenosine receptor (A2bR) upregulation to sustain the macro-
phage activation response. J Immunol (2015) 195(8):3828–37. doi:10.4049/
jimmunol.1501139 

51. Scharton TM, Scott P. Natural killer cells are a source of interferon gamma 
that drives differentiation of CD4+ T cell subsets and induces early resistance 
to Leishmania major in mice. J Exp Med (1993) 178(2):567–77. doi:10.1084/
jem.178.2.567 

52. Hu X, Chakravarty SD, Ivashkiv LB. Regulation of interferon and toll-like 
receptor signaling during macrophage activation by opposing feedforward 
and feedback inhibition mechanisms. Immunol Rev (2008) 226:41–56. 
doi:10.1111/j.1600-065X.2008.00707.x 

53. Gordon RA, Grigoriev G, Lee A, Kalliolias GD, Ivashkiv LB. The interferon 
signature and STAT1 expression in rheumatoid arthritis synovial fluid macro-
phages are induced by tumor necrosis factor alpha and counter-regulated by 
the synovial fluid microenvironment. Arthritis Rheum (2012) 64(10):3119–28. 
doi:10.1002/art.34544 

54. Cohen HB, Mosser DM. Extrinsic and intrinsic control of macrophage 
inflammatory responses. J Leuk Biol (2013) 94:913–9. doi:10.1189/jlb0413236 

Conflict of Interest Statement: DM declares partial ownership in LeukoSight, 
Inc., a company developing a line of anti-inflammatory therapeutics. KH has no 
conflict of interest to declare.

Copyright © 2016 Hamidzadeh and Mosser. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://dx.doi.org/10.1371/journal.pone.0040584
http://dx.doi.org/10.2174/157339912803529878
http://dx.doi.org/10.1189/jlb.0204107
http://dx.doi.org/10.1189/jlb.0204107
http://dx.doi.org/10.1161/ATVBAHA.109.194902
http://dx.doi.org/10.1161/ATVBAHA.109.188839
http://dx.doi.org/10.1007/s10753-015-0184-3
http://dx.doi.org/10.1007/s10753-015-0184-3
http://dx.doi.org/10.1016/j.smim.2015.10.003
http://dx.doi.org/10.1016/j.coph.2015.09.007
http://dx.doi.org/10.1016/j.coph.2015.09.007
http://dx.doi.org/10.4049/jimmunol.1501139
http://dx.doi.org/10.4049/jimmunol.1501139
http://dx.doi.org/10.1084/jem.178.2.567
http://dx.doi.org/10.1084/jem.178.2.567
http://dx.doi.org/10.1111/j.1600-065X.2008.00707.x
http://dx.doi.org/10.1002/art.34544
http://dx.doi.org/10.1189/jlb0413236
http://creativecommons.org/licenses/by/4.0/

	Purinergic Signaling to Terminate TLR Responses in Macrophages
	Introduction
	Metabolic Alterations Induced by the Ligation of Macrophage Pattern Recognition Receptors
	The Macrophage Ectoenzymes, CD39 and CD73
	The Receptors for Adenosine
	Ifn-γ and the Prolongation of the Macrophage Activation Response
	Summary
	Author Contributions
	Funding
	References


