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Abstract: An optimal antimicrobial regimen for the treatment of patients with carbapenem-resistant
Klebsiella pneumoniae (CRKP) bloodstream infection (BSI) is currently unavailable. This study aimed
to identify the appropriate antibiotics and the risk factors of all-cause mortality for CRKP BSI patients.
This retrospective cohort study included the hospitalized patients with CRKP BSI. Primary outcome
was 30-day all-cause mortality. Cox regression analysis was used to evaluate the risk factors of
30-day mortality. A total of 89 patients were included with a 30-day mortality of 52.1%. A total of
52 (58.4%) patients were treated with appropriate antimicrobial regimens and 58 (65.2%) isolates
carried blaKPC-2 genes. Microbiologic eradication within 7 days (adjusted hazard ratio [HR] = 0.09,
p < 0.001), platelet count (per 1 × 104/mm3, adjusted HR = 0.95, p = 0.002), and Pitt bacteremia
scores (adjusted HR = 1.40, p < 0.001) were independently associated with 30-day all-cause mortality.
No effective antimicrobial regimens were identified. In conclusion, risk factors of 30-day mortality
in patients with CRKP BSI included microbiologic eradication > 7 days, lower platelet count, and
a higher Pitt bacteremia score. These findings render a new insight into the clinical landscape of
CRKP BSI.

Keywords: bacteremia; carbapenemase; carbapenem-resistant Enterobacteriaceae; Klebsiella pneumoniae;
mortality; risk factors

1. Introduction

The rapidly increasing prevalence of antibiotic resistance in Enterobacteriaceae is cur-
rently a major threat to public health worldwide [1]. Recently, the European Survey of
Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group investigated
2703 clinical isolates of carbapeneme-resistant Enterobacteriaceae (CRE) submitted from
455 sentinel hospitals in 36 countries and reported that 15% of these were Escherichia coli and
85% were Klebsiella pneumoniae. Among these Klebsiella isolates, 37% were carbapenemase-
producers [2]. Four gene families encoding carbapenemase-production have been identi-
fied: Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase, oxacilli-
nase 48-like, and Verona integron-encoded metallo-β-lactamase [2]. Carbapenem-resistant
Klebsiella pneumoniae (CRKP) has attracted particular attention since it was first identified
as one of the multidrug resistant bacteria strains [3]. Previous studies reported that the
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KPC-producing Klebsiella pneumoniae was independently associated with higher mortal-
ity [4,5]. Mortality rate of CRKP bloodstream infection (BSI) is reported to range from 42%
to 84% [6]. Mechanistically, the acquisition of genes encoding carbapenemase-production is
the predominant mechanism of carbapenem-resistance through inactivation or degradation
of carbapenems [7].

Although the innovation of new drugs combating resistant bacteria may create a
glimmer of hope, the evolution of drug-resistant genes soon overwhelms progression.
For instance, drug resistance-combating ceftazidime-avibactam was first approved under
the Generating Antibiotic Incentives Now (GAIN) Act, whereas its clinical use was soon
followed by reports of resistance caused by CRKP [8–11]. Due to the rapid progression and
high mortality rate, the role of CRKP can be better understood by an early examination.
Nonetheless, the clinical value of CRKP and its related risk factors are yet to be clarified.

Many studies found that CRKP BSI patients treated with combined antibiotics had
better survival outcomes than those treated with monotherapy [12,13]. However, poten-
tially effective regimens are varied across studies and those that are available are very
limited [14–17]. Since there is no consensus on optimal antimicrobial regimens for CRKP
infection, it is crucial to understand the possible risk factors for unfavourable outcomes and
potentially optimal antibiotics when treating CRKP BSI patients. In this retrospective cohort
study, we attempted to identify the appropriate antimicrobial regimens and to investigate
the risk factors of all-cause mortality for CRKP bloodstream infection (BSI) patients.

2. Materials and Methods
2.1. Study Design and Patients

This retrospective cohort study was ethically approved by the Institutional Review
Board of Show Chwan Memorial Hospital, which is a regional hospital offering an esti-
mated 750 beds in Taiwan (approval number: SCMH_IRB No. 1061202). Hospitalized
patients diagnosed with CRKP BSI (number of patients) between June 2014 and August
2017 in Show Chwan Memorial Hospital in Taiwan were included in the study. CRKP BSI
was defined by at least one blood-culture positive for a CRKP strain. The patients with
polymicrobial BSI and those aged < 20 years were excluded.

2.2. Data Collection

All patient data were collected through a retrospective review of medical records.
Variables included demographics, medical history, Charlson Comorbidity Index [18], ad-
mission history, initial presentations (quick sepsis related organ failure assessment [qSOFA]
score [19], systemic inflammatory response syndrome [SIRS] criteria [20], Pitt bacteremia
score [21], vital signs, and laboratory data), length of hospitalization, antibiotic regimens,
microbiologic results, and drug susceptibilities. Sepsis was defined by qSOFA ≥ 2 [22] and
shock was as mean arterial pressure ≤ 65 mmHg [23]. Only antimicrobial agents used for
more than 48 h would be included for analysis. Antimicrobial regimens were classified as
empiric or definitive. Empiric regimen included the prescription of antibiotics before the
blood culture result was available. Definitive regimen referred to prescription of antibiotics
based on drug susceptibility results. An appropriate regimen was defined as including
one or more in vitro active drugs against the CRKP isolates. Primary outcome was 30-day
all-cause mortality, measured from the day on which the first blood culture revealing CRKP
was taken. Microbiologic eradication was defined as negative blood cultures for CRKP
during follow-up.

2.3. Microbiology and Antimicrobial Susceptibilities

The CRKP isolates were collected from the first positive blood culture of each patient.
Bacterial identification and antimicrobial susceptibility tests were performed using Phoenix
Automated Microbiology System (Becton, Dickinson and Company, USA) and the inter-
pretative criteria of the Clinical and Laboratory Standards Institute (CLSI) guidelines was
applied. CRKP was defined as an isolate with a minimum inhibitory concentration (MIC)
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of ≥2 µg/mL for ertapenem, ≥4 µg/mL for meropenem, or ≥4 µg/mL for imipenem. Due
to no available CLSI breakpoints for Enterobacteriaceae, MIC breakpoints by the European
Committee on Antimicrobial Susceptibility Testing were used for the interpretation of
colistin susceptibility (susceptible: ≤2 mg/L, resistant: >2 mg/L) [24] and tigecycline sus-
ceptibility was determined by MIC breakpoints by the USA Food and Drug Administration
(susceptible: MIC ≤ 2 µg/mL, intermediate: 4 µg/mL, resistant: MIC ≥ 8 µg/mL) [25].
Detection for blaKPC gene and blaOXA-48 gene were performed by polymerase chain reaction
with specific primers, as previously described [26]. Pulse-field gel electrophoresis (PFGE)
was used to detect the relatedness of the CRKP strains. The profiles of XbaI macro-restricted
fragments of each strain were determined by a standardized PulseNet PFGE protocol [27].
The BioNumerics version 6.6 (Applied Maths, Belgium) was used to analyze the PFGE
profiles. The relatedness was based on PFGE profiles using the dice coefficients and the
unweighted pair group method with arithmetic mean algorithm. The optimization value
and position tolerance were set at 1.5% and 0.75%, respectively.

2.4. Statistical Analysis

Continuous variables were presented as median with interquartile range (IQR) and
categorical variables were presented as a percentage. The comparison between the survival
group and mortality group was performed using the Mann–Whitney U test and Fisher’s ex-
act test for continuous and categorical variables, respectively. Mortality rate was estimated
using the Kaplan–Meier method and compared using the log-rank test. A univariate and
multivariate Cox proportional hazard model was used to evaluate the risk factors of 30-day
mortality. The variables with p < 0.1 in the univariate model were manually selected into
the multivariate model in a backward stepwise manner. The results of the Cox proportional
hazard model were presented as hazard ratio (HR) with 95% confidence interval (CI). A
p-value of <0.05 was considered statistically significant. IBM SPSS Statistics for Windows,
version 24.0 (IBM Corp., Armonk, NY, USA) was used for the statistical analyses.

3. Results
3.1. Patient Characteristics and Antimicrobial Treatment

As shown in Table 1, a total of 89 patients (59.6% male, median age 75.6 years) with
CRKP BSI were included: 43 (48.3%) patients in the 30-day survival group and 46 (51.7%)
in the 30-day mortality group. The 7-day, 14-day, and 30-day all-cause mortality of all
patients were 32.6%, 43.9%, and 51.7%, respectively. Within 48 h of admission, 23 out of
89 (25.8%) had a positive sign of blood culture testing for CRKP, indicating that it was
community acquired. The 66 out of 89 (74.1%) patients who presented a positive sign
of blood culture testing for CRKP after 48 h of admission were regarded as nosocomial
infections. Survival group patients had a significantly lower Charlson comorbidity index,
Pitt bacteremia score, and albumin levels. The proportion of sepsis and septic shock was
lower in the survival group, while platelet counts were higher. Pre-existing cardiovascular
disease and hospitalizations during the prior year was more uncommon among survivors
(Table 1).

The results of antimicrobial susceptibility revealed that 52 (58.4%) were treated with
the appropriate antimicrobial regimens, including 9 (10.1%) as empiric therapy and addi-
tionally 50 (56.2%) as definite regimens. Colistin (31.5%) and carbapenem (41.6%) were
the most commonly prescribed antibiotics. Patients in the survival group had a significant
proportion of microbiological eradication within 7 days, as compared to the mortality group
(72.1% vs. 13.0%, p < 0.001) (Table 2). However, the proportion of appropriate regimen,
length of hospitalization, and the pattern of antibiotics utilization did not significantly
differ between the two groups (Table 2).
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Table 1. Demographics and baseline characteristics in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream
infection according to 30-day mortality.

Variables All
(n = 89)

Survival Group
(n = 43) (48.3%)

Mortality Group
(n = 46) (51.7%) p Value

Demographics
Male; n (%) 53 (59.6%) 26 (60.5%) 27 (58.7%) 1.000
Age; y/o (IQR) 75.6 (63.8–83.7) 74.5 (62.3–83.4) 80.5 (65.8–85.2) 0.153
BMI; kg/m2 (IQR) 21.3 (18.3–25.9) 20.8 (18.2–24.8) 21.4 (19.2–30.0) 0.223

Comorbidities
Charlson comorbidity index; score (IQR) 8 (6–10) 7 (6–9) 8 (7–11) 0.008
Diabetes mellitus; n (%) 53 (59.6%) 24 (55.8%) 29 (63.0%) 0.523
Cardiovascular disease; n (%) 57 (64.0%) 34 (79.1%) 23 (50.0%) 0.008
Chronic obstructive pulmonary disease; n (%) 21 (23.6%) 9 (21.4%) 12 (26.1%) 0.628
Chronic liver disease; n (%) 15 (16.9%) 4 (9.5%) 11 (23.9%) 0.092
Chronic kidney disease; n (%) 15 (16.9%) 9 (21.4%) 6 (13.0%) 0.397
Malignancy; n (%) 18 (20.2%) 7 (16.7%) 11 (23.9%) 0.439
Steroid use ≥ 3 months; n (%) 15 (16.9%) 4 (9.5%) 11 (23.9%) 0.092
Immunocompromised condition; n (%) 8 (9.0%) 3 (7.1%) 5 (10.9%) 0.716

Events in the prior year
Hospitalization; events (%) 65 (73.0%) 36 (85.7%) 29 (64.4%) 0.028
Admitted to intensive care units; events (%) 30 (33.7%) 16 (38.1%) 14 (30.4%) 0.504
Nursing home residence; events (%) 31 (34.8%) 14 (32.6%) 17 (37.0%) 0.824
CRKP colonization; events (%) 14 (15.7%) 7 (16.7%) 7 (15.2%) 1.000
Surgery; events (%) 24 (27.0%) 12 (27.9%) 12 (26.1%) 1.000

Initial presentation
Pitt bacteremia score; score (IQR) 4 (2–6) 3 (1–4) 6 (4–8) < 0.001
SIRS; score (IQR) 3 (2–4) 3 (2–3) 3 (2–4) 0.273
SIRS ≥ 2; n (%) 76 (85.4%) 35 (81.4%) 41 (89.1%) 0.375
qSOFA; score (IQR) 2 (1–3) 1 (1–2) 2 (2–3) < 0.001
Sepsis; n (%) 54 (60.7%) 18 (41.9%) 36 (78.3%) 0.001
Septic shock; n (%) 27 (30.3%) 7 (16.3%) 20 (43.5%) 0.006
Body temperature ≥38 ◦C; n (%) 54 (60.7%) 27 (62.8%) 27 (58.7%) 0.828
White blood cell count (103/mm3); count

(IQR)
13.2 (8.7–17.8) 13.7 (10.1–17.8) 10.7 (6.4–18.0) 0.249

Hemoglobin (g/dL); value (IQR) 9.8 (9.0–10.6) 9.8 (9.1–11) 9.7 (8.6–10.5) 0.352
Platelet count (104/mm3); count (IQR) 12.4 (5.2–23.8) 17.5 (10.8–26.3) 8.15 (3.8–18.2) 0.002
Creatinine (mg/dL); value (IQR) 1.3 (0.8–2.8) 1 (0.7–2.8) 1.4 (0.9–2.8) 0.088
Albumin (g/dL); value (IQR) 2.6 (2.2–2.9) 2.9 (2.5–3.0) 2.4 (2.1–2.7) < 0.001
C-reactive protein (mg/dL); value (IQR) 11.6 (4.9–19.4) 10.8 (3.6–19.3) 12.7 (8.0–19.6) 0.256

Microbiology
Presence of KPC gene; n (%) 58 (65.2%) 22 (51.2%) 36 (78.3%) 0.008

Clonal relatedness of CRKP strain 0.006
Cluster I; n (%) 11 (12.4%) 8 (18.6%) 3 (6.5%)
Cluster II; n (%) 62 (69.7%) 23 (53.5%) 39 (84.8%)
Others; n (%) 16 (18.0%) 12 (27.9%) 4 (8.7%)

Abbreviations: BMI, body mass index; CRKP, carbapenem-resistant Klebsiella pneumoniae; IQR, interquartile range; KPC, Klebsiella pneumoniae
carbapenemase; qSOFA, quick sepsis related organ failure assessment; SIRS, systemic inflammatory response syndrome.

3.2. Microbiology Revealed Redcued Proportion of KPC Genes and KPC Cluster II in the
Survival Group

Among the 89 CRKP strains, 58 (65.2%) isolates carried KPC genes, and all were
blaKPC-2 genes. According to the results of PFGE, two distinct clusters could be identified
from the CRKP strains (Figure 1): 11 (12.4%) strains in the cluster I, 62 (69.7%) in cluster
II, and others (18.0%). All the strains carrying KPC genes were in cluster II. None of the
cluster I and II strains had blaOXA-48 genes. Notably, we noted that the survival group had
a reduced proportion of KPC genes (51.2% vs. 78.3%, p = 0.008) and the cluster II strains
(53.5% vs. 84.8%, p = 0.006) as compared to the mortality group (Table 1).
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Table 2. Treatment in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infection according to
30-day mortality.

Variables All
(n = 89)

Survival Group
(n = 43)

Mortality Group
(n = 46) p Value

Appropriate antimicrobial regimen; n (%) 52 (58.4%) 28 (65.1%) 24 (52.2%) 0.283
Colistin included; n (%) 28 (31.5%) 10 (23.3%) 18 (39.1%) 0.006
Amikacin included; n (%) 13 (14.6%) 9 (20.9%) 4 (8.7%) 0.336
Carbapenem included; n (%) 37 (41.6%) 17 (39.5%) 20 (43.5%) 0.124
Tigecycline included; n (%) 3 (3.4%) 0 (0%) 3 (6.5%) 0.092
Monotherapy; n (%) 12 (13.5%) 11 (25.6%) 1 (2.2%) 0.003

Appropriate empiric regimen; n (%) 9 (10.1%) 3 (7.0%) 6 (13.0%) 0.487
Appropriate definitive regimen; n (%) 50 (56.2%) 28 (65.1%) 22 (47.8%) 0.135
Microbiologic eradication within 7 days; n (%) 37 (41.6%) 31 (72.1%) 6 (13.0%) <0.001
Length of hospitalization; days (IQR) 21.5 (13.0–34.0) 21.5 (14.0–40.0) 21.5 (13.0–33.0) 0.483

Abbreviations: CRKP, carbapenem-resistant Klebsiella pneumoniae; IQR, interquartile range; KPC, Klebsiella pneumoniae carbapenemase.

3.3. Comparison of Antimicrobial Susceptibility

All of the 89 isolates were resistant to at least one of the three carbapenems. For the
89 isolates, colistin exerted the highest susceptibility rate (96.6%), followed by amikacin
(88.8%), tigecycline (82.0%), meropenem (22.5%), levofloxacin (11.2%), ertapenem (7.9%),
and imipenem (5.6%) (Figure 2A). The pattern of drug susceptibility in the survival group
differed from that of the mortality group (Figure 2A). The pattern difference was observed
between CRKP strains with and without KPC genes (Figure 2B). The survival group
had a significantly higher susceptibility rate of imipenem (11.6% vs. 0%, p = 0.023) and
meropenem (34.9% vs. 10.9%, p = 0.01) than the mortality group (Figure 2A). Except for
colistin, tigecycline, and amikacin, the susceptibility rate of all drugs were significantly
lower in the CRKP strains with KPC genes than in the strains without KPC genes.

3.4. Risk Factors of 30-Day All-Cause Mortality

For patients with CRKP BSI, multivariate analysis revealed that microbiologic erad-
ication within 7 days (adjusted HR = 0.09, p < 0.001), platelet count (per 1 × 104/mm3,
adjusted HR = 0.95, p = 0.002), and Pitt bacteremia score (adjusted HR = 1.40, p < 0.001) were
independently associated with 30-day all-cause mortality. The univariate Kaplan-Meier
method revealed that CRKP patients with KPC genes had significantly higher 30-day mor-
tality than those without KPC genes (62.6% vs. 32.4%, p = 0.022) (Figure 3). However, the
predictive role of the presence of KPC genes was not confirmed by the multivariate model.
None of the antimicrobial regimens was significantly associated with 30-day mortality
(Table 3).

Table 3. Multivariate analysis for risk factors of 30-day mortality in patients with carbapenem-resistant Klebsiella pneumoniae
bloodstream infection.

Variables Adjusted Hazard Ratio 95% Confidence Interval p

Microbiologic eradication within 7 days
(yes vs. no) 0.09 0.03–0.26 <0.001

Platelet count (per 1 × 104/mm3) 0.95 0.92–0.98 0.002
Pitt bacteremia score (per 1 unit) 1.40 1.21–1.61 <0.001
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Figure 1. Clonal relatedness of the carbapenemase-producing Klebsiella pneumoniae strains. Pulse-
field gel electrophoresis (PFGE) was used to determine the profiles of XbaI macro-restricted frag-
ments of each strain were determined by a standardized PulseNet PFGE protocol. 

Figure 1. Clonal relatedness of the carbapenemase-producing Klebsiella pneumoniae strains. Pulse-field
gel electrophoresis (PFGE) was used to determine the profiles of XbaI macro-restricted fragments of
each strain were determined by a standardized PulseNet PFGE protocol.
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4. Discussion

CRKP BSI is a clinical challenge as no effective antimicrobial regimens are currently
available. This study observed a 30-day all-cause mortality of 52.1% in patients with CRKP
BSI. The lack of microbiologic eradication within 7 days, a lower platelet count, and a
higher Pitt bacteremia score were independently associated with higher 30-day mortality.
Notably, the predictive role of KPC genes and appropriate antibiotic regimens were not
identified in this study.

All the KPC genes detected in this study were blaKPC-2, which was consistent with
the previous nationwide surveillance in Taiwan that blaKPC-2 accounted for the majority of
KPC genes [28]. However, in the present study, the prevalence of blaKPC-2 gene among CRKP
strains was 65.2%, much higher than the previous prevalence of 36.2% in 2011–2015 [29]. The
results suggested the KPC-2-producing CRKP strains disseminate rapidly at an alarming
rate in Taiwan. In addition, this study reveals that non-KPC-producing strains present high
susceptibility to imipenem, meropenem, ertapenem, ceftriaxone, cefepime, levofloxacin,
and piperacillin/tazobactam, as compared to that of KPC-producing strains. Although the
results might suggest the role of KPC in the treatment of CRKP BSI, multivariate analysis
did not find an association of KPC with mortality. Wang et al. reported similar results that
KPC-gene positive and negative strains had different MICs of antibiotics, but mortality did
not differ between these two CRKP strains [30]. Some studies suggested CRKP infection
as an important risk factor of hospital mortality [4,5]; however, the role of KPC deserves
further investigations for patients with CRKP BSI.

This study revealed that a higher Pitt bacteremia score was independently associated
with 30-day mortality in patients with CRKP BSI. The result was comparable with the study
of Shen et al. and Xiao et al. [31,32] Gomez-Simmonds et al. and Lee et al. also reported
that the patients with Pitt bacteremia score > 4 had significantly higher mortality [15,17]
Additionally, our study revealed an association of lower platelet count with higher mortal-
ity, which might also reflect the severity of illness [33]. Some studies used different tools
to evaluate the severity of illness at the presence of CRKP BSI, for example, APACHE II
score; a higher APACHE II score was reported to be independently associated with 30-day
mortality [13,34]. All these results supported the predictive value of the severity of illness
for 30-day morality in patients with CRKP BSI.

Both our results and that of Nguyen et al. revealed that the patients with microbiologic
eradication within 7 days had a significantly better survival rate [35]. Falcone et al. further
evaluated the effect of time to appropriate antibiotic therapy on 30-day mortality and
showed that time to appropriate antibiotic therapy was an independent predictor of 30-day
mortality in patients with CRKP BSI. Falcone et al. suggested that appropriate antibiotic
therapy was preferably initiated within the first 24 h after collection of the blood culture [36].
From our study and the previous research, the importance of timely control of the disease
is evident.

Many studies have attempted to identify the best combination of antibiotics for the
treatment of CRKP BSI, but the results are mixed and there is no consistent conclusion [14–17].
Our results revealed that the most susceptible drug was colistin, followed by tigecycline
and amikacin [13,15,31,35,37]. Medeiros et al. observed that the combination of colistin
and amikacin could provide survival benefits for the patients with CRKP BSI [38]. How-
ever, both colistin [39] and amikacin [40] are nephrotoxic agents. Most patients with
CRKP BSI are older, have multiple comorbid diseases, and frequently present with septic
shock [13,35,41]. The use of colistin or amikacin, or in combination, can further aggravate
nephrotoxicity [39,40]. This combination is reasonable on the basis of only antimicrobial
susceptibility without consideration of patients’ condition and drug adverse effects. Clini-
cians are usually reluctant to use the combination because of the high risk of renal injury,
which may lead to dialysis and increase subsequent morbidity and mortality. Although
tigecycline causes minimal organ toxicity, the use of tigecycline for Gram-negative bac-
teremia remains controversial. The serum concentrations provided by standard doses
of tigecycline are below the MICs of most Gram-negative pathogens [42]. Therefore,
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the most common combinations are colistin/tigecycline, aminoglycoside/tigecycline, col-
istin/carbapenem, aminoglycoside/carbapenem, and a combination of three drugs (e.g.,
colistin/tigecycline/carbapenem) [12,13]. However, it lacks consensus on the best com-
bination for the treatment of CRKP BSI. Ceftazidime-avibactam is a new combination of
third generation cephalosporin and non-β-lactam β-lactamase inhibitor, and has promis-
ing in vitro activity against many Gram-negative pathogens, including KPC-producing
Enterobacteriaceae [43]. It is hoped that the new drugs will not be misused or overused to
avoid the development of antibacterial resistance [44].

The major caveat of this study is the observational design, in which potential reporting
bias and selection could not be avoided. Secondly, all patients were diagnosed and treated
in a single institute, which limited the external validity of the results. Thirdly, this study
focused on the patients with CRKP BSI instead of other types of infection, such as urinary
tract infection, pneumonia, or intra-abdominal infection. Fourthly, the definition of appro-
priate regimens in this study was the inclusion of one or more efficient antibiotics, instead
of two or more, and the time to appropriate regimens was not evaluated. This might
explain the results that the use of appropriate regimen was not significantly associated
with 30-day mortality.

5. Conclusions

This retrospective cohort study observed that the risk factors of 30-day all-cause
mortality in patients with CRKP BSI included microbiologic eradication > 7 days, a lower
platelet count, and a higher Pitt bacteremia score. These findings render new insights into
the clinical landscape of CRKP BSI.
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