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ABSTRACT

Microbial and viral communities transform the chem-
istry of Earth’s ecosystems, yet the specific re-
actions catalyzed by these biological engines are
hard to decode due to the absence of a scalable,
metabolically resolved, annotation software. Here,
we present DRAM (Distilled and Refined Annotation
of Metabolism), a framework to translate the del-
uge of microbiome-based genomic information into
a catalog of microbial traits. To demonstrate the
applicability of DRAM across metabolically diverse
genomes, we evaluated DRAM performance on a
defined, in silico soil community and previously
published human gut metagenomes. We show that
DRAM accurately assigned microbial contributions
to geochemical cycles and automated the partition-
ing of gut microbial carbohydrate metabolism at sub-
strate levels. DRAM-v, the viral mode of DRAM, es-
tablished rules to identify virally-encoded auxiliary
metabolic genes (AMGs), resulting in the metabolic
categorization of thousands of putative AMGs from
soils and guts. Together DRAM and DRAM-v provide
critical metabolic profiling capabilities that decipher
mechanisms underpinning microbiome function.

INTRODUCTION

DNA sequencing advances have offered new opportunities
for cultivation-independent assessment of microbial com-
munity membership and function. Initially, single gene ap-
proaches established taxonomic profiling capabilities, pro-

viding innumerable intellectual leaps in microbial compo-
sition across biomes (1,2). Recently, the field has expanded
from gene-based methods toward metagenome-assembled-
genome (MAG) studies, which offer population level infer-
ences of microbial functional underpinnings (3–5). Across
ecosystems, these MAGs illuminated new biological feed-
backs to climate-induced changes (6–8), revolutionized per-
sonalized microbiota-based therapeutics for human health
(9,10), and dramatically expanded the tree of life (11–13).
Metagenomic advances have also transformed our ability to
study viruses, and since they lack a universal barcode gene,
viral MAG (vMAG) enabled studies are required for even
viral taxonomic surveys (14,15).

At this point, there are hundreds of thousands of MAGs
and vMAGs available from the human gut and other di-
verse environments (7,14–23). This inundation of data re-
quired development of scalable, genome-based taxonomic
approaches, which are now largely in place for both mi-
crobes (24,25) and viruses (26,27). However, there is a grow-
ing consensus that for any of these habitats the taxonomic
composition of the microbiome alone is not a good predic-
tor of ecosystem functions, properties which are often better
predicted from microbial and viral traits (28,29). Therefore,
there is an absolute need to develop gene annotation soft-
ware that can simultaneously highly resolve trait prediction
from vast amounts of genomic content.

While there are several tools for annotating genes from
microbial genomes (30–33), a single tool has yet to trans-
late current knowledge of microbial metabolism into a for-
mat that can be applied across thousands of genomes.
Most online annotators are only useful for a handful of
genomes or for profiling genes using a single database (34–
36). Other recently developed tools have advanced to anno-
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tate thousands of genomes with multiple databases, which
expands the biological information queried (30–32). How-
ever, biological interpretation is still burdened by chal-
lenges in data synthesis and visualization, thereby prevent-
ing efficient metabolic profiling of microbial traits with
known ecosystem relevance. In addition, viruses can encode
Auxiliary Metabolic Genes (AMGs) that directly repro-
gram key microbial metabolisms like photosynthesis, car-
bon metabolism, and nitrogen and sulfur cycling (37,38),
but identifying and insuring these AMGs are not ‘contam-
inating’ microbial DNA (39) remains a painfully manual
process.

Here, we present a new tool, DRAM (Distilled and
Refined Annotation of Metabolism), and the companion
tool DRAM-v for viruses, and apply these tools to exist-
ing, assembled metagenomic datasets to demonstrate the
expanded utility over past approaches. DRAM was de-
signed to profile microbial (meta)genomes for metabolisms
known to impact ecosystem function across biomes and is
highly customizable to user annotations. DRAM-v lever-
ages DRAM’s functional profiling capabilities, and adds a
ruleset for defining and annotating AMGs in viral genomes.
Together DRAM and DRAM-v decode the metabolic func-
tional potential harbored in microbiomes.

MATERIALS AND METHODS

DRAM annotation overview

The DRAM workflow overview is detailed in Figure 1.
DRAM does not use unassembled reads, but instead uses
assembly-derived FASTA files input by the user. Input files
may come from unbinned data (metagenome contig or scaf-
fold files) or genome-resolved data from one or many or-
ganisms (isolate genomes, single-amplified genome (SAGs),
MAGs). First each file is filtered to remove short contigs
(by default contigs <2500 bp, but this can be user de-
fined). Then Prodigal (40) is used to detect open reading
frames (ORFs) and subsequently predict their amino acid
sequences, supporting all genetic codes on defined on NCBI
(Figure 1, Supplementary Figure S1). Specifically, we use
the anonymous/metagenome mode of Prodigal (40), which
is recommended for metagenome assembled contigs and
scaffolds. By default, first Prodigal (40) tests genetic code
11, then uses other genetic codes to resolve short genes, or
notifies user that no code resolves gene length.

Next, DRAM searches all amino acid sequences against
multiple databases and provides all database hits in a sin-
gle output file called the Raw output (Supplementary File
S1, Figure S1). Specifically, ORF predicted amino acid se-
quences are searched against KEGG (41), UniRef90 (42)
and MEROPS (43) using MMseqs2 (44), with the best hits
(defined by bit score, default minimum threshold of 60) re-
ported for each database in the Raw output. Note, the use
of the Uniref90 (42) database is not default due to the in-
creased memory requirements which can be prohibitive to
many users, thus a user should specify the –use uniref flag
to search amino acid sequences against UniRef90 (42). If
there is no hit for a given gene in a given database above
the minimum bit score threshold, no annotation is reported
for the given gene (unannotated) and database in the Raw
output. Reciprocal best hits (RBHs) are defined by searches

where the database sequence that is the top hit from a for-
ward search of the input gene has a bit score >60 (by de-
fault) and is the top hit from the reverse search of the
database hit against the all genes from the input FASTA
file with a bit score >350 (by default) (3,45). DRAM also
uses MMSeqs2 (44) to perform HMM profile searches of
the Pfam database (46), while HHMER3 (47) is used for
HMM profile searches of dbCAN (48) and VOGDB (http:
//vogdb.org/). For HMM searches of Pfam, dbCAN and
VOGDB, a hit is recorded if the coverage length is >35%
of the model and the e-value is <10−15 (48). If the user does
not have access to the KEGG database, DRAM automat-
ically searches the KOfam (49) database with HMMER in
order to assign KOs, using gene specific e-value and per-
cent coverage cutoffs provided here ftp://ftp.genome.jp/pub/
db/kofam/ko list.gz (49). Users should note that using KO-
fam (49) rather than KEGG genes (41), may result in less
annotation recovery, thereby resulting in some false nega-
tives in the DRAM Product (described below). After ORF
annotation, tRNAs are detected using tRNAscan-SE (50)
and rRNAs are detected using barrnap (https://github.com/
tseemann/barrnap).

When gene annotation is complete, the results are merged
to a single tab-delimited annotation table that includes the
best hit from each database for user comparison. (Sup-
plementary File S1, Figure S1). For each gene annotated,
DRAM provides a single, summary rank (A–E), which rep-
resents the confidence of the annotation (Supplementary
Figure S1). The highest rank includes reciprocal best hits
(RBH) with a bit score >350, against KEGG (41) genes
(A rank) (41), followed by reciprocal best hits to UniRef90
(42) with a bit score >350 (B rank), hits to KEGG (41)
genes (41) with a bit score >60 (C rank) and UniRef90
(42) with a bit score >60 (C rank) (45). The next rank rep-
resents proteins that only had Pfam (46), dbCAN (48) or
MEROPS (43) matches (D rank), but hits to KEGG (41) or
UniRef90 (42) were <60 bit score. The lowest rank (E) rep-
resents proteins that had no significant hits to any DRAM
database including KEGG (41), UniRef90 (42), dbCAN
(48), Pfam (46), MEROPS (43), or only had significant hits
to VOGDB. Supplementary Figure S1 provides a schematic
summarizing this annotation system. If one or more of the
databases used for determining annotation ranks (KEGG,
UniRef90, Pfam) is not used during DRAM annotation, all
genes are considered to not have any hits against the un-
used database(s) and the respective annotation rank (e.g.
B in the case of UniRef90) would be absent depending on
which database was not used. In summary, the Raw out-
put of DRAM provides for each gene in the dataset a sum-
mary rank (A–E), as well as the hits across up to 6 databases
including KEGG, UniRef90, Pfam, CAZY, MEROPS and
VOGDB, allowing users to easily compare annotation con-
tent provided by different sources.

Beyond annotation, DRAM is intended to be a data com-
piler. Users can provide output files from GTDB-tk (24)
and checkM (51) (or other user defined taxonomy and com-
pletion estimates), which are input into DRAM to provide
taxonomy and genome quality information of the MAGs,
respectively. For downstream analyses, DRAM provides a
FASTA file of all entries from all input files, a GFF3- for-
matted file containing all annotation information, FASTA
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Figure 1. Conceptual overview and workflow of the assembly-based software, DRAM (Distilled and Refined Annotation of Metabolism). DRAM (green,
A) profiles microbial metabolism from genomic sequences, while DRAM-v profiles the Auxiliary Metabolic Genes (AMGs) (orange, B) in vMAGs.
DRAM’s input data files are denoted by circles in gray, while analysis and output files are denoted by rectangles in green for MAGs or orange for AMGs.
DRAM’s outputs (from the Raw, Distillate and Product) provide three levels of annotation density and metabolic parsing. More details on the output files
and specific operation can be found in the Supplementary Text or at https://github.com/shafferm/DRAM/wiki. User defined taxonomy (e.g. GTDB-Tk
(24)) and completion estimates (e.g. CheckM (51)) for MAGs and isolate genomes can be input into DRAM.

files of nucleotide and amino acid sequences of all genes,
and text files with the count and position of the detected
tRNAs and rRNAs (Supplementary Figure S1). Finally, a
folder containing one GenBank formatted file for each in-
put FASTA is created.

DRAM Raw annotations are distilled to create genome
statistics and metabolism summary files, which are found in
the Distillate output (Supplementary File S2). The genome
statistics file provides most genome quality information re-
quired for MIMAG (25) reporting, including GTDB-tk (24)
and checkM (51) information, if provided by the user. The
summarized metabolism table contains the number of genes
with specific metabolic function identifiers (KO, CAZY
ID etc.) for each genome, with information distilled from
multiple sources, including custom-defined metabolism
modules (see https://raw.githubusercontent.com/shafferm/
DRAM/master/data/genome summary form.tsv). For ease
of metabolic interpretation, in the Distillate, many of the
genes annotated in the Raw that can be assigned to path-
ways are output to multiple sheets assigned by functional

category and organized by pathway (e.g. energy, carbon uti-
lization, transporters). Thus, the Distillate provides users
with a pathway-centric organization of genes annotated in
the Raw, while also summarizing the genome quality statis-
tics.

The Distillate output is further distilled to the Product,
an HTML file displaying a heatmap (Supplementary File
S3), created using Altair (52), as well as a corresponding
data table. The Product has three primary parts: pathway
coverage (e.g. glycolysis), electron transport chain compo-
nent completion (e.g. NADH dehydrogenase), and pres-
ence of specific functions (e.g. mcrA, methanogenesis). The
pathways selected for completion analysis were chosen be-
cause of their central role in metabolism. Pathway cover-
age is measured using the structure of KEGG (41) modules.
Modules are broken up into steps and then each step is di-
vided into paths. Paths can be additionally subdivided into
substeps with subpaths. Coverage is given as the percent
of steps with at least one gene present, substeps and sub-
paths are considered (Supplementary Figure S2A). This re-
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quires that at least one subunit of each gene in the pathway
to be present. Electron transport chain component comple-
tion is measured similarly. Modules are represented as di-
rected networks where KOs are nodes and outgoing edges
connect to the next KO in the module. Completion is the
percent coverage of the path through the network with the
largest percentage of genes present (Supplementary Figure
S2B). Function presence is measured based on the presence
of genes with a set of identifiers. The gene sets were made via
expert-guided, automatic curation of specific metabolisms
(see Supplementary Text, section Interpreting results from
DRAM and DRAM-v). Some functions require the pres-
ence of a single gene while others only require one or more
annotations from sets of genes to be present (Supplemen-
tary Figure S2C). Specifics of the logic behind pathway
completion, subunit completion, and specific functional po-
tential calls are detailed in the Supplementary Text (section
DRAM pathways and enzyme modularity completion).

Benchmarking DRAM against commonly used annotators

In order to compare the performance in terms of run-
time, memory usage and annotation coverage we compared
DRAM to other commonly used genome or MAG anno-
tation tools including Prokka (30) (v1.14.0), DFAST (31)
(v1.2.3) and MetaErg (32) (v1.2.0) using three separate
datasets: (i) E. coli strain K-12 MG1655, (ii) an in silico soil
community we created (15 phylogenetically and metabol-
ically distinct genomes from isolate and uncultivated Ar-
chaea and Bacteria) and (iii) a set of 76 MAGs generated
from the largest HMP1 (53) fecal metagenome (described
below).

To compare annotation database size of each tool
(Prokka, DFAST and MetaErg) to DRAM, we counted
the entries of each database used by default for each tool
(Supplementary File S4). Specifically, for BLAST-based
searches, the number of FASTA entries were counted for a
given database, and for HMM-based searches, the number
of model entries were counted for a given database.

To evaluate the annotation recovery by each tool, we
compared the number of annotated, hypothetical and unan-
notated genes assigned by each annotation tool to an in sil-
ico soil community and a set of MAGs generated from the
largest HMP fecal metagenome. A gene was considered an-
notated in DRAM if it had at least one annotation from
KEGG (41), UniRef90 (42), MEROPs (43), Pfam (46) or
dbCAN that was not ‘hypothetical’, ‘uncharacterized’ or
‘domain of unknown function’ gene. A gene is defined as hy-
pothetical in DRAM if hits for a gene lacked defined anno-
tation, and at least one of the annotations from KEGG (41),
UniRef90 (42), MEROPs (43), Pfam (46) and dbCAN were
‘hypothetical’, ‘uncharacterized’ or ‘domain of unknown
function’. A gene was defined as unannotated in DRAM if
no annotation was assigned from KEGG (41), UniRef90
(42), MEROPs (43), Pfam (46) or dbCAN (48). This is in
contrast to other annotators, like Prokka (30) and DFAST
(31) that remove many to all hypothetical genes from their
databases and subsequently all genes are called as hypothet-
ical, even genes that lack an annotation. Since these pro-
grams mask conserved hypothetical genes, the user loses
the ability for broader biological context and further non-

homology based discovery of protein function. In our per-
formance analyses we considered DFAST and Prokka hy-
pothetical labels as unannotated, as it was not possible to
discern the difference between a gene that had no represen-
tatives in a database (unannotated) and a gene that had best
hits to hypothetical genes in other organisms that were an-
notated in the database (hypothetical). In MetaErg (32), a
gene was considered unannotated if in the master tab sep-
arated table there was no Swiss-Prot (53), TIGRFAM or
Pfam (46) description. In MetaErg, a gene was considered
hypothetical if hits lacked a defined annotation, and had at
least one annotation from Swiss-Prot (53), TIGRFAM and
Pfam (46) that contained ‘hypothetical’, ‘uncharacterized’
or ‘domain of unknown function’.

Beyond differences in definition, we note that the sum-
mation of annotated, hypothetical, and unannotated genes
is different for each tool due to the use of different gene
callers or different filters on called genes, despite using
the same input file (Supplementary File S4). Specifically,
Prokka (30), MetaErg (32) and DRAM use Prodigal (40)
to call genes, while DFAST (31) uses MetaGeneAnnota-
tor (54). But compared to DRAM, Prokka (30) filters out
called genes that overlap with any RNA feature or CRISPR
spacer cassette, while MetaErg (32) filters out all called
genes <180 nucleotides. Default parameters were used for
all annotation tools except for DRAM, which employed the
–use uniref flag to use UniRef to maximize the annotation
recovery.

To measure speed and memory usage the three test sets
were used with each annotation tool. All tools were run
with default parameters. Each dataset and tool combina-
tion was run four times on the same machine using 10 In-
tel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz processors.
Average and standard deviations of run time and the maxi-
mum memory usage were reported. Performance data is re-
ported in Supplementary Figure S3A–D, and File S4.

The unit of annotation in DRAM is at the level of the
gene, thus the number of genes (and not the number of
genomes) in a dataset is the primary factor in determin-
ing runtime. In other words, assuming the same number of
genes in the dataset, there would be no run time difference
between the DRAM annotation of 100 unbinned, deeply
sequenced, assembled metagenome samples and 10 000
binned, partial MAGs. For the datasets reported here, the
gene numbers are 55 040 for a ‘mock’ soil community and
143 551 for 76 MAGs assembled and binned from a HMP
fecal metagenome, with the average run times for these data
listed in Supplementary Figure S3B. To demonstrate scala-
bility of DRAM, we also included the DRAM annotations
for one of the largest MAG studies from a single ecosys-
tem (21), with annotations provided for 2535 MAGs (and
including 6,273,162 total genes across the dataset) (https://
zenodo.org/record/3777237). Summarizing, DRAM is scal-
able to an unlimited number of genes, however run time
will be increased based on the number of genes annotated.
In terms of the Product output, DRAM is not limited, but
the Product heatmap is broken into sets of 1000 genomes or
metagenomes to facilitate effective visualization.

To address the accuracy of DRAM in recovering anno-
tations for organisms with different levels of database rep-
resentation, we used the most experimentally validated mi-
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crobial genome, Escherichia coli K12 MG1655 to annotate
protein sequences with DRAM using different databases.
We evaluated the (i) the full set of DRAM databases, (ii) the
full set of DRAM databases with all Escherichia genera re-
moved and (iii) the full set of DRAM databases with all En-
terobacteriaceae family members removed. The latter two
databases (ii and iii) are meant to address assigning anno-
tations of a microbial genome that may not have close rep-
resentatives in the database (Supplementary Figure S3D).

Selection of 15 representative soil genomes for annotation
benchmarking

To validate DRAM, we chose a set of phylogenetically di-
verse genomes from organisms with varying and known
energy generating metabolisms. All genomes included in
this analysis are from isolates, except for a member of the
Patescibacteria, which was included to highlight the appli-
cability of DRAM to Candidate Phyla Radiation (CPR)
(Supplementary File S4). This dataset is not meant to rep-
resent an entire soil community, but rather was selected to
highlight the metabolic repertoire (e.g. carbon, nitrogen,
sulfur metabolisms) and phylogenetic divergence (different
phyla across Bacteria and Archaea domains) commonly an-
notated in soil datasets.

Assembled nucleotide FASTA files for each genome
or MAG were downloaded from NCBI or JGI-IMG.
Genomes were annotated using DRAM.py annotate and
summarized using DRAM.py distill (Supplementary Fig-
ure S1, Files S3 and S5). Genomes were quality checked
with checkM (51) and taxonomically classified using
GTDB-Tk (v0.3.3) (24). Genome statistics and accession
numbers are reported in Supplementary File S4.

Human gut metagenome samples download and processing

Forty-four human gut metagenomes were downloaded
from the HMP data portal (https://portal.hmpdacc.org/)
(Supplementary File S4) (55). All samples are from the
HMP study (56) and are healthy adult subjects. All reads
were trimmed for quality and filtered for host reads us-
ing bbtools suite (sourceforge.net/projects/bbmap/) (57).
Samples were then assembled separately using IDBA-UD
(58) using default parameters. The resulting assemblies were
annotated using DRAM.py annotate and distilled using
DRAM.py distill, resulting in 2 815 248 genes. To calcu-
late coverage of genes, coverM (https://github.com/wwood/
CoverM) was used in contig mode with the count measure-
ment. These counts were then transformed to gene per mil-
lion (GPM), which was calculated in the same manner as
transcripts per million (TPM). To compare the variability
of bulk level (Distillate categories) and substrate level cat-
egories across 44 human gut metagenomes, we calculated
Bray-Curtis distances between all pairs of samples and used
the Levene test to compare the variability of distances be-
tween annotations (Supplementary Figure S4).

Human gut metagenome for MAG generation, sample down-
load and processing

To examine DRAM’s ability to assign functionalities
relevant to the human gut, we annotated MAGs present

in a single Human Microbiome Project (55) sample.
Raw reads from SRA accession number SRS019068 (the
largest HMP fecal metagenome collected to date, with
29 Gbp/sample) were downloaded from the NCBI Se-
quence Read Archive using wget (link: http://downloads.
hmpdacc.org/dacc/hhs/genome/microbiome/wgs/analysis/
hmwgsqc/v2/SRS019068.tar.bz2). Reads were trimmed
for quality using sickle (https://github.com/najoshi/sickle)
and subsequently assembled via IDBA-UD (58) using
default parameters. Resulting scaffolds were binned using
Metabat2 (59). We recovered 135 MAGs from this sample,
that were dereplicated into 76 medium and high quality
MAGs (60). Bins were quality checked with checkM (51),
taxonomically classified using GTDB-Tk (v0.3.3) (24),
and annotated and distilled using DRAM (Supplementary
Figure S5, Files S1–S2). All assembly statistics and MAG
statistics can be found in Supplementary File S4. To
interrogate the importance of carbon metabolism in the
human gut, the DRAM annotated CAZyme and SCFA
production potential was profiled across the 76 medium
and high quality MAGs using the DRAM Distill function.
MAGs were clustered using hierarchical clustering via the
hclust complete method in R.

DRAM-v viral annotation and AMG prediction overview

The DRAM-v workflow to annotate vMAGs and predict
potential AMGs is detailed in Figure 1 and Supplemen-
tary Figure S6. DRAM-v uses VirSorter (61) outputs to
find viral genomic (genomes or contigs) information in as-
sembled metagenomic data. DRAM-v inputs must include
a VirSorter (61) predicted vMAGs FASTA file and VIR-
Sorter affi -contigs.tab file. Each vMAG is processed in-
dependently using the same pipeline as in DRAM, with
the addition of a BLAST-type annotation against all viral
proteins in NCBI RefSeq. All database annotations in the
DRAM-v results are merged into as single table as with the
Raw DRAM output.

After the annotation step, auxiliary scores are assigned
to each gene. The auxiliary scores are on a scale from 1 to
5, and provide the user with confidence that a gene is on
a vMAG (and not contaminating source). Here a score of
1 represents a gene that is confidently virally encoded and
a score of 4 or 5 represents a gene that users should take
caution in treating as a viral gene. These scores are based
on previous manually curated data provided in Supplemen-
tary File S4. Auxiliary scores are assigned based on DRAM
mining the category of flanking viral protein clusters from
the VIRSorter affi-contigs.tab file. A gene is given an auxil-
iary score of 1 if there is at least one hallmark gene on both
the left and right flanks, indicating the gene is likely viral.
An auxiliary score of 2 is assigned when the gene has a vi-
ral hallmark gene on one flank and a viral-like gene on the
other flank. An auxiliary score of 3 is assigned to genes that
have a viral-like gene on both flanks. An auxiliary score of
4 is given to genes with either a viral-like or hallmark gene
on one flank and no viral-like or hallmark gene on the other
flank, indicating the possibility that the non-viral supported
flank could be the beginning of microbial genome content
and thus not an AMG. An auxiliary score of 4 is also given
to genes that are part of a stretch with three or more adja-

https://portal.hmpdacc.org/
https://github.com/wwood/CoverM
http://downloads.hmpdacc.org/dacc/hhs/genome/microbiome/wgs/analysis/hmwgsqc/v2/SRS019068.tar.bz2
https://github.com/najoshi/sickle


8888 Nucleic Acids Research, 2020, Vol. 48, No. 16

cent genes with non-viral metabolic function. An auxiliary
score of 5 is given to genes on contigs with no viral-like or
hallmark genes and genes on the end of contigs.

Next, various flags that highlight the metabolic potential
of a gene and/or qualify the confidence in a gene being viral
are assigned (Figure 1). The ‘viral’ flag (V) is assigned when
the gene has been associated with a VOGDB identifier with
the replication or structure categories. The ‘metabolism’ flag
(M) is assigned if the gene has been assigned an identifier
present in DRAM’s Distillate. The ‘known AMG’ flag (K) is
assigned when the gene has been annotated with a database
identifier representing a function from a previously iden-
tified AMG in the literature. The ‘experimentally verified’
flag (E) is similar to the (K) flag, but the AMG has to be an
experimentally verified AMG in a previous study, meaning
it has been shown in a host to provide a specific function
(e.g. psbA photosystem II gene for photosynthesis (62,63)).
Both the (K) and (E) flags are called based on an expert-
curated AMG database composed of 257 and 12 genes, re-
spectively. The ‘attachment’ flag (A) is given when the gene,
while metabolic has been given identifiers associated with
viral host attachment and entry (as is the case with many
CAZymes). The viral ‘peptidase’ flag (P) is similar to the
(A) flag but when the gene is given identifiers that are pep-
tidases previously identified as potentially-viral using, not
AMGs, based on the distribution of peptidase families pro-
vided in the MEROPS (43) database. The ‘near the end of
the contig’ flag (F) is given when the gene is within 5000
bases of the end of a contig, signifying that the user should
confirm viral genes surrounding the putative AMG, as there
is less gene content to surrounding the putative AMG. The
‘transposon’ flag (T) is given when the gene is on a contig
that contains a transposon, highlighting to the user that this
contig requires further inspection as it may be a non-viral
mobile genetic element (64,65). The ‘B’ flag is given to genes
within a set of three or more consecutive genes assigned a
metabolism flag ‘M’, signifying that this gene may not be an
AMG and instead located in a stretch of non-viral genes.
Specifics of the logic behind the AMG flags (e.g. (P), (A),
(B) flags) is detailed in the Supplementary Text and File S4.
In summary, DRAM-v flags automate expert curation of
AMGs, with the intention to provide the user with known
AMG reference sequences, indicate to the user viral genes
that should not be considered AMGs, and cue the user to
genes that require additional curation before reporting.

The distillation of DRAM-v annotations is based on the
detection of potential AMGs. By default, a gene is con-
sidered a potential AMG if the auxiliary score is <4, the
gene has been assigned an (M) flag, and has not been as-
signed as a peptidase or CAZyme involved in viral entry or
metabolism (P or A flag), as a homolog to a VOGDB iden-
tifier associated with viral replication or structure (V flag),
or the gene is not in a row of three metabolic genes (B flag).
The reported flags and minimum auxiliary score threshold
can be changed by the user. All flags and scores were defined
using experimentally validated AMGs (Supplementary File
S4), and then were validated using a set of published AMGs
from soil.

DRAM-v annotations are distilled to create a vMAG
summary (DRAM-v Distillate) and a potential AMG sum-
mary (DRAM-v Product). The vMAG summary is a table

with each contig and information about the contigs satisfy-
ing many MIUViG requirements (19). Other information is
also included in this output such as the VirSorter (17) cat-
egory of the virus, if the virus was circular, if the virus is a
prophage, the number of genes in the virus, the number of
strand switches along the contig, if a transposase is present
on the contig, and the number of potential AMGs. We also
summarize the potential AMGs giving the metabolic in-
formation associated with each AMG as found in Distil-
late. DRAM-v’s Product further summarizes the potential
AMGs showing all vMAGs, the number of potential AMGs
in each contig, and a heatmap of all possible Distillate cate-
gories to which each AMG (category 1–3, default) belongs.

Retrieval and processing of Emerson et al. data

1,907 vMAGs reported by Emerson et al. (14) were re-
trieved from DDBJ/ENA/GenBank via the accession num-
ber QGNH00000000. These contigs were processed with
VirSorter 1.0.3 (61) in virome decontamination mode to
obtain categories and viral gene information necessary for
DRAM-v. Viral sequences with viral categories 1 and 2
and prophage categories 4 and 5 retained (1867 contigs).
DRAM-v was then run with default parameters, and the
Distillate table is reported in Supplementary File S6 and the
Product is in Supplementary File S7.

Processing of HMP viral sequences

Viral sequences were identified in the assembled HMP
metagenomes using VirSorter 1.0.3 (61) hosted on the Cy-
Verse discovery environment. VirSorter (61) was run with
default parameters using the ‘virome’ database and viral
sequences with viral categories 1 and 2 and prophage cat-
egories 4 and 5 were retained (2932 contigs). Resulting vi-
ral sequences were annotated using DRAM-v.py annotate
(min contig size flag set to 10 000) and summarized using
DRAM-v.py distill (Supplementary Files S8 and S9). All vi-
ral genomes used or recovered in this study are reported in
Supplementary File S10.

Generation of AMG sequence similarity network

To identify the AMGs shared across systems, sequence sim-
ilarity networks were generated via the EFI-EST webtool
(66) using putative AMGs recovered from soil (n = 547) and
fecal (n = 2094) metagenomes via DRAM-v as the input.
A minimum sequence length of 100 amino acids, no maxi-
mum length and 80% amino acid identity was specified from
initial edge values. Representative networks were generated
and visualized in Cytoscape 3.7.2 (67). Edge scores were fur-
ther refined and Distillate categories and system informa-
tion were overlaid in Cytoscape (67). The visualization of
the resulting network was filtered to clusters >5.

Virus host matching in a single HMP sample

For the single binned HMP sample (SRS019068), viral
sequences were matched to host MAGs using the CRISPR
Recognition Tool (68) plugin (version 1.2) in Geneious.
To identify matches between viral protospacers and host
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CRISPR–Cas array spacers, we used BLASTn with an
e-value cutoff of 1 × 10−5. All matches were manually
confirmed by aligning sequences in Geneious, with zero
mismatches allowed. There was one virus (scaffold 938)
that had a CRISPR host match and a putative AMG (genes
HMP1 viralSeqs 398 VIRSorter scaffold 938-cat 2 58-
HMP1 viralSeqs 398 VIRSorter scaffold 938-cat 2 59),
with details provided in the Supplementary Text, section
Integration of DRAM and DRAM-v to begin to infer virocell
metabolism.

Adding metabolisms to DRAM

DRAM is a community resource, as such we welcome
metabolism experts to help us build and refine metabolisms
analyzed in DRAM. Visit this link to fill out the google
form, your metabolism will be vetted and you will receive an
email from our team: https://docs.google.com/forms/d/1j0-
vw5K7V4S7KmIt8jmrbGMqWgdKla9T7i3bDBf7vfo/.

RESULTS

Enhanced annotation and distillation of genome attributes
with DRAM

Like the process of distillation, DRAM generates and sum-
marizes gene annotations across genomes into three levels
of refinement: (i) Raw, (ii) Distillate and (iii) Product (Fig-
ure 1). The Raw is a synthesized annotation of all genes in
a dataset across multiple databases, the Distillate assigns
many of these genes to specific functional categories, and
the Product visualizes the presence of key functional genes
across genomes. Through this high-throughput distillation
process, DRAM (Figure 1A), and the companion program
DRAM-v (Figure 1B), annotates and organizes high vol-
umes of microbial and viral genomic data, enabling users
to discern metabolically relevant information from large
amounts of assembled microbial and viral community se-
quencing information.

The Raw annotations provided by DRAM are a com-
prehensive inventory of multiple annotations from many
databases. These Raw annotations are where most other an-
notators stop, with analyses in the DRAM Distillate and
Product uniquely designed to expedite the functional and
structural trait profiling within and across genomes (Figure
2A). In the Distillate, the DRAM Raw data is parsed into
five categories and subsequent subcategories (Figure 2B).
With the goal to standardize the reporting of genome qual-
ity across publications, the minimum suggested standards
for reporting MAGs (25) are also summarized in the Dis-
tillate. Specifically, DRAM compiles the quantification of
tRNAs, rRNAs and genome size metrics (e.g. length, num-
ber of contigs) with user provided estimates of genome com-
pleteness, contamination (51) and genome taxonomy (24).
This summation is synthesized into a quality metric for each
genome that includes a rank of high, medium, or low qual-
ity based on established standards (25).

The Product is the most refined level of DRAM, and uses
functional marker genes to infer broad metabolic descrip-
tors of a genome. This summary of genes enables classifi-
cation of the respiratory or fermentative metabolisms en-
coded in a genome, while also accounting for selected car-

bon metabolic pathways (Figure 3, Supplementary File S3).
Moreover, completion estimates are calculated for electron
transport chain complexes or pathways (Figure 3). We note
these completion metrics are based on the percentage of
genes recovered for unique subunits or physiological steps
(Figure 3A), which is in contrast to analyses from other
tools that recognize all non-redundant routes as equiva-
lent (Supplementary Figure S2). This provides more ac-
curate pathway completion estimates, as certain pathways
are often underestimated when less physiologically refined
approaches are used. The Product provides an interactive
HTML heatmap that visualizes the presence of specific
genes, including the gene identifiers which allow the user
to link data across all DRAM levels (in the Raw and Distil-
late).

We recognize that DRAM is a first step in the annota-
tion process, and thus the DRAM outputs are designed to
make it convenient to export content at the gene, pathway
or genome level (e.g. FASTA or GenBank files). To help the
user navigate the DRAM levels, we constructed a genome
metabolic cartoon based on DRAM annotations of an iso-
late genome (Dechloromonas aromatica strain RCB) (Figure
2A, Supplementary File S4). We use this figure to illustrate
where different genetic attributes reside in DRAM. No-
tably, DRAM has the ability to distill microbial metabolism
for thousands of individual genomes simultaneously, which
allows users to easily compare and identify patterns of func-
tional partitioning within an entire microbial community.

DRAM recovers more annotations compared to other
assembly-based annotation software

We first compared the overall features of DRAM to com-
mon genome annotators or viewers (Supplementary Ta-
ble S1), finding that published annotation systems often
lack the ability to scale across thousands of genomes, vi-
sually summarize metabolism, or annotate virally encoded
metabolic functions. Next to benchmark DRAM perfor-
mance, we compared the DRAM database content and
performance criteria to results from published MAG an-
notation tools (Prokka (30), DFAST (31) and MetaErg
(32)), which are three commonly used pipelines for genome
annotation with multi-genome files (Supplementary Table
S1). To maximize annotation recovery, DRAM incorpo-
rates seven different databases that provide functionally
disparate, physiologically informative data (e.g. MEROPS
(43), dbCAN2 (48)), rather than overlapping content (e.g.
HAMAP, UniProt) (Figure 2C). Beyond just using more
databases for annotation, DRAM also provides expert cu-
ration of this content (e.g. dbCAN2, MEROPS) (see Sup-
plementary Information, Interpreting results from DRAM
and DRAM-v). Moreover, for the UniProt database (69)
shared across these annotators, DRAM uses the most
comprehensive version (UniRef90 (42)) compared to other
annotators that use a proprietarily culled version of the
database resulting in 132- to 3412-fold less entries. Summing
all the databases used for each annotator, DRAM has mil-
lions more entries (from 21M to 104M) (Figure 2D, Supple-
mentary File S4).

We next evaluated the annotation recovery of DRAM rel-
ative to published annotation tools by quantifying the num-

https://docs.google.com/forms/d/1j0-vw5K7V4S7KmIt8jmrbGMqWgdKla9T7i3bDBf7vfo/
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Figure 2. DRAM provides multiple levels of metabolic and structural information. (A) Genome cartoon of Dechloromonas aromatica RCB demonstrates
the usability of DRAM to understand the potential metabolism of a genome. Putative enzymes are colored by location of information in DRAM’s outputs:
Raw (black), Distillate (gray) and Product (white). Gene numbers, identifiers, or abbreviations are colored according to metabolic categories outlined in (B)
and detailed in Supplementary File 4. Genes with an asterisk had an unidentified localization by PSORTb (101). (B) Flow chart shows the metabolisms from
DRAM’s Distillate. Distillate provides five major categories of metabolism: energy, transporters, miscellaneous (MISC), carbon utilization and organic
nitrogen. Each major category contains subcategories, with outlines denoting location of information within Distillate and Product. (C) Heatmap shows
presence (colored) and absence (white) of databases used in comparable annotators to DRAM. Annotators are colored consistently in A–E, with Prokka
(30) in black, DFAST (31) in light gray, MetaErg (32) in dark gray and DRAM in red. Barcharts in (D–F) show database size (D), as well as number
of annotated (E), hypotheticals (F), and unannotated (G) genes assigned by each annotator when analyzing in silico soil community. See methods for
definitions of annotated, hypothetical, and unannotated genes, relative to each annotator.
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A B

C

Figure 3. DRAM Product summarizes and visualizes ecosystem-relevant metabolisms across input genomes. Heatmaps in (A–C) were automatically gen-
erated by DRAM from the Product shown in Supplementary File 3. Sections of the heatmap are ordered to highlight information available in Product,
including pathway completion (A), subunit completion (B), and presence/absence (C) data. Boxes colored by presence/absence in (C) represent 1–2 genes
necessary to carry out a particular process. Hovering over the heatmap cells in the Product’s HTML outputs interactively reports the calculated percent
completion among other information. Dechloromonas aromatica RCB is represented by a genome cartoon in Figure 2A and is highlighted in blue on the
heatmaps.
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ber of annotated, hypothetical and unannotated genes as-
signed by each tool (30–32) from an in silico soil commu-
nity we created (15 phylogenetically and metabolically dis-
tinct genomes from isolate and uncultivated Archaea and
Bacteria) (Supplementary File S4). Compared to the other
annotators, for the in silico soil community, DRAM re-
covered 44 911 annotated genes, which was on par with
MetaErg (32) (42 478 genes), but 1.4–1.8 times more than
Prokka (30) and DFAST (31) (25 466 and 31 258 genes,
respectively). Compared to other tools, DRAM better dif-
ferentiates homologs with a hypothetical annotation from
unannotated genes (see Materials and Methods, Figure 2E–
G, Supplementary Figure S3). This increased identifica-
tion of hypothetical annotations allows users to find ho-
mologs conserved in other organisms, providing hypothe-
ses for gene function that can be further validated by ex-
perimental characterization (70). The reduction of unanno-
tated genes is most notable for the Patescibacteria genome,
a MAG from an uncultivated lineage in our in silico soil
community. For this genome, DRAM produced 825 an-
notated, 362 hypothetical and 7 unannotated genes, com-
pared to 802 annotated, 11 hypothetical and 342 unanno-
tated genes output from the next closest annotator (32). Be-
yond increased annotation and hypothetical yield, DRAM
also produced more meaningful annotations that can be
readily incorporated into models, with DRAM recovering
more EC numbers for this Patescibacteria genome com-
pared to other tools (Supplementary File S4). To further
test the performance of DRAM, we annotated the E. coli
K-12 MG1655 genome using filtered versions of the KEGG
Genes database to quantify precision and recall. Perfor-
mance metrics were highest when the genes from the E. coli
K-12 MG1655 genome were present in the database, but
even when the entire genus of Escherichia was removed, per-
formance remained high, with precision falling by 0.1% and
recall falling by 0.8%, suggesting DRAM with default set-
tings is relatively conservative and sacrifices recall for high
levels of precision (Supplementary Figure S3).

We note, however, that this increased annotation quality
and synthesis comes at expense of run time and potentially
overall memory usage (depending on database selection),
with genomes from the in silico soil community having an
average complete annotation time (Raw, Distillate, Prod-
uct) of 15 min per genome (Supplementary Figure S3). Un-
like run time, memory usage is only minorly impacted by
the number of genes analyzed (∼1MB per genome, (Sup-
plementary Figure S3)), but is impacted by the database
selection (especially UniRef90 (42)). For example, DRAM
memory use doubled from running the same samples with
(∼200GB) and without (∼100GB) UniRef90 (42). Thus, if
memory usage or access to databases is limited, we provide
the option to modify the DRAM databases (see Materials
and Methods). In summary, DRAM is scalable to thou-
sands of genomes albeit run time is impacted by number of
genes analyzed. To demonstrate the scalability of DRAM,
we annotated one of the largest MAG datasets from a single
ecosystem (21), highlighting the ability of DRAM to sum-
marize the metabolic potential of thousands of genomes at
once (https://zenodo.org/record/3777237). Beyond annota-
tion recovery and resolution, DRAM has more downstream

functionalities and synthesis than other tools (Supplemen-
tary Table S1).

DRAM profiles diverse metabolisms in an in silico soil com-
munity

To evaluate the capacity of DRAM to rapidly profile dif-
ferent metabolic regimes across genomes, we created an
in silico soil community made up of phylogenetically dis-
tinct and metabolically versatile organisms (Supplemen-
tary File S4). For 13 of the 14 genomes with a cultivated
representative in our in silico soil community, the findings
from DRAM were consistent with prior broad-scale phys-
iological classifications for each isolate (Figure 3). For a
single genome in our dataset, a known ammonia oxidiz-
ing isolate that has not been reported to perform methane
oxidation (Nitrosoarcheaum koreense MY1), DRAM re-
ports the presence of a functional gene for methanotrophy
(pmoA). We include this example to highlight how the well-
documented sequence similarity between amoA for ammo-
nia oxidation and pmoA for methane oxidation causes dif-
ficulty in reconciling proper function through homology
based queries used in all multi-genome annotators today in-
cluding Prokka, DFAST and MetaErg (30–32,71,72). Con-
sequently, DRAM is only a first step in identifying key func-
tional genes, as subsequent non-homology based methods
(e.g. phylogenetic analyses, protein modeling (73), gene syn-
teny, Bayesian inference framework (74,75)) or physiolog-
ical or biochemical characterization are often required to
validate findings from any homology-based annotator.

Within organisms reported to have the potential to
respire (11/15 genomes), all were correctly identified in the
DRAM Product by the presence of a complete NADH
or NADPH dehydrogenase complex and a complete TCA
pathway in the genome (Figure 3A and B). The DRAM
Product profiles the capacity to respire oxygen (e.g. Pseu-
domonas putida), nitrate (Dechloromonas aromatica), sulfate
(Desulfovibrio desulfuricans) and others (Figure 3C). Addi-
tionally, photorespiration and methanogenesis are summa-
rized in the Distillate and Product, exemplified by the pho-
tosynthetic Synechocystis sp. PCC 6803 and methanogenic
Methanosarcina acetivorans (Figure 3C). Using two model
genomes that encode the capacity for obligate fermenta-
tion (3,76), one cultivated (Candidatus Prometheoarchaeum
syntrophicum strain MK-D1) and one MAG from an un-
cultivated Patescibacteria (24) (also Parcubacteria genome
GW2011 GWF2 (3)), we show that DRAM reasonably pro-
files carbon use and fermentation products. The value of us-
ing enzyme complex completion to reduce misannotations
is demonstrated (Supplementary Figure S2), as the partial
completion (three genes) of the multi-subunit NADH de-
hydrogenase is not due to a complete complex I, but rather
the presence of a trimeric hydrogenase common in obli-
gate fermenters (3,77). These hydrogenases are further an-
notated in detail by their type and function in the Distillate.
In summary, the Product accurately assigns broad biogeo-
chemical roles to this mock soil community, demonstrat-
ing the breadth of metabolisms that can be visualized and
rapidly analyzed across multiple genomes from isolate and
metagenome sources.

https://zenodo.org/record/3777237
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DRAM uncovers personalized, substrate specific carbohy-
drate utilization profiles in the human gut

While mock communities like our prior soil community are
commonly used for software performance criteria, they typ-
ically represent simpler communities than what is found
in real-world samples. To demonstrate the feasibility of
DRAM to apply to contemporary, complex, authentic sam-
ples, we analyzed the metabolic features of 44 HMP un-
binned fecal metagenome samples. These samples had an
average of 6.1 Gbp (with a maximum of 17 Gbp) per sam-
ple, consistent with or exceeding the average sequencing
depth per sample reported in recent human gut studies in
the last two years (56,78,79) (Supplementary File S4). These
HMP metagenomes were selected from a landmark study
that used COG defined categories to describe the micro-
bially encoded traits in a cohort of healthy humans (56).
Using broad process level categories (e.g. central carbo-
hydrate metabolism), it was concluded in this publication
(56) that microbial functional gene profiles were consistent
across humans. DRAM is also able to evaluate gene con-
tent at broad categories, showing that CAZymes and pep-
tidases are most prevalent in these datasets (Figure 4A).
From this data, we hypothesized that increasing the reso-
lution to the substrate level would reveal more personalized
phenotypic patterns that were previously undefined in this
cohort. To test this hypothesis for carbohydrate use, we used
DRAM to classify bacterial and archaeal glycoside hydro-
lases, polysaccharide lyases and enzymes with auxiliary ac-
tivities related to carbohydrate-active enzymes (CAZymes
(48)). DRAM then parsed this information, producing a
microbial substrate utilization profile for the gut microbial
community in each human. We note, that this assignment is
not unambiguous as some CAZymes are promiscuous for
multiple substrates (79), a functionality DRAM accounts
for in the Distillate and Product (Supplementary Figure
S2, File S4). Consistent with our hypothesis, carbohydrate
substrate use profiles predicted by DRAM were more vari-
able than bulk level DRAM Distillate annotations across
humans (Supplementary Figure S4). This more resolved an-
notation showed a 3-fold difference in CAZyme gene rel-
ative abundance across the cohort (Figure 4B and C). In
summary, using more resolved annotations will likely re-
veal that the gut gene content is not as stable as historically
perceived (56). Specifically, CAZymes with the capacity to
degrade hemicellulose components had the greatest mean
abundance (3 × 107 GPM), pectin was the most variable
(7-fold change), and mucin had the most variable detection
(only in 50% of cohort) (Figure 4C). Interestingly, the domi-
nance of hemicellulose and the variability of pectin is reflec-
tive of the western diet, which is high in the consumption of
cereal grains and not uniform in the consumption of fruit
and vegetables (80–82). Our findings illustrate how DRAM
substrate inventories could uncover linkages between gut
microbiota gene content and host lifestyle or host genet-
ics. Similarly, shifts in carbohydrate use patterns have been
shown to be predictive of human health and disease (83,84),
thus this added level of annotation refinement provided by
DRAM in an easy-to-understand format makes it possible
to resolve biochemical transformations occluded by bulk
level annotations.

A

B

C

Figure 4. Substrate-resolved survey of carbon metabolism in the human
gut. Bar charts represent normalized gene abundance or proportion of
reads that mapped to each gene or gene category reported as relative
abundance (%) or Gene Per Million (GPM). Reads came from previously
(56) published healthy human fecal metagenomes that were assembled and
then annotated in DRAM (A–C). (A) Using a subset of 44 randomly se-
lected metagenomes from (56), we profiled and annotated gene abundance
patterns colored by DRAM’s Distillate categories and subcategories. (B)
Using the same metagenomes and sample order as in (B), summary of
CAZymes to broader substrate categories reveals differential abundance
patterns across the cohort. (C) Data from (B) is graphed by carbohydrate
substrates. Boxplots represent the median and one quartile deviation of
CAZyme abundance, with each point representing a single person in the
44-member cohort. Putative substrates are ordered by class, then by mean
abundance.

MAG profiles for utilization of specific organic carbon and
nitrogen substrates generated by DRAM

To show that DRAM can not only profile the function of an
entire microbial community, but can also parse metabolisms
to specific genomes within this community, we assembled
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the largest (29 Gbp) publicly available Human Micro-
biome Project (HMP) fecal metagenome. We recovered 135
MAGs, of which 75 were medium quality and 1 was high-
quality as assessed by DRAM. The taxonomic assignment
of these MAGs according to DRAM taxonomy summary
from GTDB (24) was predominantly Firmicutes and Bac-
teroidota, with rare members affiliated with the Proteobac-
teria and Desulfobacterota (Supplementary Figure S7). The
taxonomic identity of the MAGs we recovered using this
binning approach (previously the sample was unbinned),
are similar to the membership reported in the healthy, west-
ern human gut (85), indicating this sample can serve as a
reasonable representative to demonstrate DRAMs annota-
tion capabilities of gut MAGs.

In the mammalian gut, beyond the digestion of carbo-
hydrates with CAZymes, microorganisms also play critical
roles in processing dietary protein into amino acids via pep-
tidases (86) and producing short chain fatty acids for host
energy as a fermentation byproduct (87). From these 76
HMP genomes, DRAM identified 7197 and 5471 CAZymes
and peptidases, respectively (Figure 5, Supplementary Fig-
ure S5 and S8, Files S1–S2). The capacity to degrade chitin
was the most widely encoded (81%) across the genomes, a
capacity reported to increase during gut inflammation (88).
We also show that the capacity to cleave glutamate from
proteinaceous compounds is the most commonly detected
in our genomes, likely reflecting high concentrations of this
amino acid in the gut (89). The substrate resolution pro-
vided by DRAM will enable more detailed analysis of mi-
crobial community inputs and outputs relevant to under-
standing the gut microbiomes impact on human health and
disease (9,84,90,91).

Given the importance of SCFA metabolism in the gut
ecosystem, we show DRAMs capability to profile these
metabolisms. It is no surprise that this capability is widely
encoded by phylogenetically distinct genomes. Among the
76 HMP MAGs, the potential for acetate production was
the most widely encoded, while propionate production po-
tential was the least prevalent. The gene relative abundance
reflects reported metabolite concentrations in the mouse
and human gut (87,92). Collectively, these results show how
outputs of DRAM can be used to establish hypotheses for
carbohydrate utilization trophic networks, where metabolic
interactions can be considered simultaneously, rather than
oversimplified into pairwise interactions (93). Moreover, by
making it easier to assay substrate and energy regimes, it
is our hope that DRAM can assist in development of de-
signer cultivation strategies and the generation of synthetic
communities for desired degradation outcomes.

DRAM-v, a companion tool to systematically automate iden-
tification of viral auxiliary metabolic genes

Viruses are most often thought of as agents of
lysis––impacting microbial community dynamics and
resource landscapes. However, viruses can also impact
microbial functioning and biogeochemical cycling via
encoding and expressing Auxiliary Metabolic Genes
(AMGs) (94) that directly alter host metabolisms during

infection. To date, AMG annotation from viral isolates
(62,95) and metagenomic files (14,15) has not scaled with
the rate of viral genome discovery. Further, there are
now numerous examples of metabolic genes in ‘viromes’
that are more likely to be microbial DNA contamination
(39), which is even a greater concern in metagenomic files
where the resultant viruses can include prophages whose
ends are challenging to delineate (61,96). To automate
the identification of putative AMGs, we sought to com-
plement DRAM with a companion tool, DRAM-v, that
(i) leverages DRAM’s functional annotation capabilities
to describe metabolic genes and (ii) applies a systematic
scoring metric to assess the confidence for whether those
metabolic genes were within bona fide viral contigs and
not microbial (Figure 1B, Supplementary Figure S6). To
demonstrate how these scoring metrics and ranks come
together in our AMG annotation, see the example output
files (Supplementary Files 6–9).

For each gene on a viral contig that DRAM-v has anno-
tated as metabolic, we developed an auxiliary score, from
1 to 5 (1 being most confident), to denote the likelihood
that the gene belongs to a viral genome rather than a de-
graded prophage region or a poorly defined viral genome
boundary (Figure 6A). Because viral resources remain un-
derdeveloped and several ambiguities can remain for some
‘hits’ even after these auxiliary scores are applied, DRAM-v
uses flags to help the user quickly see where possible AMGs
have been experimentally verified or previously reported.
DRAM-v also flags users to the probability of a gene be-
ing involved in viral benefit rather than enhancing host
metabolic function (e.g. certain peptidases and CAZymes
are used for viral host cell entry (Figure 6B). DRAM-v,
like DRAM, also groups viral genes into functional cate-
gories, provides quality reporting standards for viral contigs
(27), and visualizes the predicted high- and medium-ranked
AMGs (auxiliary scores 1–3) in the Product. DRAM-v and
the AMG scoring system established here make it possi-
ble to rapidly identify viruses capable of augmenting host
metabolism.

To benchmark the precision of DRAM-v, we reannotated
viral contigs from a soil metagenomic file that our team had
manually curated for glycoside hydrolase AMGs in a previ-
ous study (14). In that study, we reported 14 possible glyco-
side hydrolase AMGs from over 66,000 predicted viral pro-
teins on viral contigs >10 kbp (14). Reannotating this file
using DRAM-v, we recovered 100% of these AMGs accord-
ing to DRAM’s defined metrics. Moreover, we recovered
an additional 453 genes that were ranked with high (aux-
iliary scores 1, 2) or medium (auxiliary score 3) AMG con-
fidence (Supplementary File S6 and S7). Because DRAM
expands the metabolic repertoire and the speed at which
metabolisms could be inventoried across hundreds of viral
contigs, we were able to increase the AMG recovery by 32-
fold. Our DRAM-v findings show that soil viral genomes
encode AMGs that could play roles in host energy gener-
ation (2%), carbohydrate utilization (27%), and organic ni-
trogen transformation (13%) (Figure 6C). Moreover, 42% of
the putative AMGs had been previously reported in other
files.
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Figure 5. DRAM provides a metabolic inventory of microbial traits important in the human gut. Seventy-six medium and high-quality MAGs were
reconstructed from a single HMP fecal metagenome. Taxonomy was assigned using GTDB-Tk (24), with colored boxes noting class and name noting
genus. The presence (green) or absence (blue) of genes capable of catalyzing carbohydrate degradation or contributing to short chain fatty acid metabolism
are reported in the heatmap. We note that the directionality of some of these SCFA conversions is difficult to infer from gene sequence alone. Genomes are
clustered by gene presence and hemicellulose substrates are shown in red text.
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DRAM-v uncovers conserved and unique AMGs across
ecosystems

We harnessed the automation and functional categorization
power of DRAM-v to understand how viral AMG diversity
varies across ecosystems. To that end, we recovered 2,932
viral contigs, containing 1,595 putative AMGs from the
44 HMP metagenome samples discussed above (Figure 4,
Supplementary Files S8–S10) and compared these AMGs
to the 467 putative AMGs that we recovered from the soil
metagenomes discussed above (Figure 6C). The majority of
the HMP AMGs had putative roles in energy generation
(7%), carbon utilization (10%), and organic nitrogen trans-
formations (30%). The human gut is nitrogen limited (97),
which may explain why putative AMGs for organic nitro-
gen transformations were the most well represented (Fig-
ure 6C). Specifically, the majority of the organic nitrogen
AMGs we identified in the gut were likely involved in aug-
menting microbial host amino acid synthesis and degrada-
tion capacities. AMGs for tyrosine (EC 1.3.1.12, prephen-
ate dehydrogenase) and lysine (EC 4.1.1.20, diaminopime-
late decarboxylase) synthesis were of particular interest as
they were uniquely encoded in specific phage genomes and
had high quality auxiliary scores (Supplementary File 8).
These AMGs could be valuable for their microbial hosts,
given that increased gene copy number in these pathways
was shown to enhance microbial growth (98). Moreover,
synthesis of these branched and aromatic amino acids is
costly for the microbial host and these compounds are ab-
sorbed by gut epithelial cells (99), thus there are clear ad-
vantages for hosts that can rapidly synthesize these scarce
resources.

To directly compare soil and gut viral AMGs, AMG
counts were normalized to the number of viral contigs
in each file. Overall, fecal viruses encoded more putative
AMGs compared to soil viruses. These soil AMGs were
mostly associated with carbon utilization, while gut AMGs
were more linked to organic nitrogen transformations (Fig-
ure 6C). To identify shared and unique AMGs across these
two files, we built an amino acid sequence similarity net-
work of all the recovered AMGs (Figure 6D). Notably, the
majority of putative soil AMGs, particularly CAZymes, do
not share sequence similarity with gut-derived AMGs (Fig-
ure 6E). AMGs shared between soil and human fecal are
related to organic nitrogen or energy metabolisms.

AMGs within energy categories were of particular inter-
est, as these genes may increase the copy number resulting
in greater activity, or expand the metabolic repertoire of the
host (38). For example, sulfate adenylyl transferase identi-
fied in soils is a key gene for sulfur assimilation and dissim-
ilation, while pyruvate phosphate dikinase, a gene to pro-
mote the metabolism of this key central carbon metabolite,
was shared by both soil and human gut ecosystems (Fig-
ure 6D). The conservation and uniqueness of these AMGs
across ecosystems hints at more universal and environmen-
tally tuned roles that virus may play in modulating their host
and surrounding environment (Supplementary Figure S9–
S10, Supplementary File S4). We note that while DRAM is
an important first step in the rapid and uniform detection
of viral AMGs, contextualizing the physiological and bio-
chemical role of AMGs requires additional analyses (14).

DISCUSSION

DRAM provides a scalable and automated method for
annotating features of assembled microbial and viral ge-
nomic content from cultivated or environmental sequenc-
ing efforts. This unparalleled annotation tool makes infer-
ring metabolism from genomic content accessible. Here we
show that DRAM is a critical, first step in annotating func-
tional traits encoded by the microbiome. To facilitate fur-
ther recommended curation, DRAM provides outputs in
formats interoperable with downstream phylogenetic ap-
proaches (100), membrane localization analyses (101), visu-
alization by genome browsers (102), and protein-structural
modelling (73). DRAM annotations, like all homology-
based genome annotation tools commonly used today, are
reliant on the content in underlying databases. We show
here that the variety of databases used in DRAM con-
tributes to enhanced annotation recovery. Moreover, look-
ing to the future, we built the DRAM platform to be robust,
and with the capability to ingest non-homology based an-
notations as well.

Beyond the content in databases, it is our hope
that DRAM can ease the dissemination of emerging
metabolisms and biochemistry, offering a community re-
source to rapidly assimilate these new or refined annota-
tions (Materials and Methods), which currently have very
limited, and not rapid, incorporation into wide-spread an-
notation databases (103,104). We are committed to keeping
DRAM open to support community principles, with addi-
tion of new metabolisms fueled by community expertise. We
call on any interested experts to join this endeavor and en-
able its continual development. Collectively, DRAM and
DRAM-v deliver an infrastructure that enables rapid de-
scriptions of microbial and viral contributions to ecosystem
scale processes.

DATA AVAILABILITY

All DRAM source code is available at https://github.com/
shafferm/DRAM under the GPL3 license. The DRAM user
help is available at https://github.com/shafferm/DRAM/
wiki. DRAM can also be installed via pip.

The E. coli genome was retrieved from KEGG. The set of
15 soil genomes were retrieved from NCBI. The Emerson
et al. viral contigs were retrieved from GenBank, accession
number QGNH00000000. The 44 gut metagenome samples
in Figure 4 were retrieved from HMP database. The single
binned HMP fecal metagenome sample used in Figure 5 was
retrieved from NCBI using accession number SRS019068,
and the respective bins generated here deposited at NCBI.
All accession numbers for MAGS and reads are detailed in
Supplementary File S4.
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Pérez-Brocal,V., Garcı́a-López,R., Moya,A. and Rossi,M. (2019)
Profiling of protein degraders in cultures of human gut microbiota.
Front. Microbiol., 10, 2614.

87. Chambers,E.S., Preston,T., Frost,G. and Morrison,D.J. (2018) Role
of gut microbiota-generated short-chain fatty acids in metabolic and
cardiovascular health. Curr. Nutr. Rep., 7, 198–206.

88. Tran,H.T., Barnich,N. and Mizoguchi,E. (2011) Potential role of
chitinases and chitin-binding proteins in host-microbial interactions
during the development of intestinal inflammation. Histol.
Histopathol., 26, 1453.

89. Filpa,V., Moro,E., Protasoni,M., Crema,F., Frigo,G. and Giaroni,C.
(2016) Role of glutamatergic neurotransmission in the enteric
nervous system and brain-gut axis in health and disease.
Neuropharmacology, 111, 14–33.

90. Tang,W.H.W., Li,D.Y. and Hazen,S.L. (2019) Dietary metabolism,
the gut microbiome, and heart failure. Nat. Rev. Cardiol., 16,
137–154.

91. Turnbaugh,P.J., Ley,R.E., Mahowald,M.A., Magrini,V.,
Mardis,E.R. and Gordon,J.I. (2006) An obesity-associated gut
microbiome with increased capacity for energy harvest. Nature, 444,
1027.

92. Wu,J., Sabag-Daigle,A., Borton,M.A., Kop,L.F.M., Szkoda,B.E.,
Kaiser,B.L.D., Lindemann,S.R., Renslow,R.S., Wei,S., Nicora,C.D.
et al. (2018) Salmonella-mediated inflammation eliminates
competitors for fructose-asparagine in the gut. Infect. Immun., 86,
e00945-17.

93. Solden,L.M., Naas,A.E., Roux,S., Daly,R.A., Collins,W.B.,
Nicora,C.D., Purvine,S.O., Hoyt,D.W., Schückel,J., Jørgensen,B.
et al. (2018) Interspecies cross-feeding orchestrates carbon
degradation in the rumen ecosystem. Nat. Microbiol., 3, 1274.

94. Breitbart,M., Thompson,L., Suttle,C. and Sullivan,M. (2007)
Exploring the vast diversity of marine viruses. Oceanography, 20,
135–139.

95. Mizuno,C.M., Guyomar,C., Roux,S., Lavigne,R.,
Rodriguez-Valera,F., Sullivan,M.B., Gillet,R., Forterre,P. and
Krupovic,M. (2019) Numerous cultivated and uncultivated viruses
encode ribosomal proteins. Nat. Commun., 10, 752.

96. Garneau,J.R., Depardieu,F., Fortier,L.-C., Bikard,D. and
Monot,M. (2017) PhageTerm: a tool for fast and accurate
determination of phage termini and packaging mechanism using
next-generation sequencing data. Sci. Rep., 7, 8292.

97. Reese,A.T., Pereira,F.C., Schintlmeister,A., Berry,D., Wagner,M.,
Hale,L.P., Wu,A., Jiang,S., Durand,H.K., Zhou,X. et al. (2018)
Microbial nitrogen limitation in the mammalian large intestine. Nat.
Microbiol., 3, 1441–1450.

98. Zengler,K. and Zaramela,L.S. (2018) The social network of
microorganisms - how auxotrophies shape complex communities.
Nat. Rev. Microbiol., 16, 383–390.
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