
inhibitor (ibrutinib) or PI3Kd inhibitor (CAL-101) results in
increased resistance to antitumor activity of anti-CD20 mAbs.
Current study demonstrates that BCR inhibitors strongly down-
regulate CD20 expression in tumor cells, leading to decreased
binding of anti-CD20 mAbs to the surface of tumor cells and
impairment of CDC and ADCC mechanisms that mediate
antitumor effects of anti-CD20 mAbs in vivo. Our observations
strongly imply that before investigating novel therapeutic
combinations in cancer patients, extensive preclinical studies
should be carried out to evaluate possible interactions between
drugs at the molecular level.
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Expression of putative targets of immunotherapy in acute myeloid
leukemia and healthy tissues

Leukemia (2014) 28, 1167–1170; doi:10.1038/leu.2014.14

The ability to target myeloid malignancies using immunotherapy
through means other than allogeneic transplantation depends on
the capability to target leukemic clones while sparing normal
tissues. It is now possible to generate clinical grade ex-vivo
expanded T cells specific for leukemia-associated antigens (LAAs)
for use in adoptive cell therapy.1 Although a variety of putative
LAAs in acute myeloid leukemia (AML) have been identified for
use as potential targets for immunotherapy2–8 and consensus
panels have attempted to prioritize generic cancer antigens,9 a

comprehensive evidence-based list of AML antigen targets has not
yet been established. As a first step toward this goal, we therefore
analyzed, using quantitative real-time PCR, the gene expression of
65 potential LAAs (Supplementary Table S1) in de-identified,
clinically annotated samples from 48 newly diagnosed untreated
AML patients that were collected under institutional review board-
approved protocols from three NCCN cancer centers.

A total of 52 samples (30 peripheral blood (PB) and 22 bone
marrow aspirate (BM) samples) from 48 AML patients were analyzed,
which included 4 patients for whom both PB and BM samples were
available. The average age of the patients was 52 years (range
24–86); 52% of the patients were women. A total of 7 patients had
favorable cytogenetics, whereas 11 were classified as adverse,

Accepted article preview online 10 January 2014; advance online publication, 28 January 2014

Letters to the Editor

1167

& 2014 Macmillan Publishers Limited Leukemia (2014) 1129 – 1174



13 patients had FLT3 mutations (including 8 patients with FLT3-ITD)
and 9 patients had mutations in NPM1 (Supplementary Tables S2
and S3). RNA and DNA were isolated from the ficoll-purified PB and
BM samples using AllPrep Mini Kits (Qiagen, Valencia, CA, USA), and
the quantity, quality and integrity of isolated RNA were assessed
using a Nanodrop 1000 Spectrophotometer (Wilmington, DE, USA)
and Agilent RNA 6000 Nano Kit and 2100 Bioanalyzer (Santa Clara,
CA, USA). Only RNA with an RNA Integrity Number (RIN) of 7.0 or
greater was used for subsequent analysis (Supplementary Table S4).
An amount of 400 ng high-quality, total RNA was reverse-transcribed
into cDNA using RT2 First Strand Kit (Qiagen). Custom RT2 Profiler
PCR array plates (SABiosciences, Qiagen) were used for
PCRs performed using RT2 SYBR Green ROX qPCR Mastermix

(SABiosciences) according to the manufacturer’s instructions on an
ABI 7900 thermal cycler (Applied Biosystems, Foster City, CA, USA)
with a program of 10 min at 951C, followed by 40 cycles at 951C for
15 s and at 601C for 1 min. Controls for human genomic DNA
contamination, reverse transcription and PCR efficacy were included.
Fold-change expression values were calculated according to the
comparative C(t) method.10 DC(t) was calculated as the C(t) of
target gene ‘X’ minus the geometric mean C(t) of reference genes
HPRT1, PPIH and TFRC in a sample. DC(t) for each target gene ‘Xn
healthy donor samples was also computed in this manner. To
calculate DDC(t), median DC(t) of gene ‘X’ in healthy donor blood
or BM (depending on the source of the AML sample) was
subtracted from the DC(t) of X in the AML sample (DC(t) of X in

Figure 1. Expression of proposed leukemia associated antigens in acute myeloid leukemia (AML) patient samples and healthy tissues. (a) No
single antigen was expressed in all cases of AML and many proposed antigen candidates are not frequently overexpressed in AML. BM, bone
marrow; PB, peripheral blood. Fold change OE compared with median expression in healthy donors where light red indicates OE of 5–50� ,
red indicates OE of 50–500� , bright red indicates OE 4500� . Black indicates no detectable expression; white indicates expression values
seen in similar range as healthy donors. First 30 AML samples listed were from PB and are therefore compared with healthy donor PB, the
remaining 18 are from BM and are compared with expression in healthy donor BM. (b) Antigen expression in various human tissue types.
Compared with median expression in healthy donors using same heat-map schema same as above.
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AML sample�median DC(t) of X in healthy donor samples).
Statistical analysis was performed using GraphPad Prism (La Jolla,
CA, USA).

We observed considerable heterogeneity in levels of RNA
overexpression (OE) of putative LAAs compared with healthy
donor tissues (Figure 1). Every AML sample had at least one LAA
overexpressed, but no antigen was overexpressed in any of the AML
samples. Surprisingly, the hemoglobin gamma globin gene HBG2,
ordinarily expressed in the fetal liver, spleen and BM but not usually
in adulthood, which was recently identified as a leukemia antigen in
a study of induced immune responses to GVAX/K562 vaccination in
chronic myeloid leukemia (CML),11 was found to be frequently
overexpressed in AML, often to a high level (Figures 1a and 2).
Similarly, CCNA1, WT1, BAALC, PR3 and PRAME were also highly
overexpressed in multiple AML samples (Figure 2). We were able to
confirm the previously reported1213 association between FLT3-ITD-
mutated AML and OE of WT1 (Supplementary Figure S2) but not of
the other antigens. Finally, consistent with the fact that much of the
existing evidence for myeloid LAA OE has been derived from the
study of leukemic cell lines, we noted that the K562 human CML
blast phase erythroleukemia cell line (ATCC, Manassas, VA, USA)
served as an excellent positive control for our panel with high
expression of multiple, previously described, putative LAAs including
RHAMM, Survivin, h-TERT, CA9/CAIX, MAGEA3/6, MAGEB2 and MAGEC1
(Supplementary Figure S1B) that were rarely detectable in our
primary samples from AML patients (Figure 1a).

The ideal targetable leukemia antigen would have high tumor-
specific expression but no expression in healthy tissues.2 We
therefore also quantified tissue expression of these putative LAAs
in a range of normal tissues that included samples (10 PB and 7
BM) collected under institutional review board-approved

protocols at the NIH clinical center from 17 healthy donors
with an average age of 41, 70% of whom were male, with ficoll
purification and RNA extraction as described above. In addition,
purified total RNA from a wide panel of human organs
was obtained from Clontech (Mountain View, CA, USA)
(Supplementary Table S5). Expression in at least some forms of
healthy tissues was observed for almost all putative antigen
targets (Figure 1b).

Several technical features are worthy of note. We found that
samples with RIN scores of less than 7.0 resulted in higher than
expected C(t) outputs, which correspond to lower gene expression
when compared with samples with higher RIN scores
(Supplementary Figure S3) and were therefore excluded from
analysis. Our array platform was highly sensitive and reproducible
(Supplementary Figure S1A), allowing for the reliable medium
throughput analysis performed here. In most cases, antigen
expression profiles from presentation blood and marrow samples
from the same patient correlated closely (Supplementary Figure S4).
Gene expression of LAA in phenotypically identified AML blast
populations sorted through flow cytometry did not markedly
differ from the gene expression seen in the presentation PB
sample from which they were isolated (Supplementary Methods;
Supplementary Table S6). Finally, we were able to detect LAA OE
across multiple samples from the same patient including unsorted
PB samples, sorted AML blasts and a sorted (that is lineage
negative, CD34 positive and CD38 negative) PB population
enriched for stem cells (Supplementary Methods; Supplementary
Table S6).

This work has several obvious limitations. We performed this
work on ‘real world’ first-presentation primary samples from three
different leukemia centers in an attempt to limit bias introduced
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WT1 70% 215x 114x + to +++ Spleen, Heart, Lung, Prostate
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Figure 2. Top six acute myeloid leukemia-associated antigens. (a) Therapeutic or diagnostic threshold for leading antigen candidates.
Expression of antigens in all AML samples compared with all normal donor samples as box-plots where box represents 25th–75th percentile
and whiskers represent maximum and minimum dCT values observed. (b) Detailed characteristics of leading AML antigen candidates
including what percentage of AML samples tested had at least 5� OE of that gene, average levels of OE and OE in sorted lineage negative,
CD34-positive and CD38-negative cells and normal donor tissues (see Supplementary Information for additional details).
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by presentation and referral patterns. Nevertheless, all institutions
are highly specialized tertiary academic medical centers located in
the northeastern and southeastern United States. Although we do
have patient demographics on age and gender (Supplementary
Table S2) and all these samples were from the first diagnosis
before initiation of treatment for AML, we unfortunately do not
have any information on race or ethnic background, medical
history including details on antecedent hematological conditions,
prior/concurrent malignancies or current medications with epige-
netic or immune activity. We quantified total RNA expression levels
(necessary but not sufficient for a targetable LAA) but did not provide
information on protein expression or epitope processing and
presentation by major histocompatibility complex; these factors will
be addressed in future work now that the list of candidate AML LAAs
has been substantially refined to exclude those not overexpressed in
AML. Neo-antigens (that is, those generated by somatic mutations
including single nucleotide variations, insertions, deletions and splice
variants) are an important potential class of AML LAAs that were not
investigated in this work, although extensive data on these AML-
specific sequence changes are now available and immune responses
to epitopes created by these mutations have recently been
described.14

The ideal AML LAA would be expressed in most or all cases of
AML but not in healthy tissues. Using a novel, highly sensitive
and reproducible, real-time reverse transcription–PCR array
testing only high-quality RNA we show in this work that the
majority of proposed ‘LAAs’ are expressed in the leukemia cell
line K562 but often not in primary samples from AML patients.
Although we identified no antigen that was universally over-
expressed in all AML samples, every patient did have at least one
potentially targetable antigen overexpressed. We also noted
significant healthy organ-specific tissue expression of many
LAAs, highlighting the possibility of ‘off-target’ effects, a finding
not evident from the study of expression levels in PB and BM
alone. This list of genes overexpressed in AML, together with
information regarding expression in a wide range of healthy
tissue types, may be of use in AML as a reference for the
selection of antigenic targets in adoptive T-cell therapy and may
also have use in the PCR-based detection of minimal residual
disease.15
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