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A B S T R A C T   

This article scrutinizes the 2-dimensional and boundary layer flow of magnetohydrodynamic 
Williamson fluid flowing on a stretchable surface with variable viscosity. The thermal and solutal 
rates are examined through the Cattaneo-Christov model with Joule heating, heat source/sink, 
and chemical reaction. The authors are motivated to conduct this study because of its practical 
and scientific significance in various processes, including polymer processing, textile industries, 
food industries, solar energy, biomedical science, wind turbine blades, oil spill clean-up, metal 
rolling, and forging. With the mentioned assumptions, the partial differential equations are 
achieved by using the basic governing laws, including momentum law, energy law, and con
centration law. This non-linear system of equations is transmuted into ordinary differential 
equations by taking similarity transformations. The main novelty behind the conduction of this 
work is the numerical technique, namely the ‘Adams-Milne (Predictor-Corrector)’ method along 
with the Runge-Kutta technique on Matlab software, which has not previously been studied by 
any researcher in the literature. The analytical solution of the determined equations is not 
possible due to their highly non-linear nature; therefore the multistep numerical method namely 
the ‘Adams-Milne (Predictor-Corrector)’ method, along with the Runge-Kutta technique is used to 
determine the numerical results. The outcomes are noted due to numerous parameters for ve
locity, temperature, and concentration profiles. The explanation of graphical and numerical re
sults is discussed here. The graphical impression of the Williamson parameter reveals that the 
velocity and temperature curves diminish for higher inputs of this parameter. The movement of 
fluid shows the declining behavior for the Hartmann number and viscosity parameter. The solutal 
and thermal findings due to Cattaneo-Christov heat and mass relaxation coefficients mark the 
reducing behaviour in respective field. The rise in reaction coefficient decreases the mass dis
tribution. The analyses of comparison of results are also presented here.   

1. Introduction 

Non-Newtonian fluids are frequently used in engineering and medicine because of their dynamical properties. An extensive variety 
of industrial and biological uses, including the production of food, drilling operations, and improving oil recovery, are available for 
non-Newtonian fluids with shear-thinning behavior. The rheological properties of fluids are still not adequately described by the 
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Navier-Stokes equations. Several rheological models, including the Power law, Sutterby, Jeffery, Casson, Carreau-Yaseuda, Maxwell, 
and Sisko fluid models, have been developed to address this issue and recently Williamson fluid took the attention. Williamson created 
a model equation in 1929 that outlined the characteristics of rheological fluids. Nadeem et al. [1] scrutinized the 2D Williamson fluid 
flowing on the stretchy sheet. Malik et al. [2] solved the numerical solutions of the non-Newtonian (Williamson fluid) with a stagnation 
point flowing on the stretchy cylinder. Salahuddin et al. [3] determined the Williamson fluid behavior that is passing on the stretchy 
sheet, whereas the solutal and thermal transport processes are also determined with the viscous dissipation and C–C model. Ram
amoorthy and Pallavarapu [4] determined the Hall effects for the 3-dimensional Williamson fluid passed over a stretched surface and 
revealed that by increasing the fluid parameter the velocity declined. Ahmed et al. [5] computed the thermal transmission processes of 
magnetohydrodynamic Williamson flow with variable conductivity and the fluid is passing on the porous stretchy surface. The heat 
transmission in Williamson fluid in the presence of C–C flux passed on the porous material was examined by Nawaz et al. [6]. Waqas 
et al. [7] discussed Fourier’s theory and convection impact on Williamson fluid flow with thermal generation. Meenakumari et al. [8] 
calculated the magnetohydrodynamic and radiation impacts on the Williamson fluid flowing over the stretchy surface. Salahuddin [9] 
inspected the physical characteristics of an electrically conducting boundary layer with the consequences of chemical reactions and 
solar radiation over the stretchable surface of Williamson fluid. The impression of heterogeneous-homogeneous reactions and the flow 
with heat transfer caused by the motion of Williamson fluid was examined numerically by Hamid [10]. 

Magnetohydrodynamics (MHD) is an area of fluid dynamics dealing with heat transfer. On the other hand, it is the dynamics of a 
fluid that is conducting current and subjected to a magnetic field. Theoretically, a drag force recognized as the Lorentz force may be 
experienced by a fluid moving through a magnetic field, and this force is the source of rising the fluid’s concentration and temperature. 
The study of the dynamical interactions among fluids and magnetic fields is called magnetohydrodynamics (MHD). There are several 
applications for MHD in the polymer industry, including optical fibre filters, crystal formation, magnetohydrodynamic generators, and 
plastic stretching sheet. Awais and Salahuddin [11] scrutinized the magnetohydrodynamic flow of cross fluid with varying charac
teristics and passing on the parabolic surface. Reddy and Maddileti [12] analyzed the Joule parameter and MHD Casson nanofluid 
flowing over the stretched plate. Shamshuddin et al. [13] investigated a computational study by assuming the effects of Hall current, 
energy dissipation and joule heating for the 2-D power-law fluid that is moving on the exponentially stretchy sheet. Swain et al. [14] 
scrutinized the thermal transport of MHD flow through a stretched sheet encased in a porous medium, which is affected by joule 
heating. Sharma and Gandhi [15] presented the MHD convective flow across the stretchy surface with the Darcy-Forchheimer medium 
and determined the impacts of joule heating and thermal source/sink. 

The impression of variable viscosity on flow and thermal transmission has grown more importance due to its technical utilization 
including the extraction of crude oil, geothermal systems, equipment lubrication, etc. Particularly in machines, the bearings get heated 
up from friction and need to be lubricated to work properly. This frictional temperature may impact the viscosity of the lubricant. It’s 
important to note down how viscosity changes with temperature to calculate the physical behaviour of this type of problem. Devi and 
Prakash [16] considered the variable viscosity of hydromagnetic flow, which is passed on the stretchy surface. Fatunmbi et al. [17] 
modelled the equations of MHD micropolar fluid with variable viscosity and fluid flowing on the elongating surface. This study il
lustrates that the motion of fluids decreases with variation in the viscosity coefficient. Sobamowo and Akinshilo [18] considered the 
regular perturbation approach to analyse the pipe flow, heat transmission properties, and entropy formation in a fluid with varying 
viscosity. Reddy et al. [19] investigated numerically the impact of viscosity change on the formation of entropy in Reiner-Rivlin fluid 
moving on an infinite vertical plate, and results were obtained via the Crank-Nicolson method. 

The Cattaneo-Christov model incorporates a finite thermal wave speed and a time delay in heat conduction, which is significant and 
has found uses in many areas of science and engineering because of its capacity to give a more accurate description of heat transmission 
in certain circumstances. The researcher used this model because of its uses in thermal insulators, semiconductor physics, nanoscale 
heat transport, biomedical engineering, energy storage, nuclear reactors, electrical cooling, and many more industrial applications. 
Fourier was the first to study the law of heat conduction [20]. By using the C–C theory, Hayat et al. [21] illustrated the heat trans
mission properties of rotating discs with varied thickness. Salahuddin and Awais [22] conducted a problem based on the C–C theory for 
the motion of stress fluid through variable viscosity and passed over the sensory squeezing channel. The remarks indicate that the 
solutal and heat fields decline due to the use of the Cattaneo-Christov theory. Reddy et al. [23] inspected the C–C theory for nanofluid 
flowing on a porous stretchy surface with chemical reaction. The Cattaneo-Christov-Christovs considered by Khan et al. [24] to 
investigate the Maxwell fluid that is passing through the stretched cylinder. Awais and Salahuddin [25] determined the convective 
flow with variable viscosity of a non-Newtonian fluid that is moving on the paraboloid surface with the C–C theory. The impact of C–C 
theory in the transferal process of mass and heat flow in cross fluid was scrutinized by Salahuddin et al. [26]. This study reveals that the 
solutal and thermal rates decline due to temperature and concentration relaxation coefficients. Mallawi et al. [27] examined the 
transfer of energy and mass with double stratification, thermal radiation, and C–C theory in terms of non-Newtonian fluid passing over 
the Riga plate. Both thermal and solutal stratification coefficients enhance the respective fields. Reddy et al. [28] presented a model of 
study using the Cattaneo-Christov theory for the flow of nanofluid on the sheet with porosity. 

One must use a temperature-dependent heat source or sink because it has a significant influence on the heat transmission char
acteristics when there is a significant difference between the surface and the upstream fluid. A number of physical issues make it crucial 
to examine heat generation or absorption in flowing fluids. In electronic chips, nuclear reactors, and semiconductor wafers, the 
temperature distribution may change as a result of heat generating effects. While exact heat generation or absorption modelling is 
fairly complicated, certain mathematical models can explain its typical behavior in physical scenarios. Thumma et al. [29] studied 
numerically the thermal source or sink for the dissipative MHD nanofluid flowing on the stretchable sheet. Mahabaleshwar et al. [30] 
determined the thermal transport by assuming the CNT nanofluids passing on the shrinking or stretching surface with thermal source 
or sink. Ajaykumar et al. [31] inspected the impacts of heat source or sink and dissipation on the motion and transmission of heat in a 
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MHD fluid flowing on a moving flat surface. Ragupathi and Prakash [32] investigated the linear and nonlinear radiation impressions 
on the nanofluids across a rotating porous disc with a heat source or sink. Noor and Shafie [33] determined the MHD squeezing flow of 
Jeffery fluid by embedding the hybrid nanofluid, and thermal analysis was inspected by heat source and sink. Some related studies are 
cited in Refs. [34–39]. 

The novelty of this work is that we consider the variable viscosity of the 2D boundary layer and the magnetohydrodynamic 
Williamson fluid flowing on the stretched sheet. Here we have also examined heat and mass transport by assuming the chemical 
reaction, the Cattaneo-Christov theory, joule heating and heat source/sink. The novelty of this work is that we used the Adams-Milne 
(Predictor-Corrector) method along with the Runge-Kutta technique, and this type of multistep method was not taken by any 
researcher in the past. The basic conservation laws are implemented to develop the governing partial differential equations, and the 
appropriate transformations renovated these equations into the ordinary differential equations. The numerical solutions are deter
mined by using the Adams-Milne Predictor Corrector formula along with the RK technique. The outcomes of the emerging parameters 
are discussed in a numerical and graphical way. 

2. Problem formulation 

Considering a 2-D incompressible magnetohydrodynamic boundary layer Williamson fluid that is flowing on the surface coincides 
with the plane at y = 0, and the fluid is restricted to be flowing on y > 0. The thermal and solutal rates are scrutinized by using the 
Cattaneo-Christov theory along with joule heating and chemical reaction. The physical interpretation in the form of flow geometry is 
shown in Fig. 1. 

2.1. Governing equations 

The basic governing equations (continuity, momentum, temperature and concentration) in terms of the considered assumption are 

∂x∗u∗ + ∂y∗v∗ = 0, (1)  

ρ
(
u∗∂xu∗ + v∗∂yu∗

)
= − ∂x∗ p∗ + ∂x∗τ∗x∗x∗ + ∂y∗τ∗x∗y∗ + ρb∗

x , (2)  

ρ
(
u∗∂x∗ v∗ + v∗∂y∗ v∗

)
= − ∂y∗ p∗ + ∂x∗τ∗y∗x∗ + ∂y∗τ∗y∗y∗ + ρb∗

y , (3)  

ρCp
(
u∗∂x∗ T∗ + v∗∂y∗ T∗

)
= − ∇.G∗, (4)  

(
u∗∂x∗C∗ + v∗∂y∗C∗

)
= − ∇.H∗. (5)  

here (x∗, y∗) are the cartesian coordinate axis, (u∗, v∗) are the components of velocity, p∗ symbolize as pressure, (C∗,T∗) be the con
centration field and temperature field, whereas (C∗

∞,T∗
∞) magnifies as the upstream concentration and temperature, ρ denoted as 

density, τ∗ shows the stress tensor, (b∗x, b∗y) be the body forces and Cp symbolized as specific heat. The model equations of Cattaneo- 
Christov flow theory are given as [3,22], 

G∗ + λ1((∇.V∗) − G∗.∇V∗G∗ +V∗.∇G∗)= − K∇T∗, (6)  

H∗ + λ2((∇.V∗)H∗ − H∗.∇V∗ +V∗.∇H∗)= − D∇C∗, (7)  

here the mass and heat relaxation time are denoted as λ2 and λ1. In case of steady flow, ∇.V∗ = 0, then the above equations reduces as, 

G∗ + λ1(V∗.∇G∗ − G∗.∇V∗)= − K∇T∗, (8)  

Fig. 1. Physical geometry of fluid flow.  
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H∗ + λ2(V∗.∇H∗ − H∗.∇V∗)= − D∇C∗, (9) 

Implementing the boundary layer approximation, then the governing equations takes the following form [3,40,41]. 

ρ
(
u∗∂x∗ u∗ + v∗∂y∗ u∗

)
= μ∗

(
∂y∗y∗ u∗

)
+
(
∂y∗μ∗

)(
∂y∗u∗

)
+
(
∂y∗ μ∗

)(
Γ /2

)(
∂y∗u∗

)2

+
̅̅̅
2

√
μ∗Γ

(
∂y∗u∗

)(
∂y∗y∗u∗

)
− σ∗B∗

∘ u,
(10)  

ρCp
(
u∗∂x∗ T∗ + v∗∂y∗ T∗

)
− λ1φ1 =K

(
∂y∗y∗ T∗

)
+ σ∗B∗

∘ u2 + Q‴, (11)  

(
u∗∂x∗C∗ + v∗∂y∗C∗

)
− λ1φ2 =D

(
∂y∗y∗C∗

)
− κ

(
C∗ − C∗

∞

)
, (12)  

now defininig φ1 and φ2 as [3,22,24] 

φ1 =

[
u∗(∂x∗ u∗)(∂x∗T∗) + v∗

(
∂y∗v∗

)(
∂y∗ T∗

)
+ u∗(∂x∗v∗)

(
∂y∗ T∗

)
+ v∗

(
∂y∗ u∗

)
(∂x∗T∗)

+2u∗v∗
(
∂x∗y∗ T∗

)
+ u∗2

(∂x∗x∗T∗) + v∗
2 ( ∂y∗y∗ T∗

)

]

, (13)  

φ2 =

[
u∗(∂x∗ u∗)(∂x∗C∗) + v∗

(
∂y∗v∗

)(
∂y∗ C∗

)
+ u∗(∂x∗ v∗)

(
∂y∗C∗

)
+ v∗

(
∂y∗u∗

)
(∂x∗ C∗)

+2u∗v∗
(
∂x∗y∗ C∗

)
+ u∗2

(∂x∗x∗C∗) + v∗
2 ( ∂y∗y∗C∗

)

]

. (14)  

in thermodynamics and engineering, the words "heat source" and "heat sink" are used to explain the systems that either emit heat 
(source) or absorb heat (sink). This term occurs in temperature equation [42]. 

Q‴ =
KUw

xυ∗

[
a∗
(

T∗
p − T∗

∞

)
F′(η)+ b∗

(
T∗ − T∗

∞

)]
, (15)  

here a∗ and b∗ are the parameters of internal heat source/sink. 

2.2. Boundary conditions 

The boundary conditions are [3,43]. 

u∗ = Bx∗, v∗ = 0, T∗ = T∗
p ,C∗ = C∗

p , at y∗ = 0,
u∗→0, T∗ = T∗

∞,C∗ = C∗
∞, as y∗→0.

(16)  

here B is the stretching parameter. 

2.3. Transformations 

Similarity variables are essential in dimensionalizing the flow equations and it is a technique used for relating physical parameters 
and variables in a problem. The flow system is transmuted into non-dimensional form by considering the appropriate transformations 
[44–46]. 

u∗ = Bx∗F′(η), v∗ = −
̅̅̅̅̅̅̅̅
Bυ∗

√
F(η),T∗ = T∗

∞ +
(

T∗
p − T∗

∞

)
Θ,

C∗ = C∗
∞ +

(
C∗

p − C∗
∞

)
Φ, η =

̅̅̅̅̅̅̅̅̅
B/υ∗

√
y∗.

(17)  

The utilization of transformations in the partial differential equations alters the governing model into dimensionless form. 
(

Θa + Θ
Θa

)

F‴(η)+
(

1
Θa

)

Θ′(η)F″(η)+
(

1
Θa

)

Θ′(η)We

2
(F″(η))2

+We

(
Θa + Θ

Θa

)

F″(η)F‴(η) − HaF′(η)= 0,
(18)  

Θ″(η)+PrF(η)Θ′(η) − χ1Pr
[
F(η)F′(η)Θ′(η)+F2(η)Θ″(η)

]

+PrEcHa(F′(η))2
+

1
(

1 +
Θ(η)
Θa

) [a∗F′(η)+ b∗Θ],
(19)  

Φ″(η) − ScF′(η)Φ(η) − χ2Sc
[
F(η)F′(η)Φ′(η)+ (F(η))2Φ″] − ScδΦ= 0, (20)  

the boundary conditions are 
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F(η) = 1,F′(η) = 1,Θ(η) = 1,Φ(η) = 1, at η = 0,
F′(∞) = 0,Θ(∞) = 0,Φ(∞) = 0,

(21)  

here Θa signifies as the viscosity parameter, We represents the Weissenberg number, Ha demoted as the Hartmann number, Pr sym
bolizes as the Prandtl number, χ1 thermal relaxation coefficient, Ec is Eckert number, χ2 solutal relaxation coefficient, Sc symbolized as 
the Schmidt number and δ is the reaction coefficient. These parameters are 

We = x∗Γ
̅̅̅̅̅̅̅̅̅
2B3

υ∗
,

√

Ec =
U2

w

Cp

(
T∗

p − T∗
∞

)Pr =
Cpμ∗

K
,Ha =

σ∗B∗
∘

ρB
, Sc =

υ∗

D
, χ1 = λ1B,

χ2 = λ2B, δ =
κ
B
.

(22)  

2.4. Physical quantities 

The effects of physical quantities including friction factor, Nusselt number and Sherwood number are discussed here. 

Cf ∗ =
τw

ρU2
w
,Nux∗ =

x∗qw

K
(

T∗
p − T∗

∞

), Shx∗ =
x∗qm

D
(

C∗
p − C∗

∞

) , (23) 

the dimensional form of these physical quantities are 

̅̅̅̅̅̅̅
Rex

√
Cf ∗ =

(

1 +
Θ
Θa

)[

F″ +
We

2
(F″)2

]

η=0
,

Nux∗
̅̅̅̅̅̅̅
Rex

√ = − Θ′|η=0,

Shx∗
̅̅̅̅̅̅̅
Rex

√ = − Φ′|η=0.

(24)  

here the dimensionless number is Reynolds number which is defined as Rex = Bx∗2

υ∗ . 

3. Numerical technique 

The ODEs (18–20) along with boundary conditions (21) are highly non-linear system of equations and we adopted Adam-Milne 
Predictor Corrector method in order to get the numerical results. By using the Adams-Milne method, we have to convert the pri
mary equations into 1st-order form, and then these equations are solved in Matlab software by using the Adam-Milne method along 
with the root finding secant method. Adams-Milne (Predictor-Corrector) approaches work on the fundamental premise that past so
lution values can be used to examine further solution values (Predictor step), and that these predicted values can subsequently be used 
to correct estimations (corrector step). These techniques make use of both previous and current data to produce precise results. We 
summarized the results through graphs and discussion and validation of the results are also placed here. 

The procedure for finding the solution through the Adams-Milne (Predictor-Corrector) method is that we must convert our system 
of governing equations into first-order form by applying the transformations. These transformations are 

y(1) = F(η), y(2) = F′(η), y(3) = F″(η), y′(3) = F‴(η), y(4) = Θ(η), y(5) = Θ′(η),
y′(5) = Θ″(η), y(6) = Φ(η), y(7) = Φ′(η), y′(7) = Φ″(η).

(25)  

The transmuted forms of equations are 

y′(3)= −
1

(

1 +
y(4)
Θa

)

(1 + Wey(3))

[
1

Θa

{

y(3)y(5)+
We

2
y(5)(y(3))2

}

+Ha y(2)
]

, (26)  

y′(5)=
1

1 − χ1Pr(y(1))2

⎡

⎢
⎢
⎢
⎣

− Pr
(
y(1)y(5) + χ1y(1)y(2)y(5) − EcHa

(
y(1)2))

−
1

(

1 +
y(4)
Θa

) {a∗y(2) + b∗y(4)}

⎤

⎥
⎥
⎥
⎦
, (27)  

y′(7)=
1

1 − χ2Sc(y(1))2 [ − Scy(1)y(7)+ Scy(1)y(2)y(7)+ Scδy(6)], (28)  

the boundary conditions are 
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y(1) = 0, y(2) = 1, y(4) = 1, y(6) = 1, at η = 0,
y(2)→0, y(4)→0, y(6)→0, at η→∞.

(29) 

We first calculate the initial values using the Runge-Kutta fourth order method because the numerical technique being studied is a 
multistep method known as Predictor-Corrector. Next, we must apply the fourth order Adams predictor formula which is 

yj+1,r = yj− 3 +

(
4
3

)

h
[
2Fj − Fj− 1 + 2Fj− 2

]
, (30) 

The corrector formula of Adams-Milne method is 

yj+1,c = yj− 1 +

(
1
3

)

h
[
Fj+1 + 4Fj +Fj− 1

]
, (31) 

The values of (F1, F2, F3) are calculated with fourth order Runge-Kutta method and (F4) is examined with the Adams-Bashforth 
scheme. The general form of Runge-Kutta fourth order method is 

yj+1 = yj +
1
6

[

K
⌢

1 + 2K
⌢

2 + 2K
⌢

3 +K
⌢

4

]

, (32)  

where 

K
⌢

1 = hF
(
xj, yj

)
,

K
⌢

2 = hF
(

xj +

(
1
2

)

h, yj +

(
1
2

)

k1

)

,

K
⌢

3 = hF
(

xj +

(
1
2

)

h, yj +

(
1
2

)

k2

)

,

K
⌢

2 = hF
(
xj + h, yj + k3

)
.

(33) 

The calculated values with the R–K method are placed into the Adams-Milne Predictor and Corrector formulas to get the desired 
results. The final results of the velocity, temperature and concentration equations are calculated from the boundary conditions. If the 
difference is less than a small number ε = 0.01, then we get our desired results. But if the difference is not less than ε, then we again use 
the same procedure and get second result. The second results is also matched with the small number ε. Now if we get the difference less 
than ε, then we obtained the final result. If again the difference is never less than small number ε. Then we use the secant method to 
improve the initial guess. The similar procedure is repeated until it satisfies the boundary conditions. This is a fourth order method and 
the truncation error is of fourth order. 

4. Results and discussions 

The study of magnetohydrodynamic Williamson fluid passing on a stretchable sheet with variable viscosity is investigated here. The 
solutal and thermal transference processes are scrutinized by considering the Cattaneo-Christov model, heat source or sink and 
chemical reaction. The results are determined by using the Adams-Milne method on Matlab software and the graphical form of the 
results is placed in this section. 

Table 1 exhibits the numerical determinations of Nux∗ due to making the variation in the Prandtl number Pr, thermal relaxation 
coefficient χ1, Hartmann number Ha, Eckert number Ec and viscosity coefficient Θa. The increment happens in Nusselt number Nux∗ by 
making the variation in Prandtl number Pr and thermal relaxation coefficient χ1. The decrement in Nusselt number and heat transfer 
rate is noted due to varying the Hartmann number, viscosity coefficient and Eckert number. Table 2 reveals the numerical 

Table 1 
Numerical determinations of Nux∗ due to making the variation in the Prandtl number Pr , thermal relaxation coefficient χ1, Hartmann number Ha, 
Eckert number Ec and viscosity coefficient Θa.  

Pr χ1 Ha Ec Θa Nux∗

1.5 0.1 0.1 0.2 0.1 1.1985 
2.0     1.5147 
2.5     1.7488  

0.2    1.2001  
0.3    1.2722   

0.2   1.1855   
0.3   1.1729    

0.2  1.1962    
0.3  1.1940     

0.2 1.1967     
0.3 1.1955  
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determinations of Shx∗ due to making the variation in the Schmidt number Sc and solutal relaxation coefficient χ2. Both the parameters 
are the sources of decrement in the Sherwood number Shx∗ . 

4.1. Validation of results 

For the validation of numerical results, we have taken the comparison analysis of friction coefficient Cf∗ by varying the inputs of 
Williamson coefficient and assuming the other parameter to be zero with the past publish article and outcomes are exhibited in Table 3. 
The outcome shows similar behaviour with past results. 

4.2. Velocity region 

Here the discussion comprises the impression of emerging parameters on the velocity region. The sketch placed in Fig. (2a) explains 
the results of viscosity parameter Θa on the velocity region and we inspected that the decrement in the fluid movement is happening 
due to viscosity coefficient Θa. The fact is that the velocity distribution can vary based on the precise flow circumstances and fluid 
characteristics, a higher viscosity generally leads to a steeper velocity gradient due to the highly viscous fluid. The applied magnetic 
field on the fluid marks huge impression on the velocity region and the result is revealed in Fig. (2b). The determined finding indicates 
that the Hartmann number Ha oppose the movement of fluid and drops the velocity curve. The influence of the magnetic field grows 
stronger as by increasing its strength. The electrically conducting fluid experiences a Lorentz force from the magnetic field, which 
causes "Hartmann layers" to form close to the surface. The Hartmann layers decrements the fluid velocity due to magnetic dampening. 
The sketch placed in Fig. (2c) illustrates the outputs of velocity region by varying the Weissenberg number We. The determining 
outcomes illustrates that the Weissenberg number We marks the declining impression on the velocity curve. Physically, these findings 
are occurred because Weissenberg number We has direct impact with the time relaxation and in higher time relaxation, the fluid needs 
further time to achieve the final position. Therefore the velocity curve declines due to We. 

4.3. Temperature profile 

The graphical dependency of viscosity coefficient Θa on the temperature region is revealed in Fig. (3a). The finding illustrated that 
the temperature curve enhances by producing the viscosity coefficient Θa. High viscosity of fluid provides a large amount of defor
mation resistance. The fluid friction generates a significant amount of heat energy. Due to the alteration of mechanical energy into 
thermal energy, the temperature distribution exhibits noticeable differences, with notably higher temperatures. Therefore the curve 
upsurges due to Θa. The outcome of Hartmann number Ha in the thermal region is placed in Fig. (3b). The sketch explains the 
incrementing behaviour of Hartmann number Ha. Physically, Electromagnetic forces are dominant in higher Hartmann number, 
therefore upsurge in temperature results from the varying inputs of Ha. The graph revealed in Fig. (3c) is plotted to determine the 
graphical outputs of thermal relaxation parameter χ1 on the temperature region. The determined outcomes show that the χ1 lowering 
the temperature curve. When the magnitude of thermal relaxation coefficient is high, the material reacts to temperature changes 
slowly. The temperature distribution transitions slowly, and it takes higher time for it to achieve a steady state. The deviation in 
Weissenberg number We has significant impact on the temperature region and graphical behaviour is shown in Fig. (3d). The findings 
indicated that the temperature region increases due to Weissenberg number. There is significant elastic deformation when the 
Weissenberg number is large. Due to mechanical work, the material deforms prominently and produces a significant amount of heat. 
Therefore the temperature upsurges due to We. The deviation of heat source and sink coefficient upon the thermal region is placed in 
Fig. 3(e and f). Both the parameters make the enhancement in the temperature curve. 

4.4. Concentration profile 

The impacts of parameters on mass profile are revealed in this subsection. Fig. (4a) depicts the mass flux impression for various 
inputs of the Schmidt number Sc. The result demonstrates that the mass curve decreases as the Schmidt number increases in magnitude. 
Since the Schmidt number is the reverse of that of solutal diffusion, a loss in mass diffusion corresponds to a decrease in mass rate by 
upsurge the Schmidt number Sc. The variation of mass rate for different magnitudes of solutal relaxation coefficient χ2 is shown in 
Fig. (4b). The observations show that the mass distribution decreases when the solutal relaxation time coefficient χ2 increases. 

Table 2 
Numerical determinations of Shx∗ due to making the variation in the 
Schmidt number Sc and solutal relaxation coefficient χ2.  

Sc χ2 Shx∗

0.1 0.1 0.4042 
0.2  0.4762 
0.3  0.5468  

0.2 0.4041  
0.3 0.4041  
0.4 0.4040  
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Physically, the fluid needs more time to transfer mass rate because the stronger impact of χ2, governs the transference of energy waves 
in a particular medium. Consequently, the fluid mass drops as the relaxation parameter upsurges. The graphical significance of re
action coefficient δ on the concentration regions are placed in Fig. (4c). The impression shows the declining behaviour of reaction 
coefficient on the concentration curve. 

4.5. Graphical outcomes of Nusselt number Nux∗ and Sherwood number Shx∗

Fig. 5(a–c) are plotted to investigate the graphical behaviours of Nusselt and Sherwood numbers by making the variation in the 
Hartmann number Ha, Eckert number Ec, thermal relaxation coefficient χ1 and reaction coefficient δ. The results of magnetic field 
parameter and Eckert number are shown in Fig. (5a). Both the parameters makes the decrement in the Nusselt number Ha. The results 
of magnetic parameter and thermal relaxation coefficient are revealed in Fig. 5(b). The declining impact is noted by 

Table 3 
Comparing the results of skin friction Cf∗ by varying the inputs of Williamson coefficient.  

We Nadeem et al. [1] Present Study 

0 1 1 
0.1 0.976588 0.9765 
0.2 0.939817 0.9398 
0.3 0.88272 0.8827  

Fig. 2. a Sketch of Θa on F′(η). 
Fig. (2b): Sketch of Ha on F′(η). 
Fig. (2c): Sketch of We on F′(η). 
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Fig. 3. a Sketch of Θa on Θ(η). 
Fig. (3b): Sketch of Ha on Θ(η). 
Fig. (3c): Sketch of χ1 on Θ(η). 
Fig. (3d): Sketch of We on Θ(η). 
Fig. (3e): Sketch of a∗ on Θ(η). 
Fig. (3f): Sketch of b∗ on Θ(η). 
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producing the magnetic parameter and thermal relaxation coefficient. The sketch in Fig. (5c) reveals the graphical impression of 
Sherwood number Shx∗ by producing the reaction coefficient δ and Schmidt number Sc. The finding indicates that the reaction 
coefficient δ and Schmidt number Sc makes the increment in the Sherwood number Shx∗ . 

5. Conclusion 

The purpose of conducting this problem is to determine the magnetohydrodynamic Williamson fluid with variable viscosity which 
is flowing on a stretchy surface. The mass and thermal transmission rates are analyzed by considering Joule heating, the Cattaneo- 
Christov model, heat source or sink, and chemical reaction. The findings of all these effects are listed here:  

• The fluid motion decreases by producing the Weissenberg number and Hartmann number.  
• The variable viscosity is the source of enhancement happening in the velocity and energy regions.  
• The increasing magnitude of the Hartman number and Williamson fluid coefficient causes the energy flux to increase.  
• By rising the Prandtl number and Schmidt number, the thermal and solutal field are decreased.  
• The heat and solutal relaxation coefficients exhibit diminishing behaviour for the heat and mass distribution.  
• The reaction coefficient caused the decrement in the concentration region.  
• The decrements in results of Nusselt number are noted due to the Eckert number and magnetic field parameter whereas the thermal 

relaxation parameter makes the increment in Nusselt number.  
• Both the chemical reaction and Schmidt number mark the increment in the Sherwood number. 

There are several limitations and difficulties related to Williamson fluid flow on a stretching sheet, including the complexity of 
constitutive equations, nonlinearity, and numerical challenges. As the model equations are highly non-linear, we cannot find the exact 

Fig. 4. a Sketch of Sc on Φ(η). 
Fig. (4b): Sketch of χ2 on Φ(η). 
Fig. (4c): Sketch of δ on φ(η).. 
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solutions. To investigate the physical scenario, we cannot consider the fluid viscosity as a constant, therefore we must take variable 
viscosity. 

We can further extend this work in the future by considering some other fluid models, such as Eyring-Powell fluid, Jeffery fluid, 
Sisko-fluid, Maxwell fluid, Carreau-Yaseuda fluid and power law fluids. To investigate the physical scenario, we can consider the fluid 
viscosity to be temperature dependent or space dependent. The thermal and solutal transfer rates are investigated by assuming the 
soret-dufour effects, bioconvection, nanofluids, hybrid nanofluids, viscous dissipation, and thermal radiation. This study is also 
extended further by assuming the variable thermal conduction and diffusion. 
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Nomenclature 

(x∗,y∗) Cartesian coordinates (m)

(C∗,T∗) concentration field and temperature field 
(
mol/m3,k

)

p∗ Pressure (Pa)
(u∗,v∗) components of velocity 

(
m/s

)

ρ Density 
(

kg/m3

)

(b∗x,b∗y) Body forces 

Cp Specific heat 
(

J/kg K
)

τ∗ Stress tensor 
(C∗

∞,T∗
∞) upstream concentration and temperature 

(
mol/m3,k

)

λ2 Mass relaxation time 
λ1 Heat relaxation time 
T∗

p Variable surface temperature 
K Thermal conduction 

(
W/mK

)

Γ Material constant 
σ∗ Electrical conductivity 

(
S/m

)

C∗
p Variable surface concentration 

μ∗ Dynamic viscosity 
(
Ns/m2

)

B∗
∘ Magnetic field coefficient 

D Thermal diffusion 
(

m2/
s
)

κ Reaction rate 
(a∗,b∗) Heat source/sink parameters 
B Stretching parameter 

υ∗ Kinematic viscosity 
(

m2/
s
)

(Φ,Θ) Dimensionless concentration and temperature variable 
Θa Viscosity coefficient 
We Weissenberg number 
F(η) Dimensionless velocity 
Ha Hartmann number 
Pr Prandtl number 
χ1 Thermal relaxation coefficient 
Ec Eckert number 
δ Reaction coefficient 
χ2 Solutal relaxation coefficient 
Sc Schmidt number 
Cf Skin friction 
Re Reynolds number 
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