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Recent reports from our laboratory and others support the SELDI ProteinChip technology as a potential clinical diagnostic tool
when combined with n-dimensional analyses algorithms. The objective of this study was to determine if the commercially available
classification algorithm biomarker patterns software (BPS), which is based on a classification and regression tree (CART), would be
effective in discriminating ovarian cancer from benign diseases and healthy controls. Serum protein mass spectrum profiles from
139 patients with either ovarian cancer, benign pelvic diseases, or healthy women were analyzed using the BPS software. A decision
tree, using five protein peaks, resulted in an accuracy of 81.5% in the cross-validation analysis and 80% in a blinded set of samples
in differentiating the ovarian cancer from the control groups. The potential, advantages, and drawbacks of the BPS system as a
bioinformatic tool for the analysis of the SELDI high-dimensional proteomic data are discussed.

INTRODUCTION

Ovarian cancer has the highest fatality-to-case ratio
of all gynecologic malignancies [1, 2]. This is attributed
to the lack of early warning signs and efficacious early
detection techniques [1, 3]. Another problem hindering
the successful management of the disease is the paucity
in prognosticators that could assist the selection of treat-
ment modality. One of the most promising routes towards
improvement in the detection and surveillance of ovar-
ian cancer is the identification of serum markers. Utiliza-
tion of the CA125 as an ovarian cancer serum marker has
improved cancer detection rates during the last few years
[1, 2, 3]. Nevertheless, CA125 does not diagnose early-
stage cancers with high accuracy and is prone to false pos-
itives. Therefore, the need to identify additional serum
markers for ovarian cancer is paramount to the success-
ful management of this disease.

A major obstacle in finding a diagnostic biomarker
is the tremendous molecular heterogeneity that exists for
nearly all human cancer, suggesting that simultaneous
screening of a patient specimen for multiple biomarkers
will be required to improve the early detection/diagnosis
of cancer. DNA chip technologies address this problem at
the genomic level, and provide accessibility to gene ex-
pression profiles. However, since proteins are, for the most
part, the mediators of a cell’s function, the study of the
changes in proteins that result from a pathological lesion,
such as cancer, would appear to be a rich source of poten-
tial cancer biomarkers.

Most of the previous studies in search of diagnos-
tic biomarkers have employed two-dimensional elec-
trophoresis (2DE) which can resolve hundreds to thou-
sands of proteins present in complex protein mixtures,
such as cell lysates and body fluids. Although some suc-
cesses have been reported in detecting potential ovarian
cancer-associated biomarkers [4, 5, 6, 7], this classical
proteomic technique is very time consuming, not highly
reproducible, and not easily adaptable to a clinical assay
format.

A recently developed mass spectrometry proteomic
approach, the SELDI (surface-enhanced laser desorp-
tion/ionization) ProteinChip System (Ciphergen Biosys-
tems, Inc, Fremont, Calif), appears to hold promise for
biomarker discovery and as a potential clinical assay for-
mat [8, 9]. (The SELDI system and its applications are de-
scribed in the report by Reddy and Dalmasso [10]; and a
recent review by Wright [11]). Using this system, distinct
protein patterns of normal, premalignant, and malignant
cells were found for ovarian, esophageal, prostate, breast,
and hepatic cancers [12, 13, 14]. Potential biomarkers for
breast and bladder cancers were also detected in nipple
aspirate fluid and urine, see respectively [15, 16], by the
SELDI system.

Recent reports also support that analysis of the SELDI
data by “artificial intelligence” algorithms can lead to
the identification of protein “fingerprints” specific for
prostate, ovarian, and breast cancers, significantly increas-
ing the accuracy in differentiating cancer from the non-
cancer groups [17, 18, 19, 20]. These studies employed
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TaBLE 1. Demographics of the cancer and control groups in-
cluded in the study.

n Mean age  Age range | Cancer stage n

Cancer 44 55.9 20-85 | Stagel 10
Normal 34 43.7 28-59 | Stagell 4
Benign 61 46.8 20-83 | StageIII 21
Stage IV 9

different algorithms to analyze the SELDI data, including
a genetic algorithm [19], a decision tree [17, 18], and a
support vector machine algorithm [20]. Each method ap-
peared to be effective in developing accurate classification
systems.

The high dimensionality of the data generated by
SELDI requires a mathematical algorithm to analyze the
data without overfitting. Since the SELDI protein profil-
ing approach is new, it is difficult to determine up-front
which algorithm to select for the data analysis and de-
velopment of a “diagnostic” classifier. It is also fair to as-
sume that different bioinformatic tools may be required
for different cancer or disease systems. The objective of
this study was to evaluate the commercially available clas-
sification algorithm (biomarker pattern software [BPS])
developed by Ciphergen Biosystems Inc for analysis of
the SELDI serum protein profiling data from patients
with ovarian cancer, benign pelvic diseases, and normal
women. The potential, advantages, and drawbacks of this
approach as well as suggestions for improvement are dis-
cussed.

METHODS

Serum samples

Serum samples were obtained from patients with ep-
ithelial ovarian cancer prior to treatment administra-
tion (n = 44), benign pelvic diseases (n = 61), and
from women with no evidence of pelvic disease (n =
34) enrolled through the Division of Gynecologic On-
cology, University of Texas, Southwestern Medical Cen-
ter. Informed consent was obtained from all patient
and control groups. The demographics of the patients
and the stage distribution of the ovarian cancers are
presented in Table 1. Benign conditions included be-
nign pelvic masses (endometriosis, cystadenomas, hy-
drosalpinx, lipoma, Brenner tumor, fibroids, endometrial
polyp). The sera were aliquoted and stored at —80°C.

SELDI processing of serum samples

Serum samples were applied on the strong anion ex-
change (SAX) and immobilized-copper (IMAC) chip sur-
faces. In brief, 21 uL of serum were mixed with 30 uL
8M urea in 1% CHAPS-PBS pH 7.4 buffer for 30 min-
utes at 4°C, followed by the addition of 100 uL of 1M
urea in 0.125% CHAPS-PBS buffer and 600 uL of bind-
ing buffer compatible with the type of surface in use
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F1GURE 1. Protein spectra of one serum sample processed on the
IMAC metal binding chip array and on the positively charged
SAX chip array. Note that several different proteins are captured
by the two different chip chemistries.

(PBS for IMAC and 20 mM Hepes containing 0.1% Tri-
ton for SAX). FiftyuL of the diluted samples were then
applied onto the chips using a bioprocessor. Following a
30-minute incubation, nonspecifically bound molecules
were removed by 3 brief washes in binding buffer fol-
lowed by 3 washes with HPLC-gradient H,O. Sinapinic
acid (2X 1L of 50% SPA in 50% ACN-0.1%TFA) was
applied to the chip array surface and mass spectrome-
try was performed using a PBS2 SELDI mass spectrom-
eter (Ciphergen Biosystems Inc). Protein data were col-
lected by averaging a total of 192 laser shots. Mass calibra-
tion was performed using the all-in-one peptide standard
(Ciphergen Biosystems Inc) which contains vasopressin
(1084.2 daltons), somatostatin (1637.9 daltons), bovine
insulin -chain (3495.9 daltons), human insulin recom-
binant (5807.6 daltons), and hirudin (7033.6 daltons). All
samples were processed in duplicate.

Processing of SELDI data

Protein peaks were labeled and their intensities were
normalized for total ion current (mass range 2-200kd)
to account for variation in ionization efficiencies, using
the SELDI software (version 3.1). Peak clustering was per-
formed using the Biomarker Wizard software (Cipher-
gen Biosystems) and the following specific settings: spec-
tral data from IMAC surface; signal/noise (first pass): 4,
minimum peak threshold: 10%, mass error: 0.3%, and
signal/noise (second pass): 2 for the 2-20 kd mass range
and signal/noise (first pass): 5, minimum peak threshold:
10%, mass error: 0.3%, and signal/noise (second pass): 2.5
for the 20-100 kd mass range. Spectral data from the SAX
surface were analyzed with the same set of settings with
the difference that the minimum peak threshold was set
to 5%. With these labeling parameters, a total of 122 pro-
tein clusters (45 from the IMAC and 77 from the SAX
surface) were generated. Peak mass and intensity were
exported to an excel file, and the peak intensities from
each duplicate spectra were averaged. Pattern recognition
and sample classification were performed using the BPS.
The decision tree described in the result section was gen-
erated using the Gini method nonlinear combinations.
A 10-fold cross-validation analysis was performed as an
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FIGURE 2. Decision tree classification of the ovarian cancer (C) and noncancer (normal and benign or B) groups. The blue boxes show
the decision nodes with the peak mass (M in kd), the peak intensity (I) cutoff levels, and the number of samples. The 5.54, 6.65, and
11.7 kd masses were detected on the IMAC chip, and the 4.4 and 21.5kd on the SAX chip. These five masses form the splitting rules.
Cases that follow the rule are placed in the left daughter node. The red boxes are the terminal nodes with the classification being either

cancer or benign (normal + benign).

initial evaluation of the test error of the algorithm. Briefly,
this process involves splitting up the dataset into 10 ran-
dom segments and using 9 of them for training and the
10th as a test set for the algorithm. Multiple trees were
initially generated from the 122 classifiers by varying the
splitting factor by increments of 0.1. These trees were eval-
uated by cross-validation analysis. The peaks that formed
the main splitters of the tree with the highest prediction
rates were then selected, the tree was rebuilt based on
these peaks alone and evaluated by the test set. The values
of P were calculated based on t-test (Biomarker Wizard
software). The value P < .05 was considered to be statisti-
cally significant.

RESULTS

One hundred thirty-nine serum samples were assayed
by SELDI mass spectrometry. Both SAX and IMAC sur-
faces could effectively resolve low-mass (< 20 kd) protein
peaks, although the SAX surface appeared superior in re-
solving larger (> 20 kd) protein peaks. Figure 1 shows rep-
resentative protein spectra from one serum sample pro-
cessed on SAX and IMAC chips.

Of a total of 139 serum samples, 124 (85 controls and
39 cancers) were randomly selected to form the learning
set and 15 (10 controls and 5 cancers) to form the blinded
test set for the algorithm. Five peaks were selected by the

BPS algorithm to discriminate cancer from the noncancer
groups. Figure 2 is the decision tree that was generated
from the learning set to classify the two groups. Three
peaks (5.54, 6.65, and 11.7 kd) detected on the IMAC chip
and 2 (4.4 and 21.5kd) detected on the SAX surface form
the main splitters. Their mass spectra and gray-scale/gel
views are shown in Figures 3, 4, 5, 6, and 7. These peaks
have significantly different intensity levels between the
cancer and benign or normal controls with the exception
of the 6.65 and 21.5 kd peaks, which did not differ signif-
icantly between cancers and benigns (Table 2). A 10-fold
cross-validation analysis was performed as an initial eval-
uation of the accuracy of the algorithm in predicting ovar-
ian cancer. A specificity of 80% and sensitivity of 84.6%
were obtained (Table 3). In the test set, sensitivity and
specificity of 80% were obtained (Table 3). The misclas-
sified samples in the test set included one benign (uterine
fibroid), one normal, and a stage III C cancer.

DISCUSSION

The high degree of genetic heterogeneity associ-
ated with human cancers makes it likely that panels of
multiple biomarkers will be needed to improve early de-
tection/diagnosis. This entails the development of high-
throughput proteomic and genetic approaches as well as
of reliable bioinformatic tools for data analysis.
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TaBLE 2. Statistical comparison of the intensity levels of the
peaks used in the decision tree between the cancer and control
groups. C-N: cancer versus normal; C-B: cancer versus benign;
and C-B/N: cancer versus normal and benign.

MW (kd) P (C-N) P (C-B) P (C-N/B)
4.47 < 0.001 < 0.001 < 0.001
5.54 < 0.001 < 0.001 < 0.001
6.65 < 0.001 0.13 < 0.001

11.69 < 0.001 0.017 < 0.001
21.5 < 0.001 0.43 < 0.001

TaBLE 3. Performance of the decision tree in predicting ovarian
cancer. Numbers in parentheses denote the number of correctly
classified sample out of total number of samples in the group.

Sensitivity%
94.9 (37/39)
84.6 (33/39)
80.0 (4/5)

Specificity%
85.9 (73/85)
80.0 (68/85)
80.0 (8/10)

Learning set
Cross-validation
Test set

The SELDI proteinChip system offers the advantage
of rapid and simultaneous detection of multiple proteins
from complex biologic mixtures. We employed this sys-
tem in combination with the BPS classification algorithm
for protein profiling of ovarian cancer in serum. Using this
approach, a classifier that was 80% accurate in discrim-
inating patients with ovarian cancer from patients with
benign disease and healthy controls from a blinded test
set was generated. Evaluation of the classifier by cross-
validation and the analysis of the independent test set of-
fers statistical confidence of the potential of this approach
as an ovarian cancer detection tool. However, the sample
size included in this study decreases the validity of gener-
alized conclusions. Complete evaluation of this classifier
will require testing its prediction rates for larger “blinded”
and independent serum sets.

The BPS software was found to be relatively simple to
use. However, BPS, like other mathematical algorithms, is
prone to data overfitting, and also is not reliable when a
large number of variables relative to samples sizes are in-
cluded in the analysis. A preselection process of the most
significant variables using statistical analysis (eg, ROC
curve, ANOVA) may help in alleviating this problem.

Petricoin et al [19] recently reported the successful ap-
plication of a genetic algorithm for the analysis of SELDI
proteomic data from ovarian cancer patients. In this
study, five discriminatory peptides were detected, molec-
ulalr mass range 500-2500 daltons, and the accuracy in
predicting ovarian cancer in a blinded set of samples was
97.4%. We focused on the analysis of potential biomarkers
in higher mass ranges (> 2000 daltons). Furthermore, in
contrast to the case where BPS algorithm is processed, that
is, labeled peak information is analyzed, the genetic algo-
rithm employed by Petricoin et al analyzes time-of-flight
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FIGURE 3. Spectra (top) and grey-scale or gel views (bottom) of
the peaks (arrows) forming the splitting rules. The protein peak
was detected on IMAC chip. The peak appears to be upregulated
in the cancer (C1-C4) compared to the benign (B1-B2) and nor-
mal (N1-N2) groups.

“raw” SELDI data. In this case, prerequisite for the fur-
ther identification of the potential discriminatory mark-
ers is the coupling of the genetic algorithm with a peak
identification system where the raw data are translated
into protein peak information. BPS employs the peak
identification system of the SELDI software facilitating
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FIGURE 4. Spectra (top) and grey-scale or gel views (bottom) of
the peaks (arrows) forming the splitting rules. The protein peak
was detected on IMAC chip. The peak appears to be downregu-
lated in the cancers.

biomarker detection. It should be noted, however, that
careful and precise selection of the peak labeling settings
and normalization of peak intensities are considered crit-
ical for biomarker identification and for the efficient and
reliable performance of any learning algorithm used in
conjunction with the SELDI system.

11500 \l/ 12000

10000 10500 11000
1.5
c1 !
0.5
0
3
2
C2
1
0
4
3
C3 2
1
0
2
15
(o7
0.5
0
4
3
2
Bl |
0
2
1.5
B2 1
0.5
0
2
15
1
N1
0.5
0
3
2
N2,
0
10000 10500 11000 11500 12000

10000 10500 11000 11500 12000

c1

c2

c3

c4 I I

Bl

B2
|
|

N1

N2

10000 10500 11000 11500 12000

FIGURE 5. Spectra (top) and grey-scale or gel views (bottom) of
the peaks (arrows) forming the splitting rules. The protein peak
was detected on IMAC chip. The peak appears to be upregulated
in cancer (C1-C4) compared to the benign (B1-B2) and normal
(N1-N2) groups.

Besides providing a preliminary evaluation of the suit-
ability of BPS for the comparison of SELDI data, our
study also demonstrates the potential of combining spec-
tral data from different types of surfaces as a means to in-
crease protein resolution. Although, compared to SELDI,
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FIGURE 6. Spectra (top) and grey-scale or gel views (bottom) of
the peaks (arrows) forming the splitting rules. The protein peak
was detected on the SAX surface. The peak appears to be up-
regulated in the cancer (C1-C4) compared to the begin (B1-B2)
and normal (N1-N2) groups.

the resolving power of 2D gel electrophoresis remains un-
challenged, we have found that this combinatorial ap-
proach can significantly enhance biomarker discovery and
increase test accuracy for ovarian and breast cancers from
70-75% up to 90% [21].

FIGURE 7. Spectra (top) and grey-scale or gel views (bottom) of
the peaks (arrows) forming the splitting rules. The protein peak
was detected on the SAX surface. The peak appears to be down-
regulated in the cancers.

In conclusion, the BPS software appears to be poten-
tially suitable for analysis of the high-dimensional SELDI
spectral data. Avenues for improvement of the algorithm
performance include optimization of the peak labeling
process as well as preselection of the most significant
peaks by statistical approaches. More extended studies
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will be required to validate the potential and reliability
of BPS as a bioinformatic tool for proteomic studies. It
should also be emphasized that comparative analysis of
different types of algorithms will be of paramount impor-
tance for the better evaluation of their performance and
the selection of the bioinformatic features needed for ef-
fective biomarker discovery and discrimination of cancer.
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