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Abstract

Several preclinical and clinical studies have attempted to elucidate the pathophysiological mechanism associated with spinal
cord injury. However, investigations have been unable to define the precise related mechanisms, and this has led to the lack
of effective therapeutic agents for the condition. Neuroinflammation is one of the predominant processes that hinder spinal
cord injury recovery. Resveratrol is a compound that has several biological features, such as antioxidation, antibacterial, and
antiinflammation. Herein, we reviewed preclinical and clinical studies to delineate the role of toll-like receptors, nod-like
receptors, and astrocytes in neuroinflammation. In particular, the alteration of astrocytes in SCI causes glial scar formation
that impedes spinal cord injury recovery. Therefore, to improve injury recovery would be to prevent the occurrence of this
process. Resveratrol is safe and effective in the significant modulation of neuroinflammatory factors, particularly those
mediated by astrocytes. Thus, its potential ability to enhance the injury recovery process and ameliorate spinal cord injury.
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Introduction

When any part of the spinal cord is injured, it causes either
permanent loss or reduction of physical function below the
damaged area [1]. According to present data, the annual inci-
dence of spinal cord injury (SCI) is approximately 54 cases
per million people in the United States, or about 17,810 new
SCI cases each year [2]. SCI profoundly imperils the physi-
ological systems, such as cardiovascular and immune sys-
tems [3]. The clinical complications of SCI include urinary
tract infections, autonomic dysreflexia, sudden hypertension,
and other symptoms caused by neuroinflammation [4-7].
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Although SCI is a severe condition, its complete remedy
is still lacking [8] because of the complex injury mecha-
nisms. Neuroinflammation is not the only basis of secondary
SCI but also one of the main reasons underlying the impedi-
ment process to SCI repair [9].

Neuroinflammatory responses in the secondary SCI can
induce a series of cellular and molecular events, includ-
ing activation of microglia/astrocyte, infiltration of mac-
rophages from peripheral blood [10], imbalance of pro-
inflammatory and antiinflammatory responses, abnormal
mitochondrial activity, oxidative stress [11], abnormal pro-
tein aggregation, and free radical toxicity. Inflammasomes
are closely related to neuroinflammation [12]. Inflammas-
omes are large multiprotein complexes that mediate neu-
roinflammatory responses [13]. Classical inflammasomes
are composed of pattern-recognition receptors (PRRs),
the adaptor protein known as apoptosis-associated speck-
like protein containing a caspase-recruitment domain
(ASC), and the effector protein, pro-caspase-1 [14-16].
Pyrin domain-containing related nod-like receptor pro-
tein family (NLRP) is a sensor of inflammasomes [17].
The damage-associated molecular patterns (DAMPs) and
adenosine triphosphate (ATP) triggers the NLRP2. Moreo-
ver, the human astrocytes express the NLRP2 [18]. Acti-
vated NLRP2 recruits ASC and pro-caspase-1. During the
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recruitment process, the complex oligomerizes and assem-
bles to NLRP2 inflammasome. After central nervous sys-
tem (CNS) injury, especially SCI, ATP released by apop-
tosis—activated astrocytes lead to inflammatory responses
and induces the assembly of the NLRP2 inflammasomes.
NLRP2 inflammasome cleaves the pro-caspase-1 and
secretes caspase-1, which triggers interleukin-1f (IL-1f)
to produce mature IL-1p.

Nuclear factor kappa-B (NF-kB), a typical pro-inflam-
matory signaling pathway, is closely related to the inflam-
matory response. In secondary SCI, neuroinflammation
triggers the activation of the NF-kB signaling pathway
through the classical pathway. The activated NF-«xB sign-
aling pathway expresses immature IL-1f, with caspase-1
modifying it to mature IL-1p and contributing to inflam-
matory responses. Presently, some glucocorticoids are
commonly used in the clinic to prevent this mechanism of
neuroinflammation caused by secondary SCI. However,
long-term clinical use of these agents diminishes their
effectiveness, coupled with significant side effects [19].
Therefore, modern interventional agents having minimal
to no side effects concomitant with favorable therapeutic
effects are needed.

Resveratrol (RSV), as a component of traditional Chinese
medicine, is a natural polyphenol and is present in grapes,
berries, peanuts, and wine. It has characteristics of antipro-
liferation, antiangiogenesis, antiinflammation, and antioxi-
dation [20-22]. RSV can scavenge the generation of free
radicals, inhibit lipid peroxidation, and regulate the activities
of oxidation-related enzymes. Studies have shown that RSV
can regulate the F1 subunit of ATP synthase [23] and reac-
tive oxygen species (ROS) levels [24]. ATP is closely asso-
ciated with the activation process of NLRP2 in astrocytes.
In addition, RSV can effectively inhibit the activation of
the NF-kB signaling pathway by suppressing the activity of
inhibitor protein, kB kinase (Ikk) [25]. RSV can also reduce
ATP production and ROS levels to hinder the formation of
NLRP2 inflammasome in astrocytes. Further, RSV can
inhibit the production of pro-IL-1f by repressing the NF-xB
signaling pathway. These inhibitory effects can reduce the
occurrence and development of inflammatory response after
SCI and accelerate the repair process.

Inflammatory Response After SCI

SCI neuroinflammatory response is relatively complex
and encompasses the interaction between the nervous
and immune systems. The activation of inflammasomes
and inflammatory signaling pathways is a vital factor that
causes the over-activation of astrocytes. In addition, some
risk-related factors can bind to receptors on astrocytes and
lead to their activation.

@ Springer

The Mechanism of Inflammatory Response

Inflammation is a defensive response to stimuli charac-
terized by redness, swelling, fever, and pain. Generally,
inflammation is beneficial for the human body; however,
over-inflammation can damage tissues of the body to
aggravate the disease. Inflammation in the brain and spinal
cord is neuroinflammation. The definition of neuroinflam-
mation is broad, as it includes two complex fields: nervous
and immune systems [26]. Neuroinflammatory response
mediates the expressions of cytokines, chemokines, sec-
ondary messengers, and ROS. Most of these factors come
from microglia and astrocyte in the CNS. In the wake
of CNS injury, the primary stage of neuroinflammation
has a positive effect. During this stage, the inflammatory
response triggers the immune response to play a protec-
tive role. When neuroinflammation develops to the second
stage (i.e., chronic stage), instigation of cells of the CNS
arises, resulting in aggravated inflammatory factors that
impact the process of injury repair. Several neurodegen-
erative diseases (like Alzheimer’s disease, Parkinson’s
disease, traumatic brain injury (TBI), and secondary SCI)
have a close association with the chronic developmental
stage of neuroinflammation [27, 28].

In a physiological state, microglia, a type of permanent
immune cell in the brain, is an ineffective phenotype [27].
There are some risk signal factors in the microenvironment
under pathological conditions. DAMP is a risk-related
factor released by cells or tissues after receiving external
stimuli. The non-self-factors or pathogenic microorgan-
isms in the microenvironment are the pathogen-associated
molecular patterns (PAMPs). PRRs are responsible for
sensing PAMPs and DAMPs [29]. The main subfami-
lies of PRRs include toll-like receptors (TLRs), nod-like
receptors (NLRs), RIG-like receptors (RLRs), AIM2-like
receptors (ALRs), and C-type lectin receptors. NLRs form
inflammasomes [29, 30]. The three known NLRs in the
CNS are NLRP1, NLRP2, and NLRP3 [31-33]. Once
PRRs on the microglia detect either DAMPs or PAMPs,
microglia immediately switch to activated phenotype,
phagocytized injury-related factors, and forms elements
that affect astrocytes and neurons, leading to neuroinflam-
mation. In addition, astrocytes and neurons can identify
some DAMPs and PAMPs to mediate neuroinflammation.
These neuroinflammatory responses could further trans-
mit to the immune system and promote tissue repair. In
most cases, these inflammatory responses are transient and
would disappear once infection or injury is repaired [26].

The persistent neuroinflammatory response is an indi-
cation of physiological mechanisms not being controlled.
This leads to the over-activation of glial cells and neurons
that produces neurotoxic factors, which aggravates the
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disease state. The accumulation of signal and endogenous
factors (such as inflammasome polymers) can cause a per-
sistent neuroinflammatory response. Infectious signaling
factors (such as Gram-negative bacteria, viral double-
stranded RNA, and bacterial lipopolysaccharide) are iden-
tified by TLRs, with endogenous signaling factors (includ-
ing IL-1, tumor necrosis factor (TNF), and ATP) detected
by NLRs in the PRR family. Presently, most CNS cells
express TLRs. TLRs pronounced entirely in the microglia
enhance its abilities to monitor the microenvironment.
Astrocytes and neurons also express TLRs. Under patho-
logical conditions, astrocytes may upregulate TLR3 [34],
TLR2, and TLR4 [34, 35] expressions. These recognized
PRRs stimulate the activation of the signal transduction
pathway by regulating transcription and posttranscription
processes. Notably, TLRs either recruit adapter protein
MyD88 or send signals through the TRIF-dependent path-
way, leading to transcription of downstream kB kinase
and mitogen-activated protein kinase (MAPK). Activated
downstream kinases regulate various inflammatory sign-
aling pathways, including NF-kB and activator protein 1
(AP-1). These inflammatory signaling pathways highly
express the precursors of interleukin and interferon (such
as pro-IL-1) to exacerbate the occurrence of inflamma-
tory response. These factors need further processing and
modification to play their role, and caspase-1 is significant
in this process. Activated inflammasomes express cas-
pase-1, and NLRs play a vital role as the upstream factors
of inflammasomes assembly and activation. NLRs recog-
nize DAMPs and recruits ASC and pro-caspase-1 to fur-
ther assemble into inflammasomes. Caspase-1 combines
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Fig.1 Combined TLRs and NLRs regulate inflammation

with precursors of interleukin and interferon to co-express
inflammatory factors [36]. Both TLRs and NLRs cooper-
ate to control immune response dysfunction (Fig. 1). This
immune response is usually a feed-forward loop, i.e., the
ultimate expressed inflammatory factors are delivered
back to the initial recognition receptor as risk signal fac-
tors. This further aggravates the process of inflammatory
responses. Although some inflammatory responses have
beneficial effects and are closely related to the tissue repair
process, uncontrolled inflammatory reactions can trigger
secondary damage and hinder this repair process.

Astrocyte Activation and Inflammasome Formation

Astrocytes are abundant and complex in the mammalian
brain, accounting for about 19%-40% of human brain cells
[37]. Mature astrocytes have complex structures that interact
with synapses to support neurons. CNS injury causes activa-
tion of astrocytes. Reactive astrocytes show alterations of
morphology and metabolism, including cellular hypertrophy
and upregulated expressions of glial fibrillary acidic protein
(GFAP) and Nestin.

DAMPs stimulate human astrocytes to generate NLRP2
inflammasomes, which further induces inflammatory
responses to form caspase-1 and IL-1f. In addition, NLRP2
inflammasome is significantly involved in immune response
and disease occurrence. Therefore, NLRP2 inflammasome,
as the core of inflammatory response, may provide a new tar-
get for the treatment of various inflammatory diseases. ATP
is a representative of DAMP released from injured or dead
cells after tissue trauma and can stimulate the activation of
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inflammasomes [36]. Studies have demonstrated the activa-
tion of several NLRs family proteins to be closely associ-
ated with the P2X7 receptor and Pannexin 1 channel [38].
Recombinant purinergic receptor P2X, ligand-gated ion
channel 7 (P2X7), and Pannexin 1 of membrane proteins
are ATP gating proteins [39]. A recent study evidenced that
the interaction between NLRP2 inflammasome in astrocytes
and P2X7 receptor and pannexin-1 channel protein on the
cell membrane can accelerate inflammatory response pro-
cess and promote caspase-1 expression [32, 36]. In addi-
tion, the P2X4 receptor may interact with these two gating
proteins and control ATP to stimulate cells [40]. However,
there is limited information regarding the expression and
stress response of NLRP2 inflammasome in astrocytes after
tissue trauma. The activation of NLRP2 inflammasome in
astrocytes is related to P2X4/P2X7/Pannexin 1 channel;
nonetheless, the specific molecular mechanism remains to
be clarified.

After SCI, reactive astrocytes not only express NLRP2
inflammasomes but also migrate and gather at the center of
the lesion, which helps repair the damaged tissue. However,
excessive cell accumulation can cause scar formation and
eventually create a glial scar. A glial scar can inhibit axonal
regeneration and intricate injury recovery. Studies have
shown that reactive astrocytes in glial scars secrete chondroi-
tin and keratin sulfate proteoglycans, which are involved in
inhibiting axonal regeneration [41]. Also, signal transducer
and activator of transcription-3 (STAT3) was found in reac-
tive astrocytes after SCI and participated in cell migration
and aggregation processes [42].

In the wake of SCI, astrocytes change from primitive state
to reactive state to scar-forming astrocytes, which is usu-
ally irreversible (Fig. 2). Among them, neuroinflammation
caused by reactive astrocytes is beneficial to injury recov-
ery to a certain extent. However, glial scars affect injury
recovery. Thus, after SCI, inhibiting the occurrence and

Fig.2 The alteration of astro-
cytes from primitive state to
reactive state to scar-forming
astrocytes after SCI

Pro-inflammatory

development of reactive astrocytes before glial scar forma-
tion can influence the injury recovery process.

RSV Can Attenuate Neuroinflammation

Several studies have reported the immense potential of
RSV in the treatment of inflammatory diseases. RSV can
act on multiple signaling pathways to inhibit inflamma-
tory responses. For instance, RSV degrades intracellular
and extracellular risk-related factors and inhibits kB kinase
activity. In the wake of SCI, RSV mitigates inflammatory
responses by inhibiting the activations of inflammasomes
and NF-kB, thereby creating a conducive microenvironment
for axonal recovery.

The Biological Functions of RSV

In recent years, RSV has gained the attention of scientists
due to its beneficial outcomes in infectious, neurodegenera-
tive, metabolic, and autoimmune diseases, while relieving
aging and prolonging life (Table 1). RSV can reduce the con-
centration of low-density lipoprotein and inhibit cyclooxy-
genase activity on the cardiovascular system [59, 60]. More
so, RSV can reduce oxidative stress via its regulation of ROS
[61]. For instance, He LN et al. [62] showed that RSV could
inhibit the oxidative stress of rat pulmonary artery endothe-
lial cells under hypoxia by blocking hypoxia-inducible factor
la (HIF-1a)/Nicotinamide Adenine Dinucleotide Phosphate
Oxidase 4 (NOX4)/ROS signaling pathway. More so, RSV
inhibited cancer growth by scavenging free radicals on the
cell surface. Specifically, RSV induced the death of human
ovarian cancer cells by inhibiting Notch1/phosphatase and
tensin homolog deleted on chromosome ten (PTEN)/protein
kinase B (Akt) signaling pathway mediated by ROS [63].
Concerning neuroinflammatory responses, RSV can
prevent these reactions by inhibiting the activation of the
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inflammatory signaling pathway, such as NF-kB, or reducing
the formation of inflammatory factors. Some studies have
analyzed the interaction between RSV and vital enzymes,
including Ikk, cyclooxygenase 2 (COX-2), and TNF recep-
tor-associated factor-associated NF-kB activator binding
kinase 1 (TBK1), in the TLR4 pathway [64], which showed
the molecular mechanism of RSV in regulating inflamma-
tion. Also, studies have revealed that RSV could inhibit
inflammation by regulating several inflammatory pathways:
TLR4/NF-«B/STAT3, TLR4/Akt/ forkhead box protein O1
(FoxO1), nuclear factor erythroid 2-related factor 2 (Nrf2)/
TLR4/NF-kB, and sirtuinl (Sirt-1)/FoxO1 [65-68]. All
these studies evidence RSV potential as an interventional
agent for the treatment of inflammatory-associated diseases.

Studies are currently exploring the positive role of RSV
in bacterial infections. For instance, Al Azzaz J et al. [69]
found RSV to promote heterogeneous phagocytosis and
enhance the clearance of two invasive bacteria (Salmonella
typhimurium and invasive Escherichia coli). Similarly, RSV
has extensive antiviral activities, mainly in Epstein-Barr
virus (EBV), HIV infections, and the Middle East Respira-
tory Syndrome Coronavirus (MERS-CoV)) [70-72]. In par-
ticular, RSV suppressed nucleocapsid (N) protein expres-
sion, leading to the inhibition of MERS-CoV infection.
While the biological absorption rate of RSV in clinical tri-
als has been low, the biological efficacy of RSV derivatives
and nano-scale RSV are immensely high [73], implying that
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Fig.3 RSV inhibits the inflammatory response through multiple
pathways. RSV hinders assembly and stimulation of TLRs by oxi-
dizing degradation of risk factors associated with the activation of
inflammatory responses, DAMPs and PAMPs, such as ATP and ROS.
Furthermore, the inhibition of DAMPs and PAMPs prevents the acti-
vation of P2X4, P2X7, and Pannexin 1, thereby indirectly inhibiting
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RSV effectiveness in the clinical setting may be pronounced
following modification.

RSV Attenuates Inflammatory Responses
of Diseases

The occurrence of inflammation further induces various
diseases, including atherosclerosis, rheumatism, rash, Alz-
heimer’s disease, tumor, and various secondary symptoms
[74-76]. RSV has diverse biological effects and is less toxic
to the body [77]. It has been employed in various medical
conditions, such as inflammatory bowel disease (IBD), nerv-
ous system inflammation, eye inflammation, and gynecologi-
cal inflammation (Table 2).

The antiinflammatory effects of RSV have been attributed
to the cascade effects of disparate mechanisms, which lead to
the inhibition of both the inducer and intermediate enzyme
that mediate the occurrence of inflammatory responses and
eventually hindering the production of inflammatory factors.
Generally, DAMPs and PAMPs trigger inflammation. RSV
curtails DAMPs by scavenging reactive substances and ROS
through its antioxidative action [94, 95], while it reduces
PAMPs via its antibacterial effect [96, 97], thereby decreas-
ing the incidence of inflammatory responses. Additionally,
TLRs and pro-inflammatory cytokines, such as TNF and
IL-1, trigger the classical pathway that instigates p65 acti-
vation [98]. Noteworthy is that RelA regulates the expres-
sion of pro-inflammatory and cell survival genes, and its
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the activation of inflammasomes, NLRP2. In addition, RAV is an
inhibitor of kB kinase activation, which blocks the NF-xB signaling
pathway by suppressing p65 activation. RSV significantly reduces the
inflammatory response and repress astrocyte activation through the
above-mentioned mechanisms
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Table 1 (continued)

References

Biological functions

of RSV

Results

Routes and doses

Species

Disease categories Diseases

[54]

Anti-inflammatory

Antioxidant

comitant with LPS in ApoE™"mice/ RSV inhibited

RSV effectively alleviated AS caused by HFD, con-
the activation of CD4*T cells.

cultured in media with RSV (20, 40,

mg/kg) for mice/ CD4™ T cells were
80 uM)
Intragastric administration of RSV

Intragastric administration of RSV (5

ApoE~~mice/ CD4*T cells(from the
spleen of C57BL/6 mice)

Atherosclerosis (AS)

Cardiovascular
diseases

[55]

Antioxidant

RSV attenuated the development of high blood pres-

Spontaneously hypertensive rats

Hypertension

sure in SHRs by inhibiting the expression of Gix

proteins.

(50 mg/kg) for rats

(SHRs)

[56]

Antioxidant

RSV protected mouse heart injury induced by ischemia

Intragastric administration of RSV

C57BL/6J mice

Myocardial ischemia

Anti-inflammatory
Anti-apoptosis

in-vivo, and NRCM injury induced by hypoxia in-vitro
by regulating Sirt1/p53-mediated cell senescence, and

inhibiting NLRP3 inflammasome activation.

(320 mg/kg) for mice

[57]

H. pylori strains were cultured in media RSV derivatives significantly reduced the colony Antimicrobial

clinical H. pyloril G. mellonella

Helicobacter pylori

Infectious disease

movement ability and biofilm formation of H. pylori.

with RSV (100 uLY G. mellonella

larvae

larvae were injected with 10 uL of

H. pylori

[58]

Anti-apoptosis

RSV effectively inhibited the expression of Hla and

S. aureus/ A549 human lung epithelial S. aureus strains were cultured in

Staphylococcus aureus

alleviated the cell damage of ATCC CCL 185 co-

cultured by bacteria.

media with RSV/ ATCC CCL

cells (ATCC CCL 185)

185 were cultured in media with

treated strain of S. aureus

activation promotes the assembly of inhibitors of NF-kB
(IxkB). The activation of the NF-kB signaling pathway typi-
cally occurs after Ixk phosphorylates IkB [99]. RSV acts on
the intermediate enzyme of the NF-kB signaling pathway to
block the transmission of information by the inflammatory
pathway. All these functions of RSV aid repress the instiga-
tion and development of inflammation. Moreover, studies
have shown that RSV could improve autophagy [93] when
inflammation occurs.

RSV Curtails Inflammasome Formation After
Nervous System Injury

The inflammasome is a multiprotein complex that plays a
vital role in the immune system. In general, the recognition
of PRRs with PAMPs or DAMPs is the first step in trig-
gering the development of neuroinflammation. Identified
PAMPs or DAMPs by PRRs of the inflammasome leads to
the recruitment and activation of caspase-1. Activated Cas-
pase-1 can modify the precursor substances of IL-1 or IL-18
to form cytokines that cause an inflammatory response. Sig-
nificant mitigation of the recognition of risk-related factors
and PRRs can decrease inflammasome formation. Therefore,
to obviate inflammation is to block the initial recognition
mechanism.

The above evidence shows that the development of
inflammatory responses requires the cooperation of TLRs
with NLRs. The activation of TLRs can stimulate the NF-xB
inflammatory signaling pathway, and NLRs activation can
trigger inflammasomes. TLRs are present in a variety of
cells and are often associated with inflammatory responses.
Presently, there are ten different TLRs (TLR1-10) in human
cells and twelve in mice [100]. Ahmad SF et al. [101] indi-
cated that RSV could reduce the expression of TLRs/NF-kB/
COX-related factors and improve the deterioration of neuro-
immune diseases. In this study, RSV effectively downregu-
lated the expressions of TLR2, TLR3, and TLR4. The inhi-
bition of TLR2, TLR3, and TLR4 is a treatment strategy for
various nervous system diseases, including neuroinflamma-
tion. For instance, Kwilasz AJ et al. [102] showed TLR2/
TLR4 antagonists to effectively alleviate neuroinflamma-
tion and memory decline caused by experimental autoim-
mune diseases. The suppression of TLRs expression affects
the activation of inflammatory pathways and the secretion
of related cytokines, thereby curtailing the inflammatory
response. Previous studies have shown RSV to repress the
expression of NLRP3 inflammasome [56, 103]. However,
the study did not show RSV to directly act on inflamma-
some, but rather through an indirect effect. The activation of
inflammasome was caused by NLRs recognizing risk sign-
aling factors. Therefore, a vital step in inflammatory sign-
aling pathways and inflammasome activation may be the
recognition of PRRs with risk-related factors. The discerning
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of these injury factors by PRRs may further promote the
inflammatory response that could lead to injury aggrava-
tion [104]. Also, RSV can directly act on these risk-related
factors, resulting in the downregulated expression of these
factors and significantly hindering the assembly process of
inflammasomes (Fig. 3).

RSV Can Improve the Repair of SCI by Inhibiting
Inflammatory Responses

The occurrence of inflammatory response is an inevitable
secondary symptom of SCI. However, neuroinflammation
has a two-way effect on SCI repair: positive inflammatory
response is beneficial to tissue regeneration, while negative
inflammatory response inhibits the injury repair process. In
secondary SCI, the activation of glial cells and subsequent
release of inflammatory factors and interferon accelerate
neuronal death and induce vascular endothelial cells to
express various cell adhesion and chemotactic molecules
that attract more inflammatory factors [105]. The intensi-
fication of inflammatory response is the primary cause of
secondary SCI and is also a considerable hindrance in the
SCI repair process. Chronic inflammation instigates the
over-activation of motor neuronal and glial cells that leads
to CNS dysfunction and form scar tissue, which impedes
the process of SCI repair. Hence, improving the immune
microenvironment of the spinal cord during secondary SCI
is one of the prime treatment goals [106]. It is, therefore,
necessary to find an effective treatment that can inhibit the
inflammatory response and promote SCI repair. Studies at
the cellular level have shown extracellular vesicles of mesen-
chymal stromal cells filled with at the injured area of the spi-
nal cord to significantly alleviate inflammatory response and
inhibit glial scar formation [107]. Also, another study at the
molecular level showed progranulin deficiency to promote
neuroinflammation and apoptosis and aggravate SCI [108].

Currently, increased attention is being afforded to the
considerable impact of Chinese medicinal extracts for neu-
roinflammation management induced by SCI. In particu-
lar, the antiinflammatory and antioxidative effects of RSV
play an immense role in secondary SCI. Prior studies have
shown RSV to hinder inflammatory response in SCI by
repressing and triggering the NF-kB inflammatory sign-
aling pathway and Sirt-1 signaling pathway, respectively
[109]. Moreover, Menghay et al. [110] showed that RSV
could regulate adenosine 5'-monophosphate-activated
protein kinase (AMPK)/mammalian target of rapamycin
(mTOR) signaling pathway to improve neuroprotective
functions after SCI. Another study also demonstrated that
RSV promoted autophagy and recovery of motor neurons
by regulating the Sirt-1/AMPK signaling pathway after
SCI [111]. In recent years, study outcomes concerning
the employment of RSV have been encouraging and have

@ Springer

boosted its position as a potential interventional agent for
alleviation of secondary SCI.

Conclusion

SCI is a neurological disease that is difficult to treat, and
chronic neuroinflammation and glial scar formation aggra-
vate its recovery process. Current investigations are pre-
dominantly focusing on the treatment of neuroinflammation.
In the wake of SCI, astrocyte-mediated neuroinflammation
occurs within a short time. Transient inflammatory response
is conducive to injury recovery. However, excessive neuro-
inflammation provokes cells to secrete detrimental factors
that promote the over-activation of reactive astrocytes and
further transforms to scar-forming astrocytes. The formation
of glial scar complicates SCI recuperation. Therefore, it is
imperative to find novel treatment strategies that suppress
this process and promote injury repair.

In recent years, biological functions (such as antiinflam-
mation and antioxidation) of RSV have had significant treat-
ment effects on SCI. Specifically, RSV can downregulate the
expression of injury-related factors, prevent cells that inhibit
the inflammatory pathway, and reduce the materialization
of inflammatory reactions. Although the antiinflammatory
effect of RSV has been evident in experiments, its specific
action mechanism is yet to be clarified. Nonetheless, RSV
can minimize the activity of inflammatory factors through
its antioxidant effect, and inhibit inflammatory signaling
pathways through its antiinflammatory properties, thereby
hindering astrocyte-mediated inflammatory response, cur-
tailing glial scar formation, and promoting SCI repair.
Studies addressing the precise mechanism of this process
would provide the molecular basis for RSV employment in
treating SCI. Recent completed clinical trial investigations
have shown the significant effects of RSV [112-114]. For
example, clinical studies have evinced the effectiveness of
high-dose RSV with no serious adverse effects [115, 116].
Although these studies did show the efficacy of RSV, more
clinical investigations are needed for a better understanding
of its safety in the clinical setting (Tab. 1 and 2).
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