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Abstract: In recent years, more and more frameworks have been applied to brain-computer inter-
face technology, and electroencephalogram-based motor imagery (MI-EEG) is developing rapidly.
However, it is still a challenge to improve the accuracy of MI-EEG classification. A deep learn-
ing framework termed IS-CBAM-convolutional neural network (CNN) is proposed to address the
non-stationary nature, the temporal localization of excitation occurrence, and the frequency band
distribution characteristics of the MI-EEG signal in this paper. First, according to the logically
symmetrical relationship between the C3 and C4 channels, the result of the time-frequency image
subtraction (IS) for the MI-EEG signal is used as the input of the classifier. It both reduces the
redundancy and increases the feature differences of the input data. Second, the attention module is
added to the classifier. A convolutional neural network is built as the base classifier, and information
on the temporal location and frequency distribution of MI-EEG signal occurrences are adaptively
extracted by introducing the Convolutional Block Attention Module (CBAM). This approach reduces
irrelevant noise interference while increasing the robustness of the pattern. The performance of the
framework was evaluated on BCI competition IV dataset 2b, where the mean accuracy reached 79.6%,
and the average kappa value reached 0.592. The experimental results validate the feasibility of the
framework and show the performance improvement of MI-EEG signal classification.

Keywords: brain-computer interface; motor imagery (MI); convolutional neural network (CNN);
feature enhancement; attention module

1. Introduction

The brain is the highest level part of the nervous system, and various functions of
the human body have corresponding mapping areas on the brain, such as sensory areas
and motor areas [1]. A brain-computer interface system is a communication system that
enables the brain to interact with the outside world by connecting it to external devices [2].
Modern brain neuroscience has demonstrated that different changes in a person’s state of
mind, emotions, and thoughts can affect changes in EEG signals, so it is feasible to study
changes in a person’s mind through EEG signal analysis [3].

In recent years, brain signal research, such as steady-state visual evoked potentials,
P300 evoked potentials, and motor imagery has also made great progress [4,5]. In this paper,
MI-EEG will be further studied and discussed. The physiological basis of motor imagery
is that when a person imagines movement of different parts of the body (such as left or
right hands) without actually moving them, they also activate different functional areas of
the brain accordingly, thus generating EEG signals with different properties. For example,
when a person performs unilateral limb imagery movements, the µ and β rhythm energy
in the ipsilateral sensorimotor cortex of the brain increases, and the contralateral µ and β

rhythm energy decreases. This phenomenon is known as event-related synchronization
and event-related desynchronization (ERD/ERS) [6,7].

The processing of motor imagery EEG signals generally includes signal acquisition,
signal pre-processing, feature extraction, and classification recognition. Feature extraction
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is the most critical step among them. Currently, in feature extraction, the common spatial
pattern (CSP) [8] is one of the effective methods. It uses matrices diagonalization of matrices
to find an optimal set of spatial filters for projection, which maximizes the difference in
variance values of different signals, resulting in a feature vector with a high degree of
discrimination. However, CSP excessively relies on bandwidth selection. The filter bank
common space model proposed by Zhang et al. solves this problem [9]. This method selects
the most discriminative features by calculating the mutual information of CSP features from
multiple sub-bands, but the extraction of the features is more complicated. To simplify the
feature extraction operation, Tabar et al. convert the EEG signals of each channel into time-
frequency images, which are classified by a deep network stacked autoencoder (SAE) [10].
The method simplifies the feature extraction step, but the classification performance needs
to be improved. Zhang et al. feed the classifier with a combination of time-frequency
images of multiple channels arranged up and down, and the classification accuracy is
improved [11]. However, the time-frequency images arranged up and down contain too
many irrelevant frequency bands and introduce a lot of noise.

In feature recognition, various deep learning models have also been applied to the
feature recognition and classification of EEG signals. Liu et al. propose a classification
framework for long short-term memory (LSTM) networks combined with channel weight-
ing techniques, which has a small parameter size and faster processing speed [12]. Yang
et al. rely on the basic framework of convolutional neural networks (CNNs) to construct an
end-to-end classification model and introduce stacked sparse autoencoders to enhance the
generalization ability of the model [13]. Considering the inconsistency and the possibility
of distortion of the measured EEG signals, Ha et al. propose a classification model based
on a capsule network to improve the classification ability of signals [14].

In this paper, we have improved the model in terms of enhancing the distinctness
of feature differences in the input data and the classification model. An IS-CBAM-CNN
deep learning framework is proposed from the perspective of image processing. Based on
the logically symmetrical relationship between ERD/ERS and the C3 and C4 channels, a
method based on image subtraction (IS) is proposed to enhance the feature representation
of MI-EEG signals. The method obtains the time-frequency image of the signal by wavelet
transform and then uses the result of the time-frequency image subtraction as the input
to the classifier. A convolutional neural network with two convolutional layers and
two pooling layers is built as the base classifier. Based on the temporal and frequency
characteristics of the motor imagery EEG signal, the CBAM is added to convolutional
neural networks to capture salient features of MI-EEG signals on images and enhance
classifier recognition. The performance of the framework is evaluated on public datasets.

The rest of the paper is organized as follows: Section 2 reviews two datasets and noise
processing. Section 3 describes an improved method in detail. The experimental results
and discussion are presented in Section 4. Finally, we make our conclusions in Section 5.

2. Materials
2.1. Datasets

We used two public datasets to evaluate our model. The first dataset is BCI Compe-
tition IV dataset 2b [15]. The dataset consists of nine subjects from EEG data. For each
subject, five sessions were provided. The first two contained training data without feedback
and the last were recorded with feedback. In this paper, only data without feedback are
selected as the dataset for each subject.

Each trial started with a fixed cross and an additional short audible warning tone
(1 kHz, 70 ms). After a few seconds, a visual cue (with an arrow pointing to the left or right,
depending on the category requested) appeared for 1.25 s. Subjects had to visualize the
corresponding hand movements within 4 s. Each trial was followed by a short break of
at least 1.5 s. In addition, the rest period was increased by up to 1 s of randomization to
avoid adaptation. The experimental paradigm is the same for each experiment, as shown
in Figure 1.
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Figure 1. The paradigm of BCI competition IV 2b.

The dataset was recorded with three bipolar recordings (C3, Cz, and C4) at 250 Hz
sampling frequency. They were band-pass filtered between 0.5 Hz and 100 Hz, with a
50 Hz trap filter enabled. The locations of the three bipolar recordings were slightly
different for each subject. The data set included experiments on the motor imagery task for
both right-handed and left-handed movements. Each session contained 120 trials.

The second dataset used in this paper is BCI Competition II dataset III [16]. The
dataset was recorded from a female subject. The dataset was recorded at 128 Hz sampling
frequency. It was band-pass filtered between 0.5 Hz and 30 Hz. The experiment included
280 trials of 9 s length. This is illustrated in Figure 2. Each trial starts with a fixed cross and
an additional short audible warning tone. After a few seconds, a visual cue appeared, and
the subject had to visualize the corresponding hand movements within 6 s.
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2.2. Signal Preprocessing

When motor imagery EEG signal classification is performing, the raw EEG dataset
is pre-processed to filter noise artifacts to obtain an expectation EEG signal. (1) Channel
selection. The C3, Cz and C4 channels are the main acquisition channel for motor imagery
EEG signals. To reduce the redundancy of the input signals, the noise, and the subsequent
experimental design, we only use signals from channels C3 and C4. (2) Signal filtering. The
first step is to remove the industrial frequency interference from the signal, which has been
filtered out during the acquisition of EEG data. Based on the activation frequency of the
motor imagery EEG signal, we use a band-pass filter of 8–30 Hz to obtain the frequency
range bands that we need. It is worth noting that the filtering does not fully yield the
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desired frequency band. (3) Baseline correction. After filtering, baseline correction is
applied to the signal to prevent the effect of data drift on the signal.

3. Methods
3.1. Enhanced Feature Differences

Some research has shown that when people perform left and right-hand motor imagery
experiments [17], ERD/ERS patterns are observed occurring primarily in the corresponding
sensorimotor cortex on both sides of the brain, namely in the C3 and C4 electrode regions.
The results in [11] also show that the EEG signals generated through the C3 and C4 channels
alone are feasible to classify the left and right-hand motor imagery tasks. When the Cz
channel is introduced for classification, it does not improve the classification accuracy but
introduces noise. Therefore, the EEG signals from channels C3 and C4 are chosen as input
data in this paper.

Different people have different evaluation criteria for extracting useful features from
a signal. To facilitate the automatic extraction of features of the signal by the classifier,
we convert the EEG signal into a color time-frequency image using a wavelet transform.
The images contain time domain information, frequency domain information, and the
corresponding energy values of the signal. Then, the corresponding time-frequency images
of the two channels are subtracted, relying on the logical symmetry of the C3 and C4
channels. Then, the feature-enhanced time-frequency images are fed to the classifier for
automatic feature extraction.

A wavelet transform is an ideal tool for time-frequency analysis and processing for
non-smooth, random EEG signals. The wavelet transform can fully highlight certain
aspects of the problem, allowing for time subdivision at high frequencies and frequency
subdivision at low frequencies. It can be automatically adapted to the requirements of
time-frequency signal analysis and more complete information about the signal. The
transformation equation that we use is shown in Equation (1):

Wx(a, τ) =
1√
|a|

∫ ∞

−∞
x(t)ψ∗(

t− τ

a
)dt, (1)

where a is the scale factor, τ is x(t) the shift time of the mother wavelet. The factor
a controls the scaling of the wavelet function, corresponding to the frequency domain
information of the signal, τ controls the translation of the wavelet function, corresponding
to the time domain information of the signal. In this way, the frequency component,
and the corresponding position of the component in the time domain can be determined
after the wavelet transform. ψ is the mother wavelet and we choose the morlet wavelet
basis function.

The preprocessed MI-EEG signals are converted into two-dimensional time-frequency
images by wavelet transform, as shown in Figure 3a,b. When hand movement imagery is
performed, ERD/ERS phenomena occur in the cerebral cortex under the C3 and C4 elec-
trode positions, with corresponding energy changes in the µ and β rhythms. Specifically,
when left-handed movements are imagined, the energy in the corresponding frequency
band of the cerebral cortex at the C3 electrode location rises and the energy in the cor-
responding frequency band of the cerebral cortex at the C4 electrode location falls. The
temporal frequency images of channels C3 and C4 have opposite band-specific energy
magnitudes, which were particularly evident in the µ rhythm section. Opposite energy
fluctuates when right-handed motion imagery is performed.
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Figure 3. (a). Time-frequency images of the C3 (a1) and C4 (a2) channels when the subject performing
the left-hand motor imagery. It can be seen that the energy of the C3 channel remains at a high level
4 s after the trail begins, while the C4 channel decreases significantly. (b). Time-frequency images
of the C3 (b1) and C4 (b2) channels when the subject performing the right-hand motor imagery.
Obviously, this phenomenon is opposite to that of Figure 3a.

Depending on the image’s properties, different energies are represented in the image
as pixel values of different sizes. When a classifier processes a time-frequency image,
the classifier extracts the pixel values in the image as raw data for classification learning.
Therefore, we enter raw data into the classifier to improve the accuracy of the classification.
The basis for improvement is based on two main aspects: (1) C3 and C4 electrode positions
are logically symmetrical about the longitudinal fissure of the brain; (2) Motor imagery
has opposite energy changes in the occurrence areas of the left and right brain, which
manifest as differences in pixel values on time-frequency images. To enhance the classifier
accuracy by increasing this difference, we subtract the corresponding pixel values of the
time-frequency images corresponding to the C3 and C4 channels. The image obtained by
subtraction is used as input to the classifier. As shown in Figure 4, the input images of the
two channels are combined and the feature differences are increased from the input side of
the classifier.

3.2. Framework Construction

With the wavelet transform, we convert the original signal into a two-dimensional
time-frequency image. We also fully extract the time domain, frequency domain, and the
corresponding energy characteristics of the signal. We convert the problem of classification
and recognition of signals into an image classification problem. Therefore, we design the
classifier from the perspective of image classification. Based on the excellent performance
of convolutional neural networks in the field of image classification, we use them as the
base classifier and improve them. The classification accuracy is improved by improving
the classification effectiveness of the classification model.
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Figure 4. Final combined time-frequency images of left-hand (a) and right-hand (b) motor imagery.
It can be seen that the energy difference between the two time-frequency images is obvious 4 s after
the trail begins.

First, we build a basic convolutional neural network classification framework with
two convolutional layers and pooling layers. To process the input data efficiently in the
convolutional neural network, all input images are resized to a uniform size of 64 × 64.
We select a convolutional kernel of a size 7 × 7. The convolution operation is a linear
operation, whereas a neural network must fit a non-linear function. Therefore, we need
to add activation functions, such as sigmoid function, tanh function, rectified linear unit
(ReLU) function, etc. In this paper, we chose the ReLU function, which is defined and
formulated with derivatives as shown in Equations (2) and (3):

f (x) = max(0, x), (2)

f ′(x) =
{

1, x > 0
0, x ≤ 0

, (3)

When performing backhaul, we need to calculate the derivative of the activation
function. As a result, the ReLU function is chosen, its derivative is always equal to 1 if the
input is greater than zero. Compared to the sigmoid and tanh functions, the ReLU function
overcomes the gradient disappearance, speeds up training, and has less computational
overhead [11].

The convolutional neural network completes the descending and feature extraction of
the input image by convolutional operations, but the dimensionality of the feature image
is still extremely high. High dimensionality could lead to time-consuming calculations
and over-fitting. Therefore, we introduce the pooling layers for downsampling to reduce
data redundant information and simplify the complexity of the network. The area of the
pooling layer is resized to 2 × 2 with a move step of 2. Then a dropout layer is added to
reduce the model overfitting with the parameter 0.8. Finally, all features will be combined
for classification via a fully connected layer. Finally, the optimizer selects Admax with a
learning rate of 0.0003.

Due to the small dataset, we cannot rely solely on increasing the depth of the model to
improve the accuracy of MI-EEG signal classification. Therefore, on the basis of considering
the weight of the different channels of the input image and the spatial position of the image,
CBAM is introduced into the convolutional neural network [18]. The attention module
allows the deep neural network to focus on the parts that are most relevant to solving the
problem at hand, rather than processing information from the entire input. The framework
is shown in Figure 5. The module combines spatial and channel attention modules, consid-
ering both the importance of pixels in different channels and the importance of pixels in
different positions in the same channel.



Sensors 2021, 21, 4646 7 of 13Sensors 2021, 21, x FOR PEER REVIEW 7 of 13 
 

 

F´ F´´F

spatial        
attention

convolution
CBAM
max pooling
fully connected
softmax

Mc

channel attention

Ms

 
Figure 5. Proposed CNN structure with the CBAM module; the CBAM module is also described. 

In IS-CBAM-CNN, the CBAM is embedded in the middle of the convolutional and 
pooling layers. The CBAM module includes two parts. The first part is the channel atten-
tion map 1 1C

CM
× ×∈ , which enables the selection of channels. The other part is the spa-

tial attention map 1 H W
SM

× ×∈ , which selects the areas of the image space that require 
attention. C, H, and W are the indicators of the number of channels, height, and width of 
the feature map, respectively. As shown in Figure 5, the feature map output C H WF × ×∈  
from the convolution layer passes through a channel attention module. The output F ′  
is weighted and fed into a spatial attention module. The final weighting F ′′  is done to 
get the result to be passed to the pooling layer. The overall attention process can be sum-
marized as shown in Equations (4) and (5): 

( )CF M F F′ = ⊗ , (4)

( )SF M F F′′ ′ ′= ⊗ , (5)

where ⊗ denotes element-wise multiplication. 
The channel attention module focuses on which channels play a role in the final out-

put classification result of the network. The feature map F  is compressed in the spatial 
dimension by maximum pooling and average pooling to obtain two different descriptions 
of the spatial context: c

avgF  and c
maxF . The two different spatial background descriptions 

are computed using a shared network consisting of a multi-layer perceptron (MLP) with 
hidden layers to obtain a channel attention map: 1 1C

CM
× ×∈ . The channel attention pa-

rameters are then obtained by summing after a fully connected layer, where both share 
the same fully connected network. The channel attention is computed as shown in Equa-
tions (6) and (7): 

( ) ( ( ( )) ( ( )))CM F MLP AvgPool F MLP MaxPool Fσ= + , (6)

c c
1 0 avg 1 0 max( ) ( ( ( )) ( ( )))CM F W W F W W Fσ= + , (7)

where σ  denotes the sigmoid function, 0W  and 1W  are the weights of the MLP. 

Figure 5. Proposed CNN structure with the CBAM module; the CBAM module is also described.

In IS-CBAM-CNN, the CBAM is embedded in the middle of the convolutional and
pooling layers. The CBAM module includes two parts. The first part is the channel attention
map MC ∈ RC×1×1, which enables the selection of channels. The other part is the spatial
attention map MS ∈ R1×H×W , which selects the areas of the image space that require
attention. C, H, and W are the indicators of the number of channels, height, and width of
the feature map, respectively. As shown in Figure 5, the feature map output F ∈ RC×H×W

from the convolution layer passes through a channel attention module. The output F′ is
weighted and fed into a spatial attention module. The final weighting F′′ is done to get the
result to be passed to the pooling layer. The overall attention process can be summarized
as shown in Equations (4) and (5):

F′ = MC(F)⊗ F, (4)

F′′ = MS(F′)⊗ F′, (5)

where ⊗ denotes element-wise multiplication.
The channel attention module focuses on which channels play a role in the final output

classification result of the network. The feature map F is compressed in the spatial dimension
by maximum pooling and average pooling to obtain two different descriptions of the spatial
context: Fc

avg and Fc
max. The two different spatial background descriptions are computed using

a shared network consisting of a multi-layer perceptron (MLP) with hidden layers to obtain a
channel attention map: MC ∈ RC×1×1. The channel attention parameters are then obtained
by summing after a fully connected layer, where both share the same fully connected network.
The channel attention is computed as shown in Equations (6) and (7):

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))), (6)

MC(F) = σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))), (7)

where σ denotes the sigmoid function, W0 and W1 are the weights of the MLP.
The spatial attention module focuses on which locations play a role in the final output

of the network. It improves the recognition accuracy and robustness of the model by
reducing the interference of the background to the task. Two different descriptions ((F′)s

avg,
(F′)s

max) are obtained using maximum pooling and average pooling in the dimension of the
channel. Two different descriptions ((F′)s

avg, (F′)s
max) are combined and a spatial attention



Sensors 2021, 21, 4646 8 of 13

map (Ms(F′) ∈ R(H×W)) is generated using a convolution operation. The spatial attention
is computed as shown in Equations (8) and (9):

MS(F′) = σ( f 7×7([AvgPool(F′); MaxPool(F′)])), (8)

MS(F′) = σ( f 7×7([(F′)s
avg; (F′)s

max])), (9)

where σ denotes the sigmoid function, f 7×7 represents a convolution operation with the
filter size of 7 × 7.

3.3. Evaluation Method

The improved framework is evaluated on the BCI Competition IV dataset 2b. There
are nine subjects in this dataset. We test and evaluate the algorithm separately for each
individual using kappa coefficients and accuracy rates. The kappa coefficient is a measure
of classification accuracy. It represents the ratio of the model’s classification results to the
reduction in error produced by a completely random classification, eliminating the effect
of random classification accuracy. The kappa coefficient is defined as in Equation (10):

kappa =
p0 − pe

1− pe
, (10)

where p0 is the subject’s classification accuracy, pe is the assumed accuracy of the random
classifier for the same data, and the value pe of the second classification is 0.5 [10].

There are nine subjects in the BCI Competition IV dataset 2b dataset. We took the first
2 sessions as the dataset for each subject, approximately 240 trails. As the performance of
EEG experiments varied considerably between different subjects or for the same subject
at different periods [19], we assessed the accuracy and kappa coefficient of the model
using a 10 × 10-fold cross-validation method. With a smaller dataset, the 10 × 10-fold
cross-validation makes full use of all the data, using fewer test data to obtain a higher level
of reliability and eliminating the effect of within-subject variation on our results.

4. Results and Discussion
4.1. Results

To validate the performance of the framework, we compare it with SVM With Band
Power Features (BP-SVM) [20], CNN’s With Stacked AEs (CNN-SAE) [10], Twin-SVM
Method [21], Filter Bank CSP (FBCSP) [22] and Capsule Network (CapsNet) [14] using the
BCI Competition IV dataset 2b dataset.

The results of the experiments are shown below. In Table 1, the accuracy of different
frameworks is compared. It can be observed from the table that our proposed IS-CBAM-
CNN framework performs better than BP-SVM, CNN-SAE, and CapsNet overall. Com-
pared with BP-SVM, CNN-SAE and CapsNet, the average accuracy of the IS-CBAM-CNN
framework improved by 9.4%, 2.0% and 1.2%, respectively.

For each subject, the accuracy of the IS-CBAM-CNN framework is higher than that of
BP-SVM for all nine subjects. Except for the third and seventh subjects, whose accuracy is
slightly lower than that of CNN-SAE, the IS-CBAM-CNN framework also shows excellent
performance in the test validation for the remaining seven subjects. Among the nine
subjects, the highest accuracy rate of CapsNet is 40.0% higher than the lowest accuracy
rate, while the difference of IS-CBAM-CNN is 27.7%. The IS-CBAM-CNN shows a more
stable classification performance.
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Table 1. Competition IV dataset 2b accuracy (%) results for CapsNet, BP-SVM, CNN-SAE and
IS-CBAM-CNN.

Subjects CapsNet BP-SVM CNN-SAE IS-CBAM-CNN

1 78.8 65.4 ± 4.7 76.0 ± 2.7 80.3 ± 1.5
2 55.7 58.5 ± 4.3 65.8 ± 1.9 75.0 ± 1.8
3 55.0 64.4 ± 5.9 75.3 ± 1.8 67.7 ± 2.6
4 95.9 92.7 ± 4.6 95.3 ± 0.4 95.4 ± 0.6
5 83.1 77.1 ± 6.6 83.0 ± 1.4 88.3 ± 1.5
6 83.4 71.4 ± 6.8 79.5 ± 2.5 80.0 ± 1.7
7 75.6 68.4 ± 7.6 74.5 ± 1.8 73.7 ± 2.2
8 91.2 68.8 ± 5.9 75.3 ± 2.6 77.4 ± 2.0
9 87.1 65.9 ± 6.1 73.3 ± 3.6 78.6 ± 2.1

Average 78.4 70.2 ± 5.8 77.6 ± 2.1 79.6 ± 1.8

For the mean standard deviation of the model accuracy, the mean standard deviation of
BP-SVM, CNN-SAE, and IS-CBAM-CNN are 5.8%, 2.1%, and 1.8%, respectively. Compared
with the other two methods, IS-CBAM-CNN shows good robustness.

In Table 2, the kappa coefficients of the different models are compared. Compared
with Twin-SVM, FBCSP, and CNN-SAE, the average kappa values of the proposed IS-
CBAM-CNN framework are improved by 9.0%, 6.6%, and 4.5%, respectively. The overall
performance of the IS-CBAM-CNN method has improved. For each subject, six of the nine
subjects outperform the remaining three models.

Table 2. Competition IV dataset 2b kappa coefficients results for Twin-SVM, FBCSP, CNN-SAE and
IS-CBAM-CNN.

Subjects Twin-SVM FBCSP CNN-SAE IS-CBAM-CNN

1 0.494 0.546 ± 0.017 0.517 ± 0.095 0.606 ± 0.030
2 0.416 0.208 ± 0.028 0.324 ± 0.065 0.500 ± 0.036
3 0.322 0.244 ± 0.023 0.494 ± 0.084 0.354 ± 0.052
4 0.897 0.888 ± 0.003 0.905 ± 0.017 0.908 ± 0.012
5 0.722 0.692 ± 0.005 0.655 ± 0.060 0.766 ± 0.030
6 0.405 0.534 ± 0.012 0.579 ± 0.099 0.600 ± 0.034
7 0.466 0.409 ± 0.013 0.488 ± 0.065 0.474 ± 0.044
8 0.477 0.413 ± 0.013 0.494 ± 0.106 0.548 ± 0.040
9 0.503 0.583 ± 0.010 0.463 ± 0.152 0.572 ± 0.042

Average 0.526 0.502 ± 0.014 0.547 ± 0.083 0.592 ± 0.036

To verify the performance and advantages of the IS and CBAM modules, comparative
verification experiments are carried out by replacing and removing the modules. The IS
and CBAM are first removed on the basis of the IS-CBAM-CNN framework, and the input
time-frequency images are stitched up and down as the input to the classifier, which we
refer to as the up and down CNN (UD-CNN). Removing CBAM from the IS-CBAM-CNN
framework, we refer to this method as IS-CNN. The three models are compared finally, as
shown in Figure 6.

Figure 6 shows a bar chart comparing the accuracy of each subject under each of
the three different methods tested. The average accuracy of the UD-CNN, IS-CNN, and
IS-CBAM-CNN methods are 74.3%, 77.3%, and 79.6% respectively. The graphs more
clearly represent the performance of the three methods, and for most subjects, there is
some degradation in the performance of the method when either IS or CBAM is removed
or replaced.
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Figure 6. Comparison of the accuracy results of UD-CNN, IS-CNN, and IS-CBAM-CNN.

To evaluate our methods on another dataset, we use the same networks described
before to classify data from BCI Competition II dataset III. Networks are trained with
140 trials in the training set and tested on 140 trials in the test set. As shown in Table 3, the
accuracy of the IS-CBAM-CNN model is 90.7% and the accuracy of the competition win-
ner’s algorithm is 89.3% [23], which is better than the winner algorithm of the competition.
We also compare with a recent study [24] and the CNN-SAE algorithm. The accuracy rates
of the study and CNN-SAE are 88.2% and 90.0%, respectively. The results of both methods
perform lower than our proposed model.

Table 3. Competition II dataset III accuracies (%) results for the winner algorithm [23], deep network [24],
CNN-SAE and IS-CBAM-CNN.

Subjects [23] [24] CNN-SAE IS-CBAM-CNN

Accuracy (%) 89.3 88.2 90.0 90.7
Kappa 0.783 0.764 0.800 0.814

4.2. Discussion

Through an extensive comparative analysis of experimental results, we confirm the
feasibility of an approach that relies on the subtraction of image pixel values to increase
feature differences, and then verify the effectiveness of the CBAM module in improving
classification accuracy. Compared with prior MI-EEG classification methods, the proposed
method shows superior performance in two aspects.

First, wavelet transform and time-frequency image subtraction (IS) are used to en-
hance the characteristics of different signals. Using time-frequency images as classifier
inputs simplifies the feature extraction process for MI-EEG signal classification. However,
because EEG signals are typically obtained using multiple electrode channels, how the
time-frequency images are combined across multiple channels can have a significant impact
on the accuracy of the final classification. Many research papers have proved that the C3
and C4 channels are sufficient to provide classification information for MI-EEG signal clas-
sification experiments. And the Cz channel could introduce noise interference in addition
to providing little useful information, so we drop the Cz channel. Although a small amount
of useful new information is lost, the introduction of noisy signals is also avoided. Relying
on the logical positional symmetry of the C3 and C4 channels and ERD/ERS, we amplify
the signal features by image processing to obtain more distinctive features to improve the
accuracy of the classifier. In Figure 6, the effectiveness of the method for improving the
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classification performance is also verified by comparing UD-CNN and IS-CNN. Compared
with previous time-frequency analysis, it has wide applicability while improving the clas-
sification effect. Specifically, more methods of generating time-frequency images can be
tried in this framework, not only wavelet transform, such as short-time Fourier transform,
and Hilbert–Huang Transform and so on. It provides more possibilities for improving
classification performance. It is worth noting that image subtraction is both a strength and
a limitation of ours (the necessary condition for the use of image subtraction in this paper
is the logical symmetry of the C3 and C4 channels).

Second, the overall processing performance is further improved by the CBAM module,
and a classification solution is provided for motor imagery EEG signals. The MI-EEG
signal generates in specific frequency segments and fluctuating intervals, and the time-
frequency images contain large areas of noise in addition to presenting pure MI-EEG
information. The attention module is introduced into the convolutional neural network
based on the temporal location and frequency distribution characteristics of the MI-EEG
signal occurrence. By learning the channel information of the time-frequency images
and the spatial location information of the different channel images, the weights of the
different channel information and the different spatial location information are determined
to improve the accuracy of the classifier. In Figure 6, the results of the IS-CNN and
IS-CBAM-CNN comparisons also demonstrate the feasibility of the attention module.

In this paper, we start from the data feature processing and classifier model of motion
imagery EEG signals and convert the signal processing problem into an image processing
problem. Then we increase the feature differences, simplify the feature extraction process,
introduce the attention module, and design the classifier from the perspective of image
classification to enhance better results of signal classification.

5. Conclusions

This paper proposed a deep learning framework for MI-EEG classification from the
perspective of image processing. The performance of the framework was evaluated on
the BCI competition IV dataset 2b. The framework was improved in terms of both the
input data and the classifier. First, we converted the signal into time-frequency images.
Then, the IS method was used to synthesize the input and amplify the difference in energy
characteristics at the level of the input. At this point, the signal recognition was converted
to an image classification problem. Finally, relying on the convolutional neural network
framework, which performs well in image processing, this paper introduced a CBAM
module to reasonably extract spatial and channel information in order to improve the
recognition capability and robustness of the framework. We validated the feasibility of
proposed approach and compared it with other state-of-the-art methods. The experimental
results demonstrated that the classification accuracy of the proposed method was better
than the classical methods and state-of-the-art CNN-based methods.

There are still many continuous challenges and meaningful research directions that
inspire us to keep moving forward. First, which time-frequency image generation method
is more suitable for our proposed framework? We will further improve the quality of
time-frequency images through different methods, such as short-time Fourier transform,
Hilbert–Huang Transform, and other advanced methods. Second, the deep learning module
still has limitations, including layer selection and network structure optimization. We will
try more models and make reasonable parameter choices.
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