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Purpose: Primary congenital glaucoma (PCG) is a severe form of glaucoma that presents early in life. PCG is a clinical
and genetic entity that is distinct from juvenile forms of glaucoma. Inheritance is usually autosomal recessive and therefore
the disease might be more common in societies where consanguinity is high. We studied the prevalence of cytochrome
P450, family 1, subfamily B, polypeptide 1 (CYP1B1) and latent-transforming growth factor beta-binding protein 2
(LTBP2) mutations in a group of Saudi PCG patients and attempted to correlate the mutation status with the disease
severity.
Methods: Genomic DNA was collected from 54 unrelated Saudi PCG families (74 patients) who were diagnosed as having
PCG by standard ophthalmological examinations and screened for mutations in CYP1B1 and LTBP2 by sequencing. We
also examined the effect of mutations on the phenotype of patients with PCG (phenotype-genotype correlation).
Results: Mutations in CYP1B1 were identified in 41 (75.9%) of affected patients. No mutation in CYP1B1 was found in
13 (24.1%) affected persons. We detected a total of 13 mutations: 9 missense mutations (G61E, A119S, R390H, P437L,
D441G, A443G, G466S, G466D, and R469W), 2 deletions (g.4238_4247del and g.7901_7913del), and 2 nonsense
mutations (R355X and R444X). Two mutations, G466S and D441G, were novel. The G61E mutation was by far the most
common mutation detected. PCG cases with CYP1B1 mutation(s) presented with a high degree of haze and greater cup/
disc ratio than those with no mutation(s). Also, PCG cases with a mutation had higher post operative indices in terms of
post operative haze and the need for anti-glaucoma medications. Additionally, the surgical success rate was higher 13/14
(92.9%) among cases without mutation than those with mutation 42/60 (70%). No mutation(s) were found in LTBP2 in
any of the tested patients.
Conclusions: CYP1B1 mutations are the predominant cause of PCG in the Saudi Arabian population with G61E as the
dominant disease-associated allele. PCG cases with a mutation had higher last postoperative visit indices in terms of
postoperative haze and the need for anti-glaucoma medications. This will be a valuable parameter in predicting disease
severity earlier on and might help in predicting the surgical outcome.

Primary congenital glaucoma (PCG; OMIM 231300) is
a severe form of glaucoma that presents early in life [1]. PCG
is a clinical and genetic entity that is distinct from juvenile
forms of glaucoma [2,3]. Despite its rarity, PCG and other
forms of childhood glaucoma were once the leading cause of
admission to schools for the blind in the United States in the
first part of the 20th Century [4]. PCG results from
developmental abnormalities (trabeculodysgenesis) that
affect the aqueous humor outflow pathway. These changes
cause elevated intraocular pressure (IOP) and secondary
glaucomatous optic nerve damage [5]. PCG clinical features
include elevated IOP, corneal edema, enlargement of the
globe (buphthalmos), corneal enlargement, rupture of
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Descemet’s membrane (Haab’s Striae), and optic nerve
damage [6]. Additional clinical features include, photophobia,
ephiphora, and blepharospasm [7].

The prevalence of PCG ranges widely. The highest
prevalence is found in the Gypsy population of Slovakia
where 1 in 1,250 is affected. The prevalence of PCG is 1 in
2,500 among Saudi Arabians [8]. In Western populations the
prevalence is approximately 1 in 20,000 [9,10]. The high rate
of consanguinity among Slovakian Gypsies and Saudi
Arabians accounts for the increased prevalence of PCG in
these populations. In Southern India, the prevalence of PCG
is estimated at 1 in 3,300 live births accounting for 4.2% of
overall childhood blindness [11]. In a retrospective study
covering the period from 2006 to 2010, the Glaucoma unit at
King Abdulaziz University Hospital (KAUH, Riyadh, Saudi
Arabia) where approximately 600 new glaucoma patients are
seen annually, pediatric glaucoma accounts for about 3% of
which 2.7% are PCG.
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Two genes have been reported to cause PCG, CYP1B1
(OMIM *601771; cytochrome P450, subfamily I, polypeptide
I) and LTBP2 (OMIM *602091; latent transforming growth
factor beta binding protein 2) [7,12]. Both genes cause a
recessive form of this disease. CYP1B1 is the most common
identifiable cause of PCG. There are over 70 reported disease-
associated mutations in CYP1B1. In Saudi Arabia, CYP1B1
mutations account for 96% of PCG cases [6,8]. LTBP2 is a
much rarer cause of PCG, being reported only in Pakistan and
European gypsies [13].

This study was conducted to examine the role of CYP1B1
and LTBP2 in the Saudi Arabian population and to examine
the effect of mutations on the phenotype of patients with PCG
and the influence of the mutation on the surgical outcome.

METHODS
Patients: This research adhered to the tenets of the Declaration
of Helsinki. All participants or their legal guardians signed an
informed consent after being informed about the nature of the
research. The study was approved by the ethical committee
(proposal number # 08–657) of College of Medicine at King
Saud University, Riyadh, Saudi Arabia. All study subjects
were self identified as Saudi Arabian ethnicity. Family names
were all present in the database of Arab families of Saudi
Arabian origin. Additionally, these names indicated that all
five major Saudi Arabian provinces were represented in the
study population. Expatriates were excluded from this study.
Subjects with clinically diagnosed PCG and healthy controls
were recruited into the study at the glaucoma clinic of King
Abdulaziz University Hospital (KAUH) in Riyadh, Saudi
Arabia. All patients were unrelated to each other and never
participated in a similar study or genetically tested. Controls
were unrelated to the patients and to each other. All patients
underwent complete eye examination under general
anesthesia. Examination included assessment of intraocular
pressure (IOP) with Perkins tonometer and/or Tonopen,
anterior segment examination using a portable slit lamp,
measurement of corneal diameter, and gonioscopy. Dilated
fundus examination for optic disc evaluation was performed
with an indirect and direct ophthalmoscope. Inclusion criteria
were: increased corneal diameter (>12.0 mm), raised IOP
(>21 mHg under sedation) and optic disc changes when clarity
of the media permitted. Combined trabeculectomy and
trabeculotomy versus nonpenetrating deep sclerectomy with
adjuvant mitomycin C were the initial surgical procedures.
Patients associated with other ocular or systemic anomalies
were excluded. Non glaucomatous controls (n=50) were

recruited from KAUH. Entry criteria for those subjects were
age >18 years, normal IOP, open angles on gonioscopy, and
normal optic nerves on examination.
CYP1B1 and LTBP2 mutation screening: DNA was extracted
using the illustra blood genomicPrep Mini Spin Kit from GE
Healthcare (Buckinhamshire, UK), and stored at −20 °C in
aliquots until required. The coding exons of CYP1B1 were
amplified using the primers listed in Table 1. Each 25 µl PCR
reaction contained 2.5 µl of 10× reaction buffer with MgCl2

(Amersham Pharmacia Biotech, Piscataway, NJ); 10 pmol of
each primer; 100 pmol/µl each of deoxyATP, deoxyguanosine
triphosphate, deoxycytidine triphosphate and
deoxythymidine triphosphate in Tris HCl buffer (Perkin-
Elmer Corporation, Foster City, CA); 1 unit Taq DNA
polymerase (Amersham Pharmacia Biotech); and 100 ng
genomic DNA template. The mixture was denatured at 95 °C
for 5 min and the PCR reaction was performed for 35 cycles,
in a GeneAmp 9700 PCR system (Applied Biosystems, Foster
city, CA), under the following conditions: denaturation at
95 °C for 1 min, annealing at 56 °C for 30 s and extension at
72 °C for 1 min. The final extension cycle of 72 °C was for
10 min.

Successfully amplified fragments were sequenced in both
directions using the forward and reverse primers and the
BigDye terminator v3.1 cycle sequencing kit (Applied
Biosystems). Fragments were then run on the 3130xl Genetic
Analyzer (Applied Biosystems) according to the
manufacturer protocol. All the sequenced fragments were then
analyzed using SeqScape software v2.6 (Applied
Biosystems). PCG patients which were CYP1B1 mutation-
negative were screened for mutation in the LTBP2 gene using
primers and PCR conditions described previously [14] (Table
2).

Criteria for surgical success: Criteria for surgical success
were IOP ≤21 mmHg without glaucoma medications.
Qualified success was IOP of ≤21 mmHg with glaucoma
medication. Surgical failure was all cases that required further
surgical intervention to control IOP.
Prediction of pathogenicity: Pathogenic characteristics of
detected non-synonymous sequence changes (those that
change an amino acid in the resultant protein) in CYP1B1 or
LTBP2 were assessed through evaluation of interspecies
conservation and an assessment of the possible effect of the
sequence change on protein function using PolyPhen [15].
Data collection and statistical analysis: Data were collected
from medical records then entered and stored in a database

TABLE 1. PCR PRIMERS FOR AMPLIFICATION OF CYP1B1.

Primer pair Forward (5′-3′) Reverse (5′-3′) Length (bp)
Exon 2 TCTCCAGAGAGTCAGCTCCG CTACTCCGCCTTTTTCAGA 1230
Exon 3 GTCACTGAGCTAGATAGCCT GGACAGTTGATTTATGCTCACC 844
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using Microsoft Access 2007® (Microsoft Corporation,
Redmond, WA). Both descriptive and inferential statistical
analyses were conducted to describe different indices and
determine potential associations between phenotype and
genotype profiles. Statistical analysis was done using SPSS v.
19 (IBM, Armonk, NY) and StatsDirect version 2.7.2
(StatsDirect, Ltd, Cheshire, UK). Odds ratios and the
corresponding 95% confidence intervals were calculated to
determine potential associations. Mann–Whitney U test was
done to compare means of pre and post intervention indices
across groups. A p value of <0.05 was used for evidence of
statistical significance.

RESULTS
Clinical features of the patients: Fifty four unrelated families
with at least one affected member with PCG were enrolled
into this study. The pattern of inheritance was consistent with
an autosomal recessive mechanism of transmission in 50
families (92.6%). In 4 families (7.4%) there appeared to be a
pseudo-dominance mode of inheritance and none of the
families examined had an autosomal dominance inheritance.
Out of the 54 families recruited, 13 (24.1%) were multiplex

and in 41 families (75.9%) only one family member was
affected. Consanguinity was a factor in 37 of 54 families
(68.5%). In the 54 families examined, there were a total of 74
affected subjects with PCG, 38 males and 36 females. Among
the PCG probands, the disease was bilateral in 20 (37%) and
unilateral in 34 (63%). At the preoperative assessment, the
mean (SD) age at surgery was 8.4 months (std 18.5), the
preoperative IOP was 31.1 (std 9.3), with a corneal diameter
of 12.8 (std 1.2), cup/disc ratio of 0.66 (0.8), and an average
degree of haze of 2.0 (std 1.2) graded according to the Fantes
scale [16].
CYP1B1 mutation analysis: Mutations in CYP1B1 were
identified in 41 (75.9%) families. No mutation in CYP1B1 was
found in 13 (24.1%) families. Among patients with mutations
(n=41), 35 (85.3%) had homozygous mutations, 6 (14.7%)
had compound heterozygous mutations (Table 3). We
detected a total of 13 mutations: 9 missense mutations (G61E,
A119S, R390H, P437L, D441G, A443G, G466S, G466D, and
R469W), 2 deletions (g.4238_4247del and g.7901_7913del),
and 2 nonsense mutations (R355X and R444X). Two
mutations, G466S and D441G had not been previously

TABLE 2. PCR PRIMERS FOR AMPLIFICATION OF LTBP2.

exon Forward (5'-3') Reverse (5'-3') Annealing
Temp.

1a CCCAGAGCAGGAGAAAGG GGAACAGACTGTACACCTTGG 56
1b GCCCCCTAGACTCAGAGAAG AATCTTCCAATCCCGATTTT 58
2 AATGGCAGAGTCAGGATTCA CTTCAGGACGCAGACTAGGA 55
3 CTGAGGCCAGGAGAGTGG CCAGCCCCAACACCTACT 58
4 AAGCCTGGTGATTCCACATA CACAAAGCAGGTGCTCAAC 60
5 GCGTCCAGTAGGTACTCAGC AGCTAGGCTGCCAAGTGAG 60
6 GGGGCTGGTTATTATCCACT GGCTGAGAAGTTGAGGGAAT 57
7 GGGATCATTCTGGGGTTCTA CTGTGTGCCTGGTATTGACA 55
8 ACTCCCTTCTCCCCTTCTTT ACAGACTGCACCAGCAGAG 60
9 GCTGAGAGGAGTCTGGTGAG TGGCTTCCTCTGTCACTCTC 60
10 GGAGAGGAATCCCACTGAAT ATCTCTGTTCCAGCAGGATG 60
11 ATTCCACTACGCCTCTTCCT GCAGGGAAGGCTACTTCAG 58
12 ACGTGCTTATCCCAACCTG TCTTGACCCCATATGGAAGA 58
13 AAGAGTCCACGCTTTCTGTG ATGGCTGCTCCATAAACAAG 60
14 GTAAAGTGCCTGGCAGAATG GGTGTATAGAGAGCTCCCAGAA 59
15 TTAGACTGGATGTGCTCCAAC AGAGGGACCCTGTGTTCTTT 58
16 CCCCTAGGGTCTTATGCAAG GAGACTGGTCTTCCCCTGAA 55
17 CCCACTGGGCTGACTTTAT AGGCTGGAGTTCTGGTCTCT 56
18 GGGCCTGAGCTAGATCATTT AAGGGCTCAGGAATTCTCAT 55
19 GGCAGCTCTCATTCTTTCCT TGAATATGGCCAAAGAGGAG 60

20–21 CATGCAGAGTGCTCTGAGTTAC GGTCCATTTATGGGGTCTTC 60
22 TTCTAGGGAGGGGGTTTTAG AAGCTTGTGAGCGACTCTTG 59

23–24 CCCAAGAGTCGCTCACAA ACTCCTCGCTCCCATCTTC 60
25 CGAGCCTTTTCCTACATAAGC CAGCACGAAGATGATGATTG 58

26–27 GGAATAGATCAAGAACCCCAGA CTTCTTTGAAGCCTCCCTTG 59
28 TCTGTCCATTGGTTCCTCCT TGTAGCTCCTGGTTTTGCTG 60

29–30 GGCCACTTCTTAGGGTTGTG ACAGAAAAGGTGGAGGCAAC 58
31 GTAGGAACCGGAGGCAAG CCTGGGGACAATCTCTGAC 58

32–33 GTGGGCTGTCAGAGATTGTC CTACTTTGTCCCCAAACAGC 59
34 ATCTCCCAGAGGGTACCAGT CCTGGGCGTATGTACTTGTC 60
35 TCCACAAGAATTTTATGATCCTC TTGTCTTTTGTCTGGGAACC 60
36 TGTCCTTGAGTTGCTTGGTT TCAGGATGATGGTGGATTGT 59
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reported (Table 3). Ten mutations were either frameshift
mutations leading to premature truncation of the protein or
were predicted to be pathogenic based on in silico analysis
and on interspecies conservation (Table 4). Three mutations
(A119S, A443G, and G466S) were predicted to be “benign.”
The p.G61E accounted for 59% of mutations in probands

(homozygous in 29/54 probands and heterozygous in 6/54
probands). The allele frequency for this mutation was 0.03%
in controls and was heterozygous in all instances.

LTBP2 mutation analysis: No mutations in LTBP2 were found
in the 13 PCG subjects who were negative for CYP1B1
mutations.

TABLE 3. CYP1B1 MUTATION-SCREENING IN PCG PATIENTS.

  CYP1B1 mutations  
Proband I.D. Sex Mutation (1) Mutation (2) Mutation (3) Cons Mode of inheritance

109 F g.8147 C > T - - Yes Recessive
120 M g.3987 G > A - - No Pseudo D
237 M g.3987 G > A - - Yes Recessive
259 M g.3987 G > A - - Yes Recessive
262 F g.8006 G > A - - Yes Recessive
267 F g.3987 G > A - - No Recessive
270 M - - - No Recessive
274 F g.8234 G>A - - Yes Recessive
296 M g.3987 G>A - - Yes Recessive
305 M g.3987 G>A - - Yes Recessive
307 M - - - No Recessive
314 M g.3987 G>A g.4238_4247 del - No Recessive
329 M - - - Yes Recessive
338 F g.3987 G>A g.8233 G>A - No Recessive
494 M g.8242 C >T - - Yes Recessive
505 F g.3987 G>A - - No Recessive
517 F g.3987 G>A - - Yes Recessive
556 F g.3987 G>A - - Yes Recessive
624 M - - - No Recessive
631 F g.3987 G>A g.7900 C>T - Yes Recessive
638 M - - - No Recessive
675 M g.8167 C >T - - Yes Recessive
696 F g.3987 G>A - - Yes Recessive
702 F - - - No Recessive
752 M - - - No Recessive
819 F - - - Yes Recessive
839 F g.3987 G>A - - Yes Recessive
844 M - - - No Pseudo D
849 M g.3987 G>A - - Yes Recessive
873 F g.3987 G>A - - Yes Recessive
896 M g.3987 G>A - - Yes Recessive
922 M g.3987 G>A - - Yes Pseudo D
950 F g.3987 G>A - - Yes Recessive
973 F - - - Yes Recessive
979 M g.3987 G>A - - No Recessive
1041 F g.3987 G>A - - Yes Recessive
1114 M g.3987 G>A - - Yes Recessive
1124 F g.3987 G>A - - Yes Recessive
1125 M - - - Yes Recessive
1130 F - - - No Recessive
1136 F g.3987 G>A - - Yes Recessive
1208 M g.3987 G>A - - Yes Recessive
1246 M g.3987 G>A - - Yes Recessive
1281 F g.3987 G>A g.8165 C>G g.8159 A>G No Recessive
1297 F g.3987 G>A - - Yes Recessive
1472 M 7901_7913 del - - Yes Recessive
1481 M g.3987 G>A g.4160 G>T - No Recessive
1541 M g.3987 G>A - - Yes Recessive
1724 M - - - Yes Recessive
2147 F g.3987 G>A - - Yes Recessive
2154 F g. 8242 C>T - - Yes Recessive
2266 M g.3987 G>A g.4160 G>T - No Recessive
2303 M g.3987 G>A - - Yes Recessive
2333 F g.3987 G>A - - Yes Pseudo D

        Mutations in bold were inherited in a Heterozygous status, all other mutations were inherited in a homozygous status. Pseudo
        D=Pseudo-dominance; Cons=Consanguineous.
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Phenotype-genotype correlation: We studied the possible
correlation between the mutation status (present or absent)
with various clinical indices at presentation and at last
postoperative visit. We found that PCG cases with CYP1B1
mutations presented with a high degree of haze than those with
no mutation(s), shown in Table 5. Additionally, PCG cases
with a mutation had higher last postoperative visit indices in
terms of final visit haze and the need for anti-glaucoma
medications. The differences in both last postoperative visit
degree of haze and number of needed anti glaucoma
medications were statistically significant (p=0.025, and 0.015,
respectively). Comparing cases with the specific g.3987 G>A
mutation to those without any mutation revealed that they
were presented to hospital with a significantly higher degree
of haze (p=0.027), and a higher cup/disc ratio, however,
insignificantly (p=0.518). In regards to the last postoperative
visit indices, cases with g.3987 G>A mutation show higher
degree of haze and number of needed medication than cases
without any mutation(s), where both differences were
statistically significant (p=0.017 and 0.049, respectively;
Table 6). Additionally, we found that among cases without
mutation, the surgical success rate was 13/14 (92.9%) which
was much higher than the success rate among those with
mutation 42/60 (70%). This may reflect the impact of severity

due to mutation where the Odds Ratio of failure among cases
with mutation to those without was 5.6, however,
insignificantly (p=0.110).

DISCUSSION
We screened a large cohort of well defined Saudi PCG patients
and perform detailed genotype-phenotype correlations. The
mode of inheritance in the majority of the families was
autosomal recessive, as may be expected in a society where
consanguinity can reach up to 65% in some parts of the
country [17]. Mutations in CYP1B1 were present in over 75%
of patients. As high as this rate is, it is substantially lower than
that reported by Bejjani et al. [8] where the observed rate was
96% in this population. We detected 13 mutations, 11 have
been previously reported in various populations [7,18] and
two were novel. Three mutations (A119S, A443G and G466S)
are predicted to be benign based on in-silico analysis and low
interspecies conservation. Therefore, the pathogenicity of
these three mutations on the development of PCG is unclear.
In the literature, Certain CYP1B1 mutations have been
analyzed in-silico for their possible impact on the protein
structure and function. Comparative modeling of the human
CYP1B1 using the X-ray structure of CYP2c9 as a template
along with molecular dynamics simulations has provided

TABLE 5. CLINICAL INDICES AT PRESENTATION AND POST OPERATIVE FOR PATIENTS WITH CYP1B1 MUTATION(S) AND PATIENTS WITHOUT MUTATION(S).

Index Cases with mutation
(mean±SD)

Cases without mutation
(mean±SD)

p value

Preoperative IOP 30.59 (9.5) 33.36 (8.4) 0.322
Preoperative corneal diameter 12.74 (1.1) 13.15 (1.3) 0.260
Preoperative degree of haze 2.08 (1.1) 1.57 (1.3) 0.113
Preoperative cup/disc ratio 0.70 (0.9) 0.53 (0.3) 0.490
Preoperative number of medication 2.09 (0.6) 2.21(0.4) 0.548
Age at surgery (M) 7.61 (15) 11.21 (28.2) 0.521
Last postoperative visit
IOP 16.65 (5.3) 16.43 (3.9) 0.886
Last postoperative visit corneal diameter 12.45 (1.1) 12.85 (1.1) 0.264
Last postoperative visit degree of haze 0.49 (0.9) 0.00 (0) 0.025
Last postoperative visit number of medication 0.59 (0.9) 0.00 (0) 0.015

TABLE 6. CLINICAL INDICES AT PRESENTATION AND POST OPERATIVE FOR PATIENTS WITH SPECIFIC G.3987 G>A (HOMO) MUTATION AND PATIENTS
WITHOUT ANY MUTATION(S).

Index Cases with g.3987 G>A
(mean±SD)

Cases without any
mutation (mean±SD)

p value

Preoperative IOP 30.73 (9.3) 33.36 (8.4) 0.485
Preoperative corneal diameter 12.42 (0.9) 13.15 (1.3) 0.103
Preoperative degree of haze 2.20 (1.1) 1.57 (1.3) 0.027
Preoperative cup/disc ratio 0.76 (1) 0.53 (0.3) 0.518
Preoperative number of medication 2.22 (0.6) 2.21 (0.4) 0.450
Age at surgery (M) 5.91 (14.7) 11.21 (28.2) 0.267
Last postoperative visit IOP 16.69 (5.2) 16.43 (3.9) 0.795
Last postoperative visit corneal diameter 12.35 (1.2) 12.85 (1.1) 0.077
Last postoperative visit degree of haze 0.59 (1.1) 0.00 (0) 0.017
Last Postoperative visit number of medication 0.44 (0.8) 0.00 (0) 0.049
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evidence for several structural differences that could impact
the functional domains of this protein [19]. In vitro studies to
determine the effect of CYP1B1 mutations on the stability and
function of the protein was performed by Jansson and
coworkers [20]. These investigators studied the effect of two
missense mutations (G61E and R469W) on the stability and
enzymatic activity of CYP1B1. It was observed that the G61E
mutant had lost 60% of its stability, while the R469W mutant
retained about 80% of the stability compared to the wild type.
The effects of the mutants on the function of protein were
further determined by an enzymatic assay that further
confirmed their decreased metabolic activity (50%–70%) for
all the substrates when compared to the wild protein [20].
Similar studies for the variants described as “benign” by in
silico analysis would improve our understanding of these
variants.

We detected CYP1B1 mutations in 75.9% of our PCG
probands, whereas 24.1% had no mutation(s). This rate
(75.9%) is higher than the rate observed in less homogeneous
populations where consanguinity is rare or less common like
Japan (20%) [21], China (17.2%) [22], Indonesia (33.3%)
[23], India (44%) [24], Brazil (50%) [25],Turkey (42.8%)
[26], Morocco (46.5%) [27], Australia (21.6%) [28], France
(48%) [29], and Spain (34.2%) [30]. However, the rate
observed here was comparable to the rates observed in Iran
(70%) [31], Kuwait (70.6%) [32], and the Slovakian gypsies
(100%) where consanguinity is more common [33]. It is
interesting to observe that CYP1B1 appears to play a larger
role in PCG in more homogenous and inbred populations.

The G61E mutation was the most common mutation
detected (63% among PCG patients). The high frequency of
the G61E is likely a founder effect. This mutation was detected
at a 0.03% allele frequency in 50 normal controls. Since the
G61E mutation in CYP1B1 was found in 63% of the tested
PCG patients and constitutes over 80% of the total mutations
detected in this population, screening for this mutation first
would be appropriate.

We screened PCG patients which were CYP1B1 negative
for LTBP2 and we found no mutation(s) after screening the
full gene. Ali et al. [14] first reported that
the LTBP2 mutations c.412delG, c.895C>T, c.1243–1256del,
and c.331C>T caused PCG in four consanguineous families
from Pakistan and in persons of Gypsy ethnicity. Narooie-
Nejad et al. [34] subsequently reported two LTBP2 loss of
function mutations in Iranian families with PCG,
homozygosity for the deletion c.5376delC in exon 36 and
homozygosity for the deletion c.1415delC in exon 7.
Although double heterozygosity (i.e., heterozygosity for
a mutation at each of two separate genetic loci) for
a CYP1B1 mutation and an LTBP2 mutation were reported
by Azmanov et al. [35], the observed combination is of no
clinical significance and digenic inheritance is unlikely. Apart
from these reports, no further studies showing

LTBP2 mutations in PCG patients had been reported thus far.
The negative results obtained here and the lack of further
evidence that LTBP2 mutations are involved in the
pathogenesis of PCG raises questions about the role of this
gene in PCG.

Hollander and coworkers [36,37] correlated CYP1B1
mutations with the degree of angle dysgenesis observed
histologically, as well as disease severity in terms of age at
diagnosis and difficulty in controlling IOP in six congenital
glaucoma patients. Their findings suggest that CYP1B1
mutations may produce allele associated histological findings
that may be correlated with disease severity. We were unable
to identify any phenotypic traits that correlated with
CYP1B1 mutations or between the most common G61E
mutations and other CYP1B1 mutations. This may be due to
the fact that effects are small or that this study lacked the
power to determine differences.

In our study, we found that PCG cases with CYP1B1
mutations had a last postoperative visit degree of haze and a
greater cup/disc ratio than those with no mutation. In
particular, the last postoperative visit degree of haze and
number of medication were zero for cases without
mutation(s). Moreover, PCG cases with the G61E mutation
show even higher rate of the same indices. Additionally, we
found that among cases without mutation, the surgical success
rate was much higher than the rate among those with mutation.
To the best of our knowledge, this is a novel and unique
observation which might be valuable in term of predicting the
severity of the disease during an early stage, choosing the best
treatment regimen and surgical procedure and in providing
counseling for families with affected children.

In general, genotype-phenotype correlation is highly
variable. Walton and coworkers [38] have shown that the
phenotype can vary significantly in the same individual (one
eye being more severely affected than the other). No
consistent correlation has been observed between the severity
of the glaucoma phenotype and the molecular CYP1B1
genotype among individuals with identical mutations within
the same family [8], and among families with identical
mutations [6,8]. No information is available on correlation
between the success of surgical therapy and the type of
CYP1B1 mutation detected. However, it has been reported
that patients with CYP1B1 mutations need more surgical
procedures to control intraocular pressure than individuals
with congenital glaucoma without CYP1B1 mutations [39].

In summary, this report confirms that recessive mutations
in CYP1B1 are the predominant cause of PCG in the Saudi
population with p.G61E as the dominant disease-associated
allele. While over 75% of PCG patients carried CYPB1
mutations this was substantially less than previous reports.
This finding suggests that this population may be powerful to
detect novel genes that cause PCG. Additionally, PCG cases
with a mutation had higher last postoperative visit indices in
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terms of postoperative haze and the need for anti-glaucoma
medications. Genetic testing for patients suspected of PCG
would be highly beneficial in term of predicting the disease
severity. Testing for families with previous history of PCG
would be beneficial and can provide a sense of relief from
uncertainty and help people make informed decisions about
managing their health care.
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