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ABSTRACT
In the past 25 years, incidence rates of breast cancer have risen about 30% in westernized countries.
Mutations in BRCA1 and BRCA2 are the most prominent cause of breast cancer. However, these cancer
susceptibility genes (BRCAs) only account for a few percent of women suffering breast tumor. With our
understanding that BRCAs are Fanconi Anemia (FA) genes, investigations into the FA signaling network
should provide a previously unrecognized key to unlock in-depth insights into both etiology and
treatment of breast cancer. Here, we discuss utilization of the FA signaling as a unique genetic model
system to expand our knowledge about the molecular biology of breast cancer and potential applica-
tions of the gained knowledge to enable preventive and therapeutic approaches for breast cancer
patient care.
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Brcas and the FA signaling network

The Fanconi Anemia (FA) pathway is composed of at least
twenty-two FA gene-encoded proteins (FANC-A/B/C/D1/
D2/E/F/G/I/J/L/M/N/O/P/Q/R/S/T/U/V/W) to guard
against chromosomal instability. Within this pathway,
FANCS, FANCD1, FANCJ and FANCN are BRCA1,
BRCA2, BRIP1 and PALB2 respectively, which are breast
cancer susceptibility genes (BRCAs) (also contributing to
the susceptibility of other cancers). The BRCA-encoded
proteins work mostly at the downstream of the FA pathway
in concert with the activated/monoubiquitinated FANCD2
and its paralog FANCI to perform the signaling-transduc-
tion and/or DNA-damage repair, enforced by checkpoint
mechanisms upon a variety of genotoxic stresses.1-5 Given
the fact that the malfunctioned FANCD2 confers the mole-
cular defects for more than 98% of FA cases,1 studies on
FANCD2 become increasingly attractive. It sits right at the
center of the FA signaling pathway, orchestrating nearly all
individual players in the FA signaling pathway. FANCD2
can be an important “successor” to process upstream sig-
naling as early as damage/stress-sensing, such as the roles
played by FANCM and/or FANCW in modulating ATM/
ATR effects. Many other FA proteins & FAAPs also act at
the upstream of FANCD2 by performing E3 ligase activity
together in the protein complexes and/or modulating E3
activity in a complex-dependent or -independent manner.
FANCD2 can also be called as a critical “savior” for the
completion of damage-control performed by BRCA gene-
encoded products along with many other FA and non-FA
proteins that appear to be in the downstream of the FA
signaling. These include conducting nearly all putative
phases in cell surveillance mechanisms;6-8 such as passing
damage signaling and performing various types of DNA-
lesion repair (base or nucleotide excision repair, post

replication repair, homologous recombination, non-homo-
logous end joining4,9). Therefore, each player involved in
the FA signaling shall play roles as important as those
conducted by BRCAs in the maintenance of genome stabi-
lity; however, the majority of FA-signaling players are lar-
gely overlooked in regards to their characteristics
implicated in breast cancer.

New insights into FA signaling network

Most cases, the onset of cancer depends on mutations in
genes involved in genome “care-taking” processes.6-8 The
known human genetic syndromes including FA or engineered
mouse mutants have demonstrated biological significance of
care-taking genes. As mentioned above, five major multi-step
DNA repair mechanisms are all parts of the FA signaling
network, which can act as a big care system to look after
various types of errors/lesions possibly occurring on DNA.
With accumulated researches on FA signaling, our understat-
ing of FA signaling is constantly extended by the new con-
nections or interplays recognized. Noting that interplays with
other cancer susceptibility genes that are involved in Bloom
syndrome10-12 and xeroderma pigmentosum variant
(XPV);13,14 or partnership with FAN115,16 and others in
executing essential cellular processes. Importantly, a consider-
able amount of effort has been put in revealing mechanisms
underlying hypersensitivity to a variety of DNA damage
agents and genome instability associated with increased can-
cer risk. This has also disclosed a number of DNA repair and
cell cycle control systems that are closely integrated with the
FA signaling, as such ATM phosphorylating FANCD2 at
S222,17 ATR as a kinase for FANCI18 and partnership of
MCM complexes with FANCD2.19 Based on our studies, the
following is to show how our understanding of FA signaling
was expanded.
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Insights for the upstream FA signaling

The similar sensitivity to DNA crosslinking damage revealed
from FA cells as well as rad6-null yeast cells (rad6-/-)
prompted us to examine the potential link between the FA
and Human Homologs of yeast Rad 6 (HHR6) pathways. In
this HHR6 pathway, HHR6 activates PCNA, which in turn,
regulates translesion synthesis (TLS) DNA polymerases
including pol ŋ (mutated in XPV cancer susceptibility
syndrome).20 Following this study, this link was further vali-
dated by a fact that hRad18 (a HHR6 partner), can also
regulate FANCD2 monoubiquitination,21 accompanied by
the similar finding reported from other groups.22,23 As a
consequence, it is now understood that HHR6 regulates
FANCD2 monoubiquitination, which becomes a common
link between the FA and HHR6 pathways in guarding genome
integrity.20,24 These findings indicated the convergence of the
FA and HHR6 pathways upon DNA damage at the activation
of FANCD2, unveiling an additional molecular mechanism
underlying tumor suppression employed by the FA signaling
pathway as well as the HHR6 pathway.

Bloom Syndrome (BS), similar to FA, is an autosomal
recessive DNA-repair deficiency disease that exhibits chromo-
somal instability and a high incidence of cancer.25-27 The BLM
protein (mutated in BS) provides instructions for making a
member of a protein family called RecQ helicases,27,28 which
bind to DNA and temporarily unwind the two spiral strands
of the DNA molecule. This unwinding is essential for repli-
cating DNA in preparation for cell division as well as for
repairing damaged DNA.29,30 Both FA and BS genetic disor-
ders share a partial-overlap phenotype, suggesting a func-
tional interaction between BLM and the FA pathway.
Indeed, studies on sharing the common protein complexes
or being a functional partner, to some extent, tested the
functional interactions.10,31-35 Among these, a previously
unknown link supported by the delayed activation of
FANCD2 upon DNA damage in BLM deficient cells,11 further
demonstrated the essential interplays between or among can-
cer susceptibility gene-encoded products in the early response
to genotoxic stresses.

Insights for the downstream FA signaling

In continuation of the studies on the interplays between FA and
HHR6 signaling pathways, we also found a new function of
FANCD2 that can modulate the activity of translesion DNA
synthesis, at least partly through error-free pol ŋ.14 To understand
howFANCD2 regulates the activity of polŋ, we characterized their
partnership. We found that wild type (wt) FANCD2, but not un-
monoubiquitinated FANCD2 (K561R), can interact with pol ŋ at
regions known for interacting with PCNA.36,37 We showed that
the interaction between pol ŋ and FANCD2 occurs much earlier
than that between pol ŋ and PCNA in response to the genotoxic
stress tested.13 This is crucial for the timely responses to DNA-
damage repair and, thereby, for an effective protection from gen-
ome instability.

With increasing evidence to support a general hypothesis that
cancer is one of diseases related closely to cellular metabolism,
studies on the involvement of FA signaling in energy metabolism

was initiated. As a result, a new role of FANCD2 in governing
cellular ATP production was discovered,38 which was at least
attributed to the regulation of ATP5a by FANCD2. This study
turned into a new scenario, in which FA proteins perform roles in
unstressed cells, distinct from the above, relevant to the cellular
responses to genotoxicity. Recently, an overlooked form of
FANCD2 (namely FANCD2-V2)39 was spotted and its expression
was mostly at the cytoplasm of both stressed and unstressed cells,
and relatively higher in the normal or benign cells than in the
matched malignant cells. These observations suggested that
FANCD2-V2 can act as a more potent tumor suppressor than
the commonly known form of FANCD2 (called FANCD2-V1).
Here, an imminent question is if the regulation of ATP5a by
FANCD2 is more relevant to FANCD2-V2, which waits for
further studies. Certainly, the recognition of the FA-signaling
network does not stop here, but listed examples are sufficient in
the indication of a huge signaling network that may operate as
wildly as what we never imagined before (Figure 1). While we are
puzzling on a few percentage of breast cancer patients that have
relatively clear genetic causes, which brought progresses in pro-
moting better strategies for breast cancer prevention, diagnosis as
well as treatment. The “huge” FA signaling network is certainly
able to help improve those aspects further. For instance, there is a
few percent of patients with breast cancer “benefited” from
mtBRCAs2, strictly speaking, from impaired FA signaling, which
now is recognized to contribute to tumor promotion, nearly half of
patients with breast cancer.40

Implications of FA signaling in etiology and
treatment of breast cancer

Following the functional demonstration of impaired FA signaling
contributing to the development of human cancer in patients
without FA,41-43 the genetics and metabolomics studies further
confirmed this unique role in promoting formation of human
cancers,40,44,45 including breast cancer, for the general population.
BRCAs are widely accepted to be important tumor suppressors
before the term of the (canonical) FA signaling pathway, which
was seemingly fine for studying their individual roles in DNA
damage repair. However, when enabling the gained knowledge
for the clinical use, it is apparently biased to leave behind the rest of
members of the FA signaling network. Therefore, when consider-
ing how mtBRCAs impact the molecular biology of breast cancer
or many other types of human cancer, other mutated members
would have a similar impact on those tumors even carrying
wtBRCAs. Around 50% of breast cancers was found to harbor
an impaired FA pathway at the genetic level,40 whichmay result in
similar molecular and biological effects as mtBRCAs and contri-
bute to breast tumorigenesis. In clinic, several different tests aim-
ing at mtBRCAs are available for helping mitigate malignant
outcomes.2 Some tests look for a specific mutant form of BRCA1
or BRCA2 that was already identified as another family member;
and other tests check for the knownmutations. In addition, multi-
gene-testing utilizes next-generation sequencing to spot for harm-
ful mutations simultaneously in many genes that are associated
with an increased risk of breast cancer, including BRCA1 and
BRCA2. The positive testing results are now even used effectively
in the protection of people from getting breast cancer. Such as
prophylactic mastectomy and/or oophorectomy to block the
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breast cancer susceptibility.2 On the other hand, mtBRCAs have
also been a better prognosis for breast cancer patients treated with
DNA-damage related regimens. Given such impact of mtBRCAs,
we believe that many other mutated FA genes shall possess similar
influences on a subject tumor, even carrying wtBRCAs. For this,
we herein propose to use “impaired-FA-signaling carriers” for
breast tumors (or other types of tumors) that may carry wild
type or mtBRCAs. As a consequence, the subject molecular cate-
gorization can help recognize alternatives for breast cancer pre-
vention, diagnosis and treatment. Unfortunately, studies on the
application of impaired FA signaling for the clinical uses are under
performed. It is not too hard for us to anticipate how it would
affect breast cancer if all FA genes are included in the multigene-
test for genetic consultation. In addition, our understanding of the
FA signaling can also help additional specific tests, which are
potentially comparable to those built upon mtBRCAs. For exam-
ple, the naturally existed mtBLM has been found to compromise
the timely activation of the FA signaling (FANCD2
monoubiquitination),11 which can be translated into a biomarker
for an increased cancer susceptibility and, thus, leading to a

possible use for the genetic consultation, as well as the prognosis
of breast cancer patients when they are subjected to therapeutic
plans aiming at DNA damage.

Conclusions

Different from the recent reviews on FA signaling, this review
emphasizes an aspect of breast cancer research that is under-
investigated. There is a lot that remains to be addressed as illu-
strated (Figure 1). However, this is not an obstacle that can block
us to have a new look at molecular biology of human cancer,
particularly breast cancer. As known, BRCA1/2 studies have
been capturing the frontier of cancer research since decades ago,
alsomade the FA signaling pathway be very attractive for a decade.
However, the FA signaling remains to be “capped” by “the rare
population” in the field of cancer research. As a result, in-depth
understanding of the etiology and treatment of human cancer,
particularly, breast cancer, appears tomostly dependon the under-
standing of BRCAs, not on the team-work that was performed by
the whole FA signaling. Here we hope the future translational

Figure 1. The outline of the FA signaling network. At least 22 FA proteins can work in a common signaling network to protect cells from going awry for diseases,
including cancer. The updated portion in gray lines via our published work. Overall, if the functions played by this signaling network are compromised,
tumorigenicity or the sensitivity to DNA-damaging therapies will be promoted. This is not limited to the mtBRCA carrying tumors (in red).
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studies on each player in the FA signaling network will be con-
sidered properly, thereby enabling the relevant knowledge to be
more helpful for the prevention, diagnosis, or treatment of breast
cancer.
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