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Diabetes mellitus often results in several complications, such as diabetic kidney

disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often

have the dysregulated glucose metabolism. Abnormal glucose metabolism can

enhance the tumor malignant progression. Recently, lncRNAs have been

reported to regulate the key proteins and signaling pathways in DKD

development and progression and in cancer patients with diabetes. In this

review article, we elaborate the evidence to support the function of lncRNAs in

development of DKD and diabetes-associated cancer. Moreover, we envisage

that lncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer

patients with diabetes. Furthermore, we delineated that targeting lncRNAs

might be an alternative approach for treating DKD and cancer with

dysregulated glucose metabolism.
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Abbreviations: a-SMA, alpha smooth muscle actin; a1-MG, a1-microglobulin; APEX2, ascorbate

peroxidase; b2-MG, b2-microglobulin; BSA, bovine serum albumin; CASC2, cancer susceptibility

candidate 2; ChREBP, carbohydrate response element binding protein; CTGF, connective tissue growth

factor; DRAIR, diabetes regulated anti-inflammatory lncRNA; DKD, diabetic kidney disease; HbA1c,

glycosylated hemoglobin; HDAC1, histone deacetylase 1; HKDC1, hexokinase domain-containing 1;

HOTAIR, HOX antisense intergenic RNA; LncRNAs, long noncoding RNAs; MEG3, maternally expressed

gene 3; MLX, MAX dimerization protein; MXD1, MAX dimerization protein 1; NEAT, nuclear-enriched

abundant transcript; PBMC, peripheral blood mononuclear cells; PGC-1a, peroxisome proliferator-

activated receptor g coactivator a; SOD, superoxide dismutase; TGF-b1, transforming growth factor-b1;

TME, tumor microenvironment; TUG1, taurine upregulated gene 1.
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Introduction
Noncoding RNAs have been known to play an essential role

in development of many diseases (1, 2). Noncoding RNAs

include short non-coding RNAs, such as microRNAs

(miRNAs), small interfering RNA (siRNAs), piwi-interacting

RNA (piRNAs), transfer RNA (tRNAs), small nuclear RNA

(snRNAs) and small nucleolar RNA (snoRNAs), and long

non-coding RNAs (lncRNAs), which is based on their length

(3). LncRNAs often have more than 200 nucleotides and cancer

serve as signal molecules, decoy molecules, guide molecules, and

scaffold molecules to perform their functions via regulation of

gene expression at epigenetic, transcriptional and post-

transcriptional levels (4, 5). Accumulated evidence has

dissected that lncRNAs participate in cellular biological

processes via regulation of protein degradation and governing

gene transcription as well as controlling protein coding sections

(6–8). Dysregulated lncRNAs have been reported to participate

in numerous diseases, including cancer, inflammatory bowel

disease, cardiovascular disease, neurological disorders and

diabetes (9–14).

Diabetes mellitus (DM) has become a major health problem

in the world, which often results in several complications, such

as diabetic kidney disease (DKD) (15). DKD is often known as

diabetic nephropathy. DM has three types: type 1 diabetes, type 2

diabetes and gestational diabetes (GDM). Type 1 diabetes is

insulin-dependent and often appears during childhood and

adolescence. Type 2 diabetes often appears in older adults due

to that pancreas does not make enough insulin or cells respond

poorly to insulin. GDM often happens during the pregnancy

after insulin secretion is not enough. DKD is one of causes to

develop end stage kidney disease (ESKD) and kidney failure (16).

It has been known that chronic stimuli such as high glucose in

the bloodstream can lead to pathological gene modulation and

DKD in diabetic patients (17). EMT and endothelial-

mesenchymal transition (EndMT) have been characterized to

integrate into the fibrosis and DKD (18, 19). EMT is a process in

which epithelial cells acquire mesenchymal characteristics after

various stimulations. Similarly, EndMT is a process in which

endothelial cells have the phenotype toward mesenchymal cells,

which often appears in cardiovascular diseases. Cancer patients

often have the dysregulated glucose metabolism. Abnormal

glucose metabolism can enhance the tumor malignant

progression (20).

Recently, noncoding RNAs, including lncRNAs, have been

reported to regulate the key proteins and signaling pathways in

DM and DKD development and progression as well as in cancer

with diabetes (21–24). In this review article, we elaborate the

evidence to support the function of lncRNAs in development of

DKD and cancer patients with diabetes. Moreover, we envisage

that lncRNAs could be diagnostic and prognosis biomarkers for

DKD and diabetes-related cancers. Furthermore, we delineated
Frontiers in Oncology 02
that targeting lncRNAs might be an alternative approach for

treating DKD and diabetes-associated cancer.
Role of lncRNAs in DKD

Emerging evidence has suggested that lncRNAs are useful

for precision medicine in DKD (25–28). Zhang and colleagues

used the integrate biological, computational, and statistical

strategies to analyze the pathogenesis and progression of DKD

through analysis of regulatory networks including miRNAs,

lncRNAs and mRNAs (29). This study reported that 127

lncRNAs were changes in DKD, among which 26 were

decreased and 101 were increased. In particular, this work

identified that miR-223-3p might be a biomarker for

prediction of DKD disease process (29).
LncRNA HOTAIR

Evidence showed that lncRNA HOTAIR is critically

involved in DKD development (30). One group used several

mouse models, such as podocyte-specific Hotair knockout mice,

streptozotocin-induced diabetes in mice, and the db/db mouse

model of type 2 diabetes. In these mouse models, glomerular

HOTAIR was upregulated. Depletion of Hotair in podocytes did

not affect structure, ultrastructure, function of kidneys (30). In

mouse podocytes, high glucose treatment increased the

expression of HOTAIR. Interestingly, silencing of HOTAIR

did not affect the kidney damage in diabetic mice. Moreover,

HOTAIR expression was linked to HOXC11 expression in

human kidney tissues according to a bioinformatic assay (30).

Notably, the serum level of HOTAIR was increased in type 2 DM

patients (31). HOTAIR can be a useful biomarker in prediction

of diabetic retinopathy and DKD in patients with type 2 DM. In

addition, HOTAIR facilitated high glucose-mediated fibrosis

and proliferation of mesangial cells via affecting miR-147a/

WNT2B axis in diabetic nephropathy (32). The role of

HOTAIR in DKD needs to be ascribed to validate its function

in the pathogenesis of DKD.
LncRNA GAS5

Wang et al. reported that lncRNA GAS5 promoted renal

tubular epithelial fibrosis via sponging miR-96-5p (33). Renal

fibrosis is often observed in DKD. Higher expression of lncRNA

GAS5 was reported in renal proximal tubular cells after TGF-b1
treatment. The kidneys of high-fat diet (HFD)/streptozotocin

(STZ) mice had the upregulation of lncRNA GAS5 (33).

Silencing of lncRNA GAS5 reduced renal fibrosis via

inhibition of miR-96-5p. Consistently, DKD mice had the

lower expression of miR-96-5p, leading to upregulation of
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fibronectin. Hence, depletion of lncRNA GAS5 could have

antifibrosis via sponging miR-96-5p and regulating

fibronectin. Zhang et al. found that lncRNA GAS5 attenuated

TGF-b-mediated renal fibrosis by inhibition of collagen type 1

an fibronectin via targeting the Smad3/miR-142-5p axis (34).

LncRNA GAS5 suppressed fibrosis and cell proliferation

through attenuating miR-221 and upregulating SIRT1

expression in diabetic nephropathy (35). LncRNA GAS5

inhibited pyroptosis and oxidative stress in renal tubular cells

after high glucose stimulation (36). LncRNA GAS5 alleviated

fibrosis via inhibition of MMP9 by recruitment of EZH2 in

diabetic nephropathy (37). Altogether, modulation of lncRNA

GAS5 might be useful for preventing DKD.
LncRNA MALAT1

LncRNA MALAT1 has been identified to play key roles in

DKD pathophysiology (38). One work assessed urinary albumin

in 136 patients with type 2 DM and 25 normal people. This work

found that urinary lncRNA MALAT1 was positively associated

with urinary podocalyxin, synaptopodin, UACR (urinary

albumin), NAG (N-acetyl-D-glucosaminidase), KIM-1 (kidney

injury molecule 1), miR-21, miR-93, miR-29a (38). LncRNA

MALAT1 was negatively correlated with eGFR, miR-29a and

miR-93. In addition, urinary lncRNA MIAT was positively

linked to miR-29a, miR-93 and eGFR, while lncRNA MIAT

was negatively associated with miR-21, miR-124, UACR, NAG

and KIM-1 (38). In line with this report, the expression of

lncRNA MALAT1 in PBMC was increased in type 2 DM and

DKD (39). MALAT1 was associated with ACR, HbA1c, SOD,

creatinine, a1-MG and b2-MG in type 2 DM and DKD patients.

MALAT1 in combination with ACR, a1-MG and creatinine

could be helpful for prediction of DKD in DM patients (39).

MALAT1 enhanced diabetic nephropathy via suppression of

miR-15b-5p and upregulation of TLR4 signaling (40).

MALAT1 activated LIN28 and Nox4/AMPK/mTOR

pathway, resulting in promotion of renal tubular injury in

diabetic nephropathy (41). Huang et al. reported that

MALAT1 aggravated renal fibrosis via modulation of miR-

2355-3p/IL6ST axis in diabetic nephropathy (42). One study

showed that podocyte injury could be due to abnormal

MALAT1 expression and subsequent dysregulated let-7f and

KLF5 in diabetic nephropathy (43). MALAT1 was also reported

to participate in high glucose-mediated HK-2 cell EMT via

activation of Wnt/b-catenin pathway and injury (44).

Consistently, MALAT1 was involved in high glucose-mediated

podocyte injury in diabetic nephropathy via its interaction with

b-catenin (45). MALAT1 aggravated high glucose-triggered

EndMT and fibrosis through regulation of miR-145/ZEB2 axis

(46). Additionally, MALAT1 participated in high glucose-

mediated HK-2 cell injury via interplay with Foxo1 to affect

SIRT expression (47).
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Urinary lncRNA MIAT was positively linked to miR-29a,

miR-93 and eGFR, while lncRNA MIAT was negatively

associated with miR-21, miR-124, UACR, NAG and KIM-1 in

type 2 DM (38). Depletion of lncRNAMIATmitigated apoptosis

and inflammation in podocyte after high glycose stimulation

through modulating miR-130a-3p and TLR4 pathway (48).

Ablation of lncRNA MIAT ameliorated fibrosis and cell

proliferation via suppression of E2F3 expression in diabetic

nephropathy (49). Loss of lncRNA MIAT blocked podocyte

injury and mitotic damage in diabetic nephropathy (50).

However, one study showed that lncRNA MIAT blocked the

high glucose-mediated cell damage and activation of NF-kB via

sponging miR-182-5p and elevating the GPRC5A expression in

diabetic nephropathy, leading to suppression of diabetic

nephropathy progression (51).
LncRNA NEAT1

Evidence has suggested that lncRNA NEAT1 governed renal

tubular EMT via regulation of the ERK1/2 signaling pathway in

DKD (52). LncRNA NEAT1 was increased in BSA-treated HK2

cells and HFD/STZ-induced DKD mice. Depletion of NEAT1

suppressed the expression of the EMT-related markers, such as

vimentin and a-SMA, and the renal fibrosis-associated markers,

including TGF-b1 and CTGF (52). LncRNA NEAT1 regulated

DKD progression via modulation of the ERK1/2 signaling

pathway. Li et al. discovered that NEAT1 interacted with miR-

129 to promote renal fibrosis via upregulation of collagen type 1

and promotion of EMT process (53). Additionally, urinary

lncRNA NEAT1 was positively correlated with miR-21, miR-

124, KIM-1, synaptopodin, and NAG in type 2 DM. Urinary

lncRNA NEAT1 had a negative association with miR-29a, miR-

93 and eGFR (38).

LncRNA NEAT1 activated Akt/mTOR pathway and

accelerated cell fibrosis and proliferation in diabetic

nephropathy (54). LncRNA NEAT1 enhanced EMT and

accumulation of extracellular matrix in diabetic nephropathy

via sponging miR-27b-3p and ZEB1 (55). Ablation of lncRNA

NEAT1 attenuated proliferation, fibrosis and inflammation of

mouse mesangial cells in diabetic nephropathy (56). In

addition, lncRNA NEAT1 accelerated diabetic nephropathy

occurrence and progression via suppression of miR-23c (57).

LncRNA NEAT1 affected pyroptosis via targeting the miR-34c

and NLRP3 in diabetic nephropathy (58). One group showed

that lncRNA NEAT1 accelerated high glucose-triggered

hypertrophy in mesangial cells through modulating miR-

222-3p and CDKN1B (59). Yang et al. found that lncRNA

NEAT1 enhanced tubular epithelial cell damage in kidney

through regulation of mitophagy by targeting miR-150-5p and
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DRP1 in diabetic nephropathy (60). Moreover, lncRNA

NEAT1 promoted fibrosis, inflammation, proliferation and

oxidative stress by modification of the miR-423/5p and

GLIPR2 pathway in diabetic nephropathy (61). Hence,

lncRNA NEAT1 might be a promising therapeutic target for

the treatment of DKD.
LncRNA TUG1

LncRNA TUG1 has been identified to play a crucial role in

DKD progression (62). One study revealed that ChREBP

controlled lncRNA TUG1 transcription when glucose levels

were increased in podocytes (62). Besides ChREBP, other

coregulates, such as MXD1, MLX and HDAC1, were

increased at the TUG1 promoter in response to high glucose

exposures. This work suggested that ChREBP coordinated

glucose homeostasis via regulation of lncRNA TUG1 (62). In

addition, lncRNA TUG1 was discovered to regulate

mitochondrial bioenergetics via regulation of PGC-1a in

podocytes in diabetic nephropathy (63, 64). Overexpression

of TUG1 in podocytes ameliorated diabetes-mediated chronic

kidney disease in mice (63). Zhang et al. reported that

knockdown of lncRNA TUG1 retarded the EMT of renal

tubular epithelial cells via targeting miR-141-3p/b-catenin
(65). Another work also demonstrated that lncRNA TUG1

reduced accumulation of extracellular matrix by sponging

miR-377 and targeting PPARg in diabetic nephropathy (66).

Moreover, lncRNA TUG1 interacted with miR-9 and

upregulated SIRT1, resulting in protection of podocytes from

high glucose-triggered apoptosis and mitochondrial

dysfunction (67). Urinary lncRNA TUG1 was positively

associated with miR-29a, miR-93 and eGFR in type 2 DM,

while lncRNA TUG1 had a negative association with miR-21,

miR-124, podocalyxin, NAG and synaptopodin (38).

LncRNA TUG1 participated in regulation of podocyte

apoptosis via modulation of TRAF5 pathway in diabetic

nephropathy rats (68). LncRNA TUG1 influenced podocyte

apoptosis via promotion of endoplasmic reticulum stress in

diabetic nephropathy progression (69). Additionally, lncRNA

TUG1 repressed the PI3K/AKT pathway and suppressed the

fibrosis and proliferation in mesangial cells in diabetic

nephropathy (70). LncRNA TUG1 inhibited the expression

of miR-21 and enhanced the TIMP3 expression, leading to

ameliorating diabetic nephropathy (71). LncRNA TUG1

repressed the PU.1/RTN1 pathway and improved diabetic

nephropathy (72). Notably, lncRNA TUG1 affected high

glucose-stimulated renal epithelial cell injury via regulation

of endoplasmic reticulum stress by targeting miR-29c-3p and

SIRT1 in diabetic nephropathy (73).
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LncRNA MEG3 has been revealed to regulate glucose

metabolisms in diabetic mice (74). STZ-mediated diabetic

mice had an increased expression of lncRNA MEG3, which

was associated with the podocyte numbers. Mice with

knockdown of MEG3 in podocyte had improved renal

physiological and histopathological features (74). These mice

also had a reduced mitochondrial translocation of Drp1 and a

decreased podocyte damage (74). Overexpression of lncRNA

MEG3 in podocyte led to podocyte injury and enhanced

mitochondria damage and upregulated expression and

phosphorylation of Drp1 (74). LncRNA MEG3 increased

fibrosis and inflammation through regulating miR-181a, Egr-1

and TLR4 in diabetic nephropathy (75). Moreover, lncRNA

MEG3 sponged miR-145 and impacted the development of

diabetic nephropathy (76). Strikingly, lncRNA MEG3

inactivated the Wnt/b-catenin pathway and reduced podocyte

injury in diabetic nephropathy (77). Therefore, MEG3 plays an

essential role in diabetic mice and DKD.
LncRNA KCNQ1OT1

Downregulation of KCNQ1OT1 attenuated oxidative stress

and inflammation and reduced pyroptosis in renal tubular

epithelial cells after high glucose stimulations through

regulation of miR-506-3p (78). One study showed that

KCNQ1OT1 participated in governing fibrosis, apoptosis and

proliferation via regulation of miR-18b-5p and SORBS2 and NF-

kB in diabetic nephropathy (79). Another study revealed that

KCNQ1OT1 sponged miR-18b and increased the expression of

HMGA2 and led to controlling high glucose-triggered oxidative

stress, proliferation and extracellular matrix promotion in

mesangial cells (80). In addition, KCNQ1OT1 was reported to

accelerate diabetic nephropathy development via modulating

miR-93-5p/ROCK2 axis (81). Xu et al. dissected that

KCNQ1OT1 governed cell oxidative stress, proliferation,

inflammation and extracellular matrix enhancement through

miR-147a/SOX6 pathway in diabetic nephropathy (82).

Recently, KCNQ1OT1 expression in diabetic nephropathy was

increased and associated with activation of MEK/ERK pathway

in diabetic nephropathy (83). LncRNA KCNQ1OT1 participates

in DKD development and progression.
LINC00472

Wang et al. used the data from Gene Expression Omnibus

(GEO) database to explore the differentially expressed profiles
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between DKD patients and the normal patients. This study

found that among 252 lncRNAs, 14 lncRNAs were

differentially expressed. LINC00472 was identified to be

differentially expressed in DKD patients, suggesting that

LINC00472 could act as the diagnostic biomarkers for DKD

patients (84). It is required to explore the detailed role of

LINC00472 in DKD.
LncRNA NONMMUG023520.2 and
NONMMUG032975.2

Smad3 has been reported to enhance the development of

type 2 DM and involve in DKD pathogenesis (85–87). One

group discovered the Smad3-associated genes via analysis of

whole transcriptome profile in three types of transgenic mouse

models, including Smad3 WT-db/db, Smad3 KO-db/db,

Smad3+/- db/db mice (88). Smad3 KO-db/db mice displayed

dysregulated genes involved in metabolism and RNA splicing,

Smad3+/- db/db mice exhibited dysregulated genes that were

associated with cell cycle and cell division (88). Two lincRNAs,

NONMMUG023520.2 and NONMMUG032975.2, were further

validated to be linked to the pathogenesis of diabetic

nephropathy. Moreover, Upk1b, Psca and Gdf15 were

identified to be correlated with diabetic nephropathy

development [26. Without a doubt, further investigation

i s p ivo ta l to de te rmine the func t ion o f lncRNA

NONMMUG023520.2 and NONMMUG032975.2 in DKD

development and pathogenesis.
LncRNA 254693

Increased ev idence has revea l ed tha t lncRNA

ENSG00000254693 participated in DKD development (89).

One research used RNA sequencing data and observed

numerous differentially expressed lncRNAs in renal specimens

of DKD. Among these dysregulated lncRNAs, lncRNA

ENSG00000254693 was drastically changed. Moreover, DKD

patients had higher expression of lncRNA ENSG00000254693

(89). Consistently, lncRNA ENSG00000254693 was upregulated

in human podocytes after high glucose exposures. Depletion of

lncRNA 254693 attenuated apoptosis, inflammation, and

podocyte injury that were induced by high glucose (89).

Furthermore, lncRNA 254693 was found to combine with

HuR, and depletion of lncRNA 254693 reduced HuR levels.

Interestingly, silencing of HuR reduced the expression and

stability of lncRNA 254693 and alleviate podocyte injury,

apoptosis and inflammation (89). Therefore, lncRNA 254693

might be a predicted factor for DKD treatment.
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LncRNA CASC2 expression in renal samples and serum was

identified to be downregulated in type 2 DM patients with

chronic renal failure (90). Low serum level of CASC2 was

associated with higher incidence of kidney failure, indicating

that serum lncRNA CASC2 could be a biomarker for prediction

of the occurrence of kidney failure in type 2 DM patients (90). By

RT-PCR analysis in 77 type 2 DM patients, 60 diabetic

nephropathy and 60 healthy people, one group found that

lncRNA PANDAR in the serum was upregulated compared

with healthy people (91). PANDAR expression was linked to

the level of proteinuria and glomerular filtration rate. PANDAR

might serve as a biomarker for judgement of DKD prognosis

(91). Yang et al. reported the differential expression profiles of

circulating lncRNAs in DM and DKD patients. Compared with

healthy persons, 245 lncRNAs were increased, while 680

lncRNAs were decreased in the serum of DM patients.

Compared with diabetes patients, 45 and 813 lncRNAs were

increased and decreased in the serum of DKD patients,

respectively (92). LncRNA ARAP1-AS1 expression was

elevated during DM and DKD progression, while lncRNA

ARAP1-AS2 was decreased in DM and DKD progression (92).

Hence, circulating lncRNA ARAP1-AS1 and ARAP1-AS2 might

predict the progression of DM and DKD.

Another group identified that lncRNA KCNQ1OT1 was

abnormally elevated in PBMCs of diabetic nephropathy, which

was correlated with the activation of MEK/ERK pathway (83).

LncRNA CASC2 modulated cell proliferation, oxidative stress

and extracellular matrix promotion in human mesangial cells

upon high glucose treatment through regulation of miR-133b

and FOXP1 expressions (93). LncRNA CASC2 mitigated

diabetic nephropathy development via sponging miR-144 and

regulating SOCS2 expression (94). LncRNA CASC2 ablated cell

inflammation, proliferation and fibrosis in glomerular mesangial

cells upon high glucose exposures via targeting miR-135a-5p/

TIMP3 pathway and JNK pathway (95).
LncRNAs regulate glucose
metabolism in cancer

Competing endogenous RNAs (ceRNA) can compete for

shared miRNAs to modulate the expression of other RNA

transcripts. A ceRNA network profile has identified the several

lncRNAs for classifying diabetic pancreatic cancer form non-

diabetic pancreatic cancer, including HOTAIR, CECR7, UCA1,

suggesting that lncRNAs are important predictors for diabetic

pancreatic cancer (96). In the following paragraphs, we will

discuss the association between lncRNAs and glucose

metabolisms in human cancer (Figure 1).
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LncRNAs regulate glucose metabolism
in cancer
Evidence has dissected that lncRNA-associated genetic

variants are shared between cancers and type 2 DM in human

(97). LncRNA DRAIR has been known to involve in the

development of type 2 DM (98). One study showed that the

expression of lncRNA DRAIR was remarkably elevated in triple-

negative breast cancer (TNBC) samples and plasma (99). High

expression of DRAIR in plasma was associated with

chemoresistance after therapy and tumor recurrence in TNBC

patients. In vitro experiments showed that overexpression of

DRAIR enhanced proliferation and viability of TNBC cells after

doxorubicin treatment (99).
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Accumulated evidence dissected that lncRNA HOXC-AS2

participated in the progression in high glucose-related

endometrial cancer (EC) (100). EC patients with diabetes had

the increased expression of HKDC1 compared with EC patients

with normal glucose. HKDC1 governed pyroptosis, a highly

inflammatory response of regulated cell death, via regulation of

ROS and cytokine release in EC cells after high glucose

stimulation (100). Moreover, miR-876-5p can inhibit the

expression of HKDC1 in high glucose-related EC. LncRNA

HOXC-AS2 was dissected to suppress the miR-876-5p/

HKDC1 axis in high glucose-associated EC (100). HKDC1

affected the formation of TME via promotion of glycolysis,

leading to accelerating EC progression. This work provided the

new therapeutic strategy for EC patients with diabetes by

targeting lncRNA HOXC-AS2 (100). LncRNA SNHG10
FIGURE 1

The role of lncRNAs in regulation of glucose metabolism in human cancers. EC, endometrial cancer; OS, osteosarcoma; HCC, hepatocellular
carcinoma; CRC, colorectal cancer; GC, gastric cancer; NSCLC, non-small cell lung cancer.
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enhanced glucose uptake and increased proliferation of

osteosarcoma cells via promotion of miR-218 methylation

(101). LncRNA MALAT1 facilitated glycolysis and tumor

metastasis via blocking miR-485-3p and upregulating c-MET

and Akt3/mTOR pathways in osteosarcoma (102). LncRNA

CERS6-AS1 regulated the MDM2/p53 axis and modulated

glucose metabolism and progression of HCC (103). LncRNA

WAC-AS1 sponged miR-320d and regulated the expression of

ARPP19, which promoted glucose uptake and lactate production

in HCC (104). LncRNA NR2F1-AS1 affected hypoxia-mediated

glycolysis and migratory ability of HCC cells via targeting miR-

140 and HK2 (105). Depletion of lncRNA HOTAIR reduced

glycolysis via inhibition of miR-130a-3p and upregulation of

HIF1a in HCC cells under hypoxia (106).

LncRNA MALAT1 modulated MYBL2/mTOR pathway and

caused glucose metabolism changes in prostate cancer (107).

LncRNA MIR31HG heightened glycolysis and tumor malignant

progression via regulating miR-361-3p and YY1 transcription

factor in colorectal cancer (108). LncRNA KCNQ1OT1

accelerated colorectal oncogenesis via promoting aerobic

glycolysis by upregulation of HK2 (109). HNF1A-AS1

governed glycolysis, invasion and migration through targeting

miR-124 and MYO6 in colorectal cancer (110). Similarly,

LINC00265 enhanced glycolysis and lactate release via binding

with miR-216b-5p and elevating the expression of TRIM44 in

colorectal cancer (111). LncRNA RNCR2 promoted glycolysis

and EMT and proliferation of melanoma cells via interacting

with miR-495-3p and upregulating HK2 in melanoma (112).

LINC00242 combined miR-1-3p and elevated the expression of

G6PD, leading to enhancement of aerobic glycolysis and

oncogenesis of gastric cancer (113). LncRNA MSC-AS1

increased glycolysis and cell growth via targeting PFKFB3

expression in gastric cancer cells (114). OIP5-AS1 heightened

aerobic glycolysis and proliferation via miR-186 sponge in

gastric cancer (115).

LINC00551 inhibited glycolysis and blocked tumor

progression via modulation of c-Myc-induced PKM2

expression in lung cancer (116). LncRNA CRYBG3

potentiated glycolys is via interact ion with lactate

dehydrogenase A (LDHA) in lung cancer (117). LncRNA

DUXAP8 accelerated glycolysis, viability and migratory

capacities via suppression of miR-409-3p and upregulation of

HK2 and LDHA in NSCLC cells (118). LncRNA BCYRN1

accelerated glycolysis via controlling the miR-149 expression

and elevating PKM2 expression in NSCLC (119). HOTTIP

enhanced hypoxia-mediated glycolysis via modulation of miR-

615-3p and HMGB3 in NSCLC cells (120). LINC00857 was

found to regulate glycolysis and tumor progression via

governing the Hippo signaling pathway by binding to miR-

486-5p in ovarian cancer (121). Downregulation of lncRNA

UCA1 attenuated glycolysis pathway and led to suppression of

growth of pituitary cancer cells (122). Overexpression of

lncRNA PCED1B-AS1 resulted in upregulation of glucose
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uptake, proliferation and lactate production in glioblastoma by

activation of HIF-1a pathway (123). LncRNA HNF4A-AS1

elevated aerobic glycolysis and tumor progression via

modulating hnRNPU/CTCF axis in neuroblastoma (124).
High/low glucose regulates lncRNAs
in cancer

Some studies have demonstrated that high glucose or glucose

deprivation affected the expression of lncRNAs in cancer cells.

For example, U87 and LN18 glioma cells after glucose

deprivation had upregulation of lncRNA TP53TG1 and

glucose metabolism-associated genes, including LDHA, IDH1

and GRP79 (125). Downregulation of TP53TG1 suppressed

proliferation and migration of U87 cells after glucose

deprivation, while overexpression of TP53TG1 displayed the

opposite functions (125). Low glucose condition promoted the

efficacy of TP53TG1 compared with high glucose condition.

This study suggested that glucose metabolism dysregulation can

affect the expression of TP53TG1 and tumor proliferation and

migration in glioma (125).

High glucose increased the expression of miR-483-3p in

hepatocellular carcinoma (HCC) cells. Moreover, upregulation

of miR-483-3p inhibited the expression of ER protein 29 (ERp29),

resulting in promotion of proliferation and migration of HCC

cells (126). Furthermore, lncRNA MEG3 can bind with miR-483-

3p in HCC cells. High glucose also reduced the expression of

lncRNA MEG3 in HCC cells. Consistently, silencing of lncRNA

MEG3 suppressed the expression of ERp29 in HCC cells (126).

This study showed that high glucose could affect the expression of

lncRNA MEG3 and govern the miR-483-3p/ERp29 proteins in

HCC patients, suggesting that management of lncRNA MEG3

could be promising for the treatment of HCC patients with

diabetes (126). Low glucose elevated the expression of lncRNA

HOXC-AS3, leading to promotion of metabolic reprogramming

of breast cancer via binding to SIRT6 and inactivating

HIF1a (127).
Targeting lncRNAs for treating DKD
and cancer

Klotho is often known as an antiaging protein to prevent of

aging. Klotho has been identified to protect renal tubular EMT

during the DKD development (52). Overexpression of Klotho

reduced the lncRNA NEAT1 expression in HFD/STZ-mediated

DKD mice. Moreover, overexpression of Klotho attenuated the

expression levels of NEAT1 in BSA-treated HK2 cells (52). On

the contrary, knockdown of Klotho increased the expression of

lncRNA NEAT1 in HK2 cells. Thereby, knockdown of Klotho

caused upregulation of NEAT1 and activation of EMT and

fibrosis in a ERK1/2-dependent manner (52). Another study
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showed that Klotho blocked EMT via downregulation of early

growth response factor 1 (Egr-1) by suppression of the ERK1/2

pathway in DKD mice (128). Similarly, Klotho decreased Egr-1

expression via repressing TGF-b1/Smad3 pathway in human

mesangial cells after high glucose exposures (129). Triptolide, a

diterpenoid epoxide that is obtained from the thunder god vine,

blocked renal tubular EMT via modulation of miR-188-5p-

involved PI3K/Akt pathway in DKD (130). Several studies

have showed that triptolide regulated the expression of

multiple lncRNAs, including lncRNAs WAKMAR2, PACER,

ENST00000619282, RP11-83J16.1 (131–135). Therefore,

whether triptolide regulates the lncRNA expression in DKD

needs to be further explored. Berberine, an isoquinoline alkaloid,

has been reported to upregulate the expression of lncRNA GAS5

to reduce the mitochondrial ROS generation in HK-2 cells under

high glucose environment through regulation of miR-18a-5p

and C/EBPb expression (136). The antisense oligonucleotide

treatment by targeting specific lncRNAs could provide targeted

medicine to cure DKD and cancer in the future.
Conclusion

In summary, burgeoning data demonstrate that lncRNAs

play an essential role in the development of DKD and diabetes-

associated cancer. LncRNAs could be diagnosis and prognosis

biomarkers for DKD and diabetes-related cancer. Modulation of

lncRNAs might be a promising strategy for treating DKD and

diabetes-associated cancer. It is important to note that it is far

from being fully clarified, although some studies have explored

the role of lncRNAs in DKD and cancer patients with DM. A

small number of lncRNAs are identified in regulation of DKD

and cancer patients with abnormal glucose metabolism.

Whether other lncRNAs also participate in DKD and diabetes-

associated cancer need to be explored. Compared with other

factors such as m6A and signaling pathways, it remains

questionable whether lncRNAs are more important in
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modulation of DKD and diabetes-related cancers. Addressing

these questions will help us understand the mechanism of

lncRNAs-regulated DKD and cancers, which could provide the

clues for discovering new therapeutic strategy for DKD and

cancer patients with diabetes.
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