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ABSTRACT: Protein folding can be viewed as the origami engineering of biology
resulting from the long process of evolution. Even decades after its recognition,
research efforts worldwide focus on demystifying molecular factors that underlie
protein structure−function relationships; this is particularly relevant in the era of
proteopathic disease. A complex co-occurrence of different physicochemical factors
such as temperature, pressure, solvent, cosolvent, macromolecular crowding,
confinement, and mutations that represent realistic biological environments are
known to modulate the folding process and protein stability in unique ways. In the
current review, we have contextually summarized the substantial efforts in unveiling
individual effects of these perturbative factors, with major attention toward bottom-
up approaches. Moreover, we briefly present some of the biotechnological
applications of the insights derived from these studies over various applications
including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we
conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer
to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.

■ INTRODUCTION
Proteins are the ubiquitous workhorses of cellular processes.
Facilitated by the coherent construction of interaction
networks, their functions range from executing external stimuli
to processing genetic material.1−6 In most cases the attainment
of a native tertiary structure from a nascent polypeptide chain
is a requisite for its specific cellular functions. Interestingly,
understanding the process of achieving the functional fold of
proteins still stands as a grand challenge in biology several
decades after its inception.7−9 As described by Levinthal’s
paradox, it is practically impossible to reach the native fold of a
protein by a random unbiased conformational search.10−12

Experimental studies led by Christian Anfinsen on the
reversible denaturation of ribonuclease indicated the dominant
role of thermodynamics in the folding/unfolding process.13

Variability in the solution and thermal conditions in this
experiment further reveals the contribution of physicochemical
conditions in biasing the folding process toward the lowermost
Gibbs free energy state of the whole system. These insights
fueled the development of free energy surface models for
thermokinetic explanations of spontaneous protein folding.14,15

The folding process is mediated through an ensemble of
intermediates and generally aided by the formation of a
hydrophobic core at the expense of water entropy, resulting in
organization of a well-defined tertiary structure with the
alignment of secondary structures in a specific arrange-
ment.16−18 However, functional diversity in proteins often
precludes the existence of a single native conformation.

Experimental evidence and the development of suitable
methods for elucidating the dynamic picture of proteins
broaden the single native structure dependent “thermodynamic
hypothesis” toward the “conformational ensemble” of a native
structure (Figure 2).19

Structure-dependent intrinsic motion and the cooperative
nature of interactions within proteins separate the multitude of
conformers into accessible substates within the folding basin.
Thermally induced inherent motions in a protein induce a
hierarchy of dynamics over the femtosecond to the millisecond
time regime.20,21 Importantly, these motions are required to
overcome variable kinetic barriers over the free energy
landscape resulting in hierarchical dynamics ranging from
local side-chain movements to global domain rearrangements
(Figure 1).22,23 Despite the existence of immense variety in the
protein dynamics, the thermodynamically accessible conforma-
tional ensembles are distributed along a set of “principal modes
of motion” or “preexisting paths”.25,26 Differential conforma-
tion of a protein while binding to its substrates can be sampled
along a few principal axes of motion shared by its ligand free
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state.27,28 While an optimal structural arrangement according
to the funnel shaped free energy landscape demands minimal
overall structural frustration, intrinsic fluctuations driven by
localized surface frustrations often extend the protein folding
energy landscape for the binding kinetics. This has crucial
implications in recognition mechanisms including in “coupled
folding−binding” or “folding prior to binding”. Along with the
energetic frustration, interaction fuzziness (structural multi-
plicity or dynamic disorder) allows different ordered structures
of the protein to populate within its bound state.29−31

Perturbations in environmental conditions surrounding a
protein system can alter the relative probabilities of its
substates leading to “conformational shifts” that may
contribute to the impairment or enhancement of biomolecular
function or binding specificity.32 Biological systems are
susceptible to fluctuations in the thermodynamic conditions
of temperature and pressure. Although water is globally present
as protein solvents, heterogeneous cellular environments add
complexity with the existence of ions, metabolites, and other
cosolvents. Different cellular compartments and organelles
introduce drastic variations in the concentration of these
cosolvents and the effective solvent pH.33,34 The presence of
cosolvent with variable concentrations, sizes, and chemical
properties can further give rise to crowding environments for
proteins. Macromolecular crowding at different levels can
induce changes in solvent viscosity and effective volume for the
system of interest.35,36 Another perturbative effect, namely
confinement, is also often introduced as a result of macro-
molecular crowding. The polarity of the confining object may
further enhance the perturbative effect.37 In the folded form of
a protein, mostly the surface residues are able to interact with
the external environment or other biomolecules. Typically,
such residues are free to interact with water molecules, lipid
membranes, nucleic acids, ligands, or other protein surfaces.38

Mutations and post-translational modifications that introduce
residue level structural changes in protein sequences can be
considered as perturbative factors that function in combination
with the forces discussed earlier.

Protein folding at varying temperature and pressure
conditions has been extensively studied with both experimental
and computational techniques. The variations in these
thermodynamic factors have direct implications on the stability
and dynamics of proteins. The presence of solvents with
unique properties can introduce sharp dynamical alterations at
extreme thermodynamic conditions. Solvent level fluctuations
are found to dominate the dynamics of proteins and thereby
their functions.39,40 Studies on the effect of the addition of
metal ions and salts reported the role of non-native
electrostatic interactions in perturbing or stabilizing the native
fold of the protein.41,42 Calorimetry and spectroscopic
experiments have studied protein denaturation/renaturation
behavior as an effect of further heterogeneity in the
microenvironment contributed by different sizes and types of
cosolvents.43,44 The dynamics and stability of the native fold of
a protein also depends on its level of protonation. Proteins are
reported to remain stable in an optimum range of pH, beyond
which their propensity for denaturation increases significantly.
Laser-induced rapid pH jumps in a poly-L-glutamate system
have shown a slowdown in its folding kinetics by introducing
kinetic traps in the system free energy landscape.45 Effects of
macromolecular crowding on protein folding dynamics have
also been greatly explored with spectroscopic methods
including NMR and CD. Surprisingly, crowding has shown
opposite effects on the folding of large proteins and small
peptide sequences.46,47 Experimental studies on confinement
have revealed a significant increase in the stability of the
protein conformation indirectly by influencing solvent
dynamics.48,49 Moreover, mutations and post-translational

Figure 1. Spatiotemporal view of protein inherent motion. From ref 24. CC BY 3.0.

Figure 2. Schematic representation of protein folding and ensemble nature of the native state at global energy minima of folded globular proteins.
Adapted from ref 19. Copyright 2016 American Chemical Society.
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modification experiments have shown changes in the protein
structure and stability by altering the intramolecular interaction
pattern or through allostery.50

Understanding the molecular basis of perturbative effects on
proteins requires molecular level introspection. Such studies,
including detailed investigations and correlative origins of
multifactorial phenomena, are significantly facilitated by
modern day computational methods, i.e., by leveraging the
“computational microscope”. Recent advancements in exper-
imental techniques51,52 are constantly accompanied by
developments in computational architectures, molecular
simulation engines, and advanced algorithms.53−57 Together,
they allow the estimation of structural dynamics and exchange
rates in complex biomolecular transitions. Enhanced sampling
techniques facilitate the computation of protein folding free
energy landscapes over reaction coordinates derived with fully
atomistic protein models.58−62 However, these strategies of
atomistic molecular simulations are solely founded on the form
of the potential energy function or the nature of the force field.
In proteins, this empirical function is generally modeled as
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The first three terms in eq 1 represent bonded interactions,
while the remaining terms represent nonbonded interactions.
The bonded interactions are described with a harmonic
function, whereas nonbonded interactions are described by the
Coulombic and Lennard-Jones (LJ) 12−6 potentials. Improve-
ments in force-field parameters for disordered protein
sequences, polarizability, and other challenging regimes in
the chemical space for studying protein dynamics under
different environments amount to valuable contributions.63−66

For a more detailed understanding and development of a
protein force field, the reader is referred to other recent
reviews.62,63,67−71 Development of explicit solvent constant-pH
simulations has significantly overcome the limitations of
implicit models that were inadequate in computing desolvation
energies for buried charged residues and solvent dynamics
around membrane proteins and ion channels.72 Coarse-grained
models for molecular crowders at different resolutions have
been developed over the years to study the effects of such
factors on protein stability.73 Brownian dynamics simulation or
postprocessing of trajectories with the particle insertion
method can provide further knowledge in protein diffusivity.58

Advancement in the usage of mixed atomistic−coarse-graining
simulations adds further value to such studies.58,59 Extension of
coarse-grained force fields for carbon nanotubes helps
streamline protein stability study under confinement.74

Computational studies on the effect of post-translational
modifications in protein folding are significantly aided with
the development of specific force fields and systematic MD
simulation protocols.75,76

In the current review, we have focused on the effects of
different physicochemical perturbations and cellular micro-
environments on the dynamics of protein folding. The review

is organized as follows. We begin by reviewing key computa-
tional contributions that study the influence of major
perturbative forces on protein structure and/or dynamics. In
line with previous discussion, we add the biological
consequences for each of these factors. Next, we highlight
the possibilities of harnessing these perturbative factors
advantageously. Finally, we conclude by looking at the current
limitations and future aspects of computational methods that
can provide insights that complement experimentally observed
phenomena, collectively leading to enhanced understanding.

■ PERTURBATIVE EFFECTS AND BIOLOGICAL
CONSEQUENCES
Temperature and Pressure. The modulation of environ-

mental factors such as the temperature, pressure, and radiation
can be a suitable strategy to explore protein conformational
dynamics. Conventional molecular dynamics (MD) simula-
tions are restricted to physiological temperatures while
studying the properties of the proteins under standard
conditions. Classical analysis of a long trajectory shows that
the thermal fluctuations at room temperature allow local side-
chain movements in picosecond time scales and global domain
movements in the time range of microseconds and beyond.
Intrinsic fluctuations within a protein system are a manifes-
tation of the prevalent thermal conditions. Proteins are prone
to thermal denaturation at sufficiently high temperatures.
Analysis of atomistic protein trajectories simulated at high
temperatures shows a significant increase in their radius of
gyration, exposing the hydrophobic core to the solvent.77−79

Although decreasing temperature causes compactification in
proteins, beyond a critical temperature the dynamics get
reversed. Simulations using the explicit water model shed light
on the molecular mechanisms underlying such dynamics. In
such scenarios water molecules were observed to penetrate the
protein core to passivate the nonsaturated waters in the
hydration shell by forming hydrogen bonds, thereby
destabilizing hydrophobic contacts.80−82 This phenomenon
of wetting the core is known as hydrophobic hydration in cold
denaturation. Importantly, the presence of a glasslike transition
was observed in the internal dynamics of hydrated proteins at
cold temperatures of ∼200 K.83 In order to obtain mechanistic
insights into this observation, MD simulation studies using
dual thermostats were designed where the protein and the
solvent were simulated at different temperatures.84,85 Interest-
ingly, the results show that the protein dynamics are
independent of self-temperature, and the glass transition is
highly correlated to the solvent in the hydration layer. Unlike
the common cold denaturation behavior in native proteins,
experiments have disclosed amyloid-specific cold denaturations
for fibril structures.86 Furthermore, the cold thermal response
to amyloid assemblies was studied using exhaustive simu-
lations, unlike protein monomers, which show almost a linear
increase in oligomeric stability with decreasing temperature
below ∼250 K (Figure 3B).87 Signatures of the transitions
were also observed in the dynamical behavior of the hydration
layer.88

Molecular simulations have revealed that the high-temper-
ature stability in thermophilic proteins are attained with a
combination of high secondary structure propensity, with a
higher number of salt bridges, disulfide bonds, and intra-
molecular hydrogen bonds contributing in a more compact
hydrophobic core formation in comparison to the mesophilic
proteins.90−93 In contrast, psychrophilic proteins that are stable
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in cold temperatures share an overall unstable fragile structure
that is stabilized with a small number of weak intramolecular
interactions. Furthermore, to overcome the rate-limiting
peptidyl-prolyl isomerizations in low temperature, psychro-
philic proteins are reported to show less proline content than
mesophilic proteins in their sequences, which becomes the
opposite in the case of thermophiles.94,95

Hydrostatic pressure plays a significant role in altering the
protein dynamics and reveals an atypical conformational
change in contrast to the temperature effect.96 The ensemble
nature of proteins at the global energy minima consists of
pressure-sensitive conformations characterized by dynamically
activated side-chain motion with “dry-molten-globule”-like
features.97 High temperature causes a cooperative change in
protein conformations by altering total energy, where thermal
expansion plays a vital role by shifting water away from the
protein surface. In contrast, at high pressure, volumetric
change is the predominant contributor to protein conforma-
tional destability.98 In solution the partial molar volume V( ) of
a protein is comprised of three terms:

= + +V V V Vatom cavity hydration (2)

The first and second terms in eq 2 relate to the actual
protein volume and that of the spatial cavity with it,
respectively; the last term denotes changes of volume due to
protein−solvent interactions. Molecular level understanding of
the volume decrease in high pressure reveals a multitude of
solvent effects with significant roles in the unfolding process.
Other than alteration of hydration water (higher density along
with increased solvation), structural change of bulk water leads
to weakened hydrophobic interactions.99,100 Molecular simu-
lations constrained with high-pressure NMR data revealed that
increasing density and structural changes in the hydration layer
induces denaturation.96 This study further reports a major
contribution of cavities in the folded protein during the change
of molar volume upon unfolding. It appears that high-pressure-
induced changes are specific to a protein’s conformation and
its internal packing density as the MD study reveals
stabilization of an isolated α-helix at a pressure of ∼100
MPa.101 Moreover, atomistic simulations have revealed that
the high-pressure condition introduces water into the core

region or cavity of a protein, contributing to nonpolar
hydration which is also common in cold denaturation.102 In
contrast to at high temperature, a protein’s intrinsic fluctuation
decreases with an increase in pressure leading to kinetic
slowdown of the unfolding process. Altogether these factors
help shift the native population toward the unfolded or
intermediate state of compact shape with decreased conforma-
tional entropy than that of the low-energy state.103−105

Fluorescence spectroscopic studies on the effect of pressure
provides important insights based on the relaxation time. The
trend of pressure and relaxation time in a logarithmic scale
highlights the emergence of midpoint pressure effects in the
unfolding process.106 In the context of the volume effect,
folding and unfolding undergo large positive and small negative
activations of volume change, respectively.107,108 We note here
that, in comparison to high-pressure effects, the response to
negative pressure on protein systems remains sparsely
explored. Combination of experiments and MD simulation
showed destabilization of ubiquitin between 1 and −114 atm.
Interestingly, MD simulations suggest that increasing negative
pressure induces protein stabilization. This unique phenom-
enon can be described as a reentrant phase transition reaching
the “island of stability” in P−T space.109 As compared to direct
pressure effects, the addition of membrane effects such as lipid
rafts can further shift the population to more solvent exposed
states but with smaller effective volume. Such effects are not
observed at ambient pressure conditions.110

The cumulative effect of both intensive thermodynamic
variables, temperature (T) and pressure (P), is more
complicated. For this, an analytic theory is developed by
considering a simple two-state model of protein folding−
unfolding that shows the change of volume and conformational
entropy within the T−P space. In this line, an interesting
feature emerged via NMR, which showed that T and P factors
together cause stabilization of some class of protein’s internal
hydrogen bonds.111,112 In the case of mature fibrillar
assemblies, experiments have reported high-pressure stability,
while a high temperature−pressure stability is shown for
catalytically active fibrils.113−115 Simulation studies using
coarse-grained physicochemical models attempted to obtain a
phase diagram for the protein system over the T−P
plane.116,117 For the purpose of study, the coarse-grained
protein force field AWSEM was modified to incorporate the
effects of nonphysiological temperature and pressure on the
protein free energy landscapes.116 Modest changes in free
energy and entropy in water were observed to induce
characteristically different denatured ensembles at different
parts of the phase space. Therefore, the folded proteins are
predicted to display almost a close elliptical region of stability
in the phase diagram when modeled with the heteropolymer
collapse theory generalized for a T−P plane.118 The Gibbs free
energy difference in between the native and denatured states is
defined as

=G G Gunfolded folded (3)

A second-order Taylor series expansion of ΔG with respect
to T and P around T0 and P0 is derived:

Figure 3. Heat and cold thermal responses of (A) Trp-cage
miniprotein where denaturation happens in both cases. Adapted
with permission from ref 89. Copyright 2016 National Academy of
Sciences. (B) Amyloid oligomer where decreasing temperature
increases system stability. Adapted from ref 87. Copyright 2019
American Chemical Society.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c06199
ACS Omega 2022, 7, 44556−44572

44559

https://pubs.acs.org/doi/10.1021/acsomega.2c06199?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06199?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06199?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06199?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= + +

+ +
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

G G P P P P T T

C T
T
T

T V P P

S T T

2
( ) ( )( )

ln 1 ( )

( )

P

0 0
2

0 0

0
0 0 0

0 (4)

where Δ is the change in the corresponding parameters; β
denotes the compressibility factor and is defined as β = (δV/
δP)T. α is the thermal expansivity factor: α = (δV/δT)P =
−(δS/δP)T. CP = T(δS/δT)P is the heat capacity, and all other
symbols hold their usual meanings.117,119 An analytical
solution for the transition line that separates the folded and
unfolded protein conformations is given by ΔG = 0.
Considering the first-order terms, it generates the following
mathematical constraint which ensures an elliptical shape.

C
T
P2

0 (5)

Other than low-temperature and high-pressure conditions,
molecular simulations of the activated rhodopsin channel
reported water penetration inside the binding pocket upon
photoisomerization of the retinal.120,121 Unfolding simulations
of mammalian rhodopsin disclose a highly connected network
core comprising long-range interactions unlike bacteriorho-
dopsins.122,123

Crowding and Excluded-Volume Effects. It is apparent
that the cellular milieu is not a dilute medium but rather is a
crowded environment owing to the interplay of myriad
macromolecular interactions.124 It is worthwhile noting that
macromolecular crowding within the cytoplasm is directly
associated with the excluded-volume effects, and this is a
profound effector for viscoelastic and colligative properties.125

Consequently, the thermodynamic activity of a given solute in
a crowded environment depends not on its nominal
concentration but on the available volume and the effective
concentration. One predicted outcome of macromolecular
crowding is the promotion of protein compaction, which may
stabilize globular proteins (Figure 4) or, conversely, enhance
protein−protein associations that may, in turn, lead to
conformational collapse and aggregation.126 Similar arguments
suggest that, under spatial constraints, unfolded protein states
will be disfavored owing to high entropic penalties. This is
consistent with faster protein folding and aggregation due to

lower reaction barriers in crowded environments; this is
referred to as Hammond’s principle.127 Earlier work further
illustrates that the physicochemical properties of cytoplasm
resemble a colloidal suspension, and extreme crowding can
trigger a glass transition.128 However, it should be noted that
most of the studies reporting protein stabilizing effects upon
crowding were performed using synthetic polymers as
crowders. Experiments using FlAsH labeling have challenged
the viewpoint of the excluded-volume principle by reporting a
small destabilization effect caused by crowding agents. This
observation was further supported by both in vitro and in vivo
urea titrations.129 A similar mild destabilization also emerged
from NMR studies using protein molecule crowders.130

Molecular simulations that mimic the cellular crowding by
means of coarse graining can reproduce the excluded-volume
effect and resultant thermodynamic stability of a protein by
considering purely steric intermolecular interactions. However,
when the “full” energetic model was used, a decrease in the
protein stability was observed.131,132 In general, the excluded
volume v can be derived as
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where U(r) is the interaction energy as a function of the
distance r between the particles.133 Exclusive hard core steric
repulsions lead to clear excluded-volume effects. On the other
hand, inclusion of “soft” chemical interactions can either
enhance or diminish this effect. Explicit solvent models with
atomistic MD simulations were further used for a detailed
exploration of the interactions that result in crowding. While
explaining the effect of crowding, these studies showed the
major contribution as variable interactions between crowders
and solute, in contrast to the traditional volume exclusion
concept. In these studies, the noninteracting crowders only
moderately reduced solute diffusion rates while strong
interactions with crowders introduced structural destabilization
along with a significantly low diffusion rate.58,134 The reduction
in the overall free diffusion of protein further induces the
formation of transient protein clusters through nonspecific
binding.135,136 The volume exclusion effect of molecular
crowding has been recently studied again, using simulations
of a structure-based protein folding model. The results indicate
that both the size and shape of the crowders influences the
volume exclusion event.137 In general, lengthy polymeric
crowders stabilize the native protein folds better than the small
and spherical ones. Binding of small molecule inhibitors and
catalytic activity of enzyme may also get altered under
crowding pressure. For instance, both coarse-grained and
atomistic MD simulations have shown an alteration in the
relative population of enzyme active and inactive states and
therefore a change in the catalysis.138,139

Apart from short-range repulsive effects, cellular crowders
such as proteins and ribonucleic acids (RNA) bear surface
charges that are involved in electrostatic, hydrophobic,
hydrogen bonding, and long-range interactions. Cumulatively,
these factors may drive nonspecific effects that lead to sticking
or quinary interactions of the cellular milieu. Such weak
interactions can manifest as transient assemblies.141 The low
stability and rates of association or dissociation of such
complexes are considered the markers for the sticking
interaction, a phenomenon led by entropic forces. All-atom
computational models for bacterial cytoplasm that include the

Figure 4. Stability of folded protein under varying crowded
environment. Compaction is preferred with higher crowding.
Reprinted with permission from ref 140. Copyright 2013 Elsevier.
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most abundant proteins, other macromolecules, waters, and
ions are expected to provide a more realistic understanding of a
cell. These models consider both hydrophobic and electrostatic
interactions and therefore allow the sticking property of
cytoplasm via protein surface charges.142,143 Quinary inter-
actions, the fundamental to the fifth level of organization of the
protein interaction network, have been described as con-
structive “underneath forces” for exhibiting the multifunction-
ality, and accumulation of such forces can create “metabolon”
(supramolecular complex of sequential metabolic enzymes and
cellular structural elements)-like functional assem-
blies.141,144,145 In some cases, quinary interactions in vast
numbers can generate membraneless organelles or “liquid
droplets” with specific composition and functions: some of the
examples are Cajal bodies, stress granules, and p-bodies.141,144

Due to the diffusive and short-lived properties, quinary
interactions enable cellular cross talk over longer ranges.145

It is to be noted that molecules and complexes need to be in
(nearly) equienergetic states to facilitate such transient
interactions; a high kinetic barrier (or stable state) would
lead to the complex being trapped (or visited more often) in
one state for a longer time and reduce the transient nature.
However, within the heterogeneous cellular interior, quinary
interactions depend on inherent properties of proteins.146 With
the development of high-end computational resources and
efficient sampling algorithms, such transient short-lived
protein−protein interactions have been modeled in recent
years.147,148 The effect of such interactions over the mutants of
a protein was also studied combining NMR and MD
simulation data.149 These studies indicate that the mutational
perturbations of proteins can manifest alteration of their
surface electrostatics, leading to either amplification or
reversion of the effects of quinary interactions. It is noteworthy
that altered quinary interactions can impact protein aggrega-
tion.149,150

Moreover, macromolecular crowding within the cellular
milieu causes local nanoviscosity via hydrodynamic inter-
actions. The viscosity (η) of a solvent reduces the self-diffusion
of solute molecules and can potentially affect enzymatic
reaction kinetics.151,152 At low solvent viscosity, protein
fluctuations are independent of viscosity, but its incremental
changes generate a power law dependence (as an inverse first
power or a proportionality with η1/3) in the first hydration shell
along with localized variation due to protein structure.153−155

It has been suggested that, unlike low temperature effects,
viscosity does not “freeze” protein motions; it arrests
conformational changes.153 MD simulation studies designed
to investigate the effect of solvation layer mobility on protein
dynamics have reported an excellent correlation between the
local solvent viscosity and the protein backbone fluctua-
tions.156 Another computational study has recently shown that,
in concentrated solutions, the proteins diffuse as constantly
exchanging members of transient clusters. Their nonspecific
interactions and cluster formation contribute to the high
viscosity in the crowded solution.157 The molecular level
understanding through computational studies further shows
that the presence of a crowder or a cosolvent (effector of
solvent viscosity) significantly changes the structure and
dynamics of the hydration shell and can reduce the diffusivity
and the dielectric constant of solvent waters.158−162 It is
reported that, due to crowding effects, peptide interfacial
waters can behave as a glue (or adhesive) for assembly with the

increase in the lifetimes of water−water hydrogen
bonds.163−168

Surface Interactions and Confinement Effects. Within
the cellular milieu, proteins functionally explore various
biomolecular surfaces.169−171 Such surfaces, categorized on
the basis of their chemical nature or topology, have immense
influence in tuning protein stability and dynamics. Incorporat-
ing natural, biomimetic, and artificial surfaces, several studies
have attempted to probe surface influence on protein
conformation, aggregation propensity, and coupling with the
local solvent environment.172−174 Signatures of surface and
confinement effects can be found in the vicinal water
molecules.175 In general, different experimental measurements
show that most of the cytoplasmic water displays bulk water
character, whereas less than half of cell water is quantified as
“slow water”.176−178 Such a dramatic slowdown results from
the strengthening of heterogeneous water hydrogen bonds at
protein surfaces and the reduction of fragmentation of water−
water hydrogen bonds.179 Extensive molecular dynamics
simulation studies show the degree of dynamical retardation
of different types of hydration water in the order bulk < surface
< interstice < bridging water.180,181 Moreover, similar studies
in combination with analytical modeling revealed that a
protein’s topology and secondary structure profoundly
influence heterogeneous structure−dynamics associations in
the hydration water; for example, the β-sheet hydration is
characterized by a thicker layer and rigid hydration network in
comparison to α-helical motifs.81,182−186 All-atom explicit
solvent simulations along with hydrophobic free energy
calculations have further reported that the surrounding nearest
water also signifies a crucial role in protein−ligand or protein−
protein interactions or protein aggregation via polarization,
charge transfer, or long-range electrostatic effects.187

Gene expression, a multistep process, requires the
simultaneous involvement of proteins to walk over the nucleic
acid surface.188 Predominantly, the electrostatic interactions
strengthen the protein−DNA (or RNA) complexes but are
mediated through counterion charges.189 However, the three-
dimensional structural organization and, further, supercoiling
in nucleic acids promote a greater degree of motional variation
in interactions with proteins.190 Overall, the physicochemical
nature of the nucleic acid surface modulates solvent
reorganization, the interplay of enthalpic and entropic factors,
and thereby the spontaneity of protein−nucleic acid
recognition in a number of key subcellular processes including
supercoiling, replication, and translation.190−192 Although
experimental observations expected a noticeable displacement
of eukaryotic DNA clamp along a double-stranded DNA in a
microsecond long MD trajectory,193 in reality the mean
squared displacement was significantly underestimated by
simulations.194 Recent improvements in the force-field
parameters considering protein−nucleic acid interactions
have, however, reproduced the experimental results.195 The
new modification in the pair-specific Lennard-Jones parameters
incorporating experimental benchmarks corrected the charge−
charge interaction parameters which are known to be
overestimated by traditional force fields and can strengthen
the protein−DNA interactions. MD simulations along with
free energy perturbation calculations complementing a
isothermal titration calorimetry have recently reported variable
contributions of enthalpy and entropy while binding a
transcription factor with two different nucleotide sequences.196

Moreover, attempts toward the estimation of binding free
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energies of transcription factors using alchemical free energy
calculations and potential of mean force are appreciable.197−199

The lipid membrane is involved in crucial protein-mediated
cellular processes that include protein sorting, transport, and
signaling.200−202 Structurally, the lipid membrane is catego-
rized as a surface characterized by a strong hydrophobic core
and electrostatic surface that can constitute heterogeneous
microstructures including lipid rafts.203−205 Such chemical
demarcation influences a protein’s dynamical interaction with
lipid membrane and, further, alters protein conformations
along with membrane topology.206−210 Generally, the dynam-
ics of a membrane protein is greatly reduced as compared to
cytosolic proteins. Again, membrane anisotropy causes slower
rotational diffusion in proteins than translational diffusion. In a
recent computational study, the dynamics of four different
proteins were observed within a coarse-grained phospholipid
membrane using the latest force-field parameters.211 These
developments include the usage of fragment-based topologies
with the classical residue-based parameters in the SIRAH force
field for separate descriptions of lipid head and tail groups.211

These simulations have reported a drop in the β-structure
propensity in the case of β-barrels embedded in membranes.
However, for a protein containing predominantly α-helix, the
conformations could retain the structure and native contacts;
moreover, a tight packing was noticed in the membrane
environment. Furthermore, advancements in enhanced sam-
pling algorithms along with powerful computational architec-
tures are allowing the computation of free energy landscapes
for membrane protein dynamics, helping in understanding
their mechanisms at molecular details.209,212

Volume exclusion, compartmentalization of cellular compo-
nents, and organization of organelles are the manifestations of
cellular confinement.213−215 In biology, confinement has
significant effects on phenomena ranging from protein folding
to viral replication. Spatial confinement can be considered as
another physical force that can perturb the classical protein
folding pathway. Thermodynamically, confinement can be
defined as the free energy requirement for shifting a
biomolecule from a set of conformations in dilute solution to
a probable conformation allowed in the bounded volume.141

The required free energy in this process can be defined as
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where Wallowed is the number of allowed states in the confined
environment and Wall refers to the number of total
conformations allowed in the dilute solution. The interactions
underlying confinement can be repulsive or attractive, and
most of the effectual induction requires a compartment of 10−
100 Å.48,216 Like crowding, confinement also triggers the
compactification of biomolecules at the expense of the entropic
force by restricting the possible conformations accessible by
intrinsic protein motions.49 Confinement induced by crowder
concentration generates an altering effect in protein fluctua-
tions. Interestingly, a combination of experimental and
computational approaches revealed a general slowdown in
the protein-folding kinetics, independent of crowder concen-
tration, but molecular insights show a distinct origin:
stabilization of unfolded conformations and higher viscosity
at low and high concentrations than optimal, respectively.217

Earlier computational studies of proteins under polymeric
confinement reported significant stabilization of the folded

state and elimination of expanded unfolded conformations.218

However, unlike the spatial confinement models (using carbon
nanotube), the previous models are limited in considering the
dynamics of protein due to solvent interactions. Generally
these carbons in nanomaterials are modeled using the van der
Waals parameters for sp2 carbons.219 The Lennard−Jones
parameters are suitably modified to appropriately model the
weak interaction between nanosurface and water.37 Application
of spatial confinement on dry protein molecules destabilizes
the unfolded state, whereas in the presence of solvent a
compact unfolded ensemble different from the standard
extended state is stabilized.220 A similar effect is reproduced
when one regulates the distance between the protein and the
surface hydration shell by introducing polar and nonpolar
confinements with a fullerene ball.37

In hard confinement with a proper geometric shape, a
protein usually adopts the confinement shape.221 But such
dynamics vary depending upon the conformational properties,
the role of water, and the chemical nature of the confining
wall.222−224 A study using an Ising-like model and Monte Carlo
simulation elicits the role of confining (radius) length scales on
protein thermal stability and conformation alteration.225 A
gradual decrease of the confining cavity radius increases the
protein stability as long as the compact structure is spatially
accommodated. In the presence of crowder or particularly
denaturant, confinement provides stability to the protein
against unfolding.226 Furthermore, the computational approach
using the hard particle partition theory further added other
complexities to confinement. According to this study, the open
or closed nature of a pore also has significance to biomolecular
stability and aggregation.221 In the case of open confinement,
the solute molecules exist in equilibrium with the bulk liquid
phase, and upon reduction of the pore size, the solute
concentration reduces due to the altered exchanges. Interest-
ingly, in the case of closed confinement, protein aggregation
adapts to the shape of the confinement. This behavior
highlights the complex manifestations of nonspecific inter-
actions in proteins causing misfolding.221 Furthermore, these
features also have biological relevance vis-a-vis interstitial
spaces between large fibrous elements or membrane enclosed
microscopic regions.227,228

Chemical Factors. Perturbation of physical factors can
bring about global conformational change in the protein,
whereas a variable effect is observed for chemical modulation.
A change in the surrounding medium like pH, ion
concentration, or cosolvent can access the entire region of
the unfolded protein state, while in the case of the folded state
only the surface area is mostly available. Complementing
experimental information, constant pH simulations have
shown the reduction of the free energy barrier for unfolding
upon deviations of pH from the optimal range.229,230

Disruption of native electrostatic interactions takes place
when a change in pH alters the degree of ionization of the
charged groups.231 According to a MD simulation study, K+

channel proteins in extreme acidophiles are reported to hide
their ionizable amino acids to reduce protonation.232 Other
than pH, another crucial role in protein folding is played by
metal ions. Based on the initial position of the Na+ ion, the β-
hairpin showed different folding pathways, whereas multivalent
ions can make the folding energy landscape rugged or funnel-
shaped by nonspecific coordination and a specific binding
pose, respectively.233,234 However, heavy metal ions are also
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known for their toxicity that promotes misfolding and restricts
refolding in proteins.235−237

Perturbation of the native folding pattern in a protein system
can also be influenced by the electrostatic interactions and
nonpolar Hofmeister effects resulting from the variation in salt
identity and concentration in the environment.238,239 MD
simulations with increasing salt concentration were reported to
induce compaction in the protein structure for a folded
ensemble, whereas “coil-to-globule”-like transitions are ob-
served for the unfolded state in the presence of highly
stabilizing salts.41,240 These changes are also subject to the
protein sequence and its tertiary topology in its stable states.240

Existence of cosolvent in the media might unfold (denaturant)
or stabilize (protecting osmolytes) proteins. Extensive
molecular simulations using variable cosolvents and their
mixtures offered insights into the molecular mechanisms. In
the presence of different polyols, a protein is found to be stable
even at a higher temperature than its melting point in pure
water. An increase in stability is obtained with a higher
molecular volume of the polyol.241 Similarly, the addition of
methanol with ubiquitin protects the secondary structures but
has an weakening effect on tertiary interactions.242 On the
other hand, urea as chemical denaturant exerts both direct and
indirect effects at the molecular level. Direct interaction with
the protein involves hydrogen bonding leading to solvation of
the hydrophobic core via the influx of water followed by urea.
This leads to stabilization of non-native contacts over the
transition state, thereby promoting unfolding. Indirectly,
alteration of the hydration structure and dynamics results in
a diminishing hydrophobic effect that enhances hydrophobic
core exposure.243−245 Unlike force-dependent unfolding, urea-
mediated chemical denaturation does not lead to fully
extended conformations.246 Interestingly, denaturant depend-
ent protein conformational stability is observed in lysozyme
unfolding in the presence of urea and guanidium chloride
(GdmCl).247 However, in general, the pathway of unfolding
goes through a two-stage kinetic process mediated by a “dry
molten globule”.248,249 The extensively studied protein
protective agent trimethylamine N-oxide (TMAO) is known
to influence the structure and dynamics of the hydration water,
and it also shows a counteracting effect against urea-induced
denaturation in mixed solvent (Figure 5).250,251 In general, an
“indirect hypothesis” of slower solvent rotational dynamics
surrounding the protein and the exclusion of osmolytes is
considered as the molecular mechanism underlying the
behavior of protecting osmolytes.252

Mutations and Post-translational Modifications. Intra-
molecular or structural change (by changing the amino acid
composition) in proteins mostly gives rise to localized effects,
and cooperative interactions within proteins transmit them to
distal regions; this is referred to as allostery. Substitution of an
active site residue or ligand binding causes faster rearrange-
ment of the nearest residues within ∼7 Å of the active site and
slowly extends up to ∼15−20 Å by the conformational
selection model.253 However, in some proteins, the localized
effect can be manifested as a global change. Mutational
strategies can provide significant insights about protein
conformational dynamics and the sensitivity of subtle
alteration. Depending upon the location of the mutation, its
effect varies: mutation of a surface residue is generally
localized, whereas a protein core region mutation can generate
a drastic conformational change. The interfacial residue
mutation or alteration of electrostatic interactions can hinder
the protein’s binding mechanism.254 Stabilizing effects of
variable surface charged mutations were further reported with
an MD simulation using the explicit solvent model; however,
they share different mechanisms in each case.255 Computa-
tional substitution of a core proline residue in fibroblast growth
factor receptor with serine showed high fluctuations due to a
reduction in the total number of hydrogen bonds compared to
the wild type structure. Moreover, this mutation was reported
to be the most deleterious using a sequence homology-based
prediction tool.256 Recently, a Monte Carlo simulation based
site-directed mutation study revealed the existence of a critical
number of hydrophobic residues required for the core stability
of proteins. The protein stability was subjected to a sharp
decrease upon reduction of the critical hydrophobicity with
mutations. Moreover, this study suggests a limitation of protein
surfaces to accommodate hydrophobic residues given a large
number of hydrophilic residues are present in the surface and
critical core hydrophobicity is maintained.257

During protein folding, post-translational modification like
N-site or O-site glycosylation or disulfide bond, etc. formation
plays a crucial role in altering the dynamics.258−260 For
instance, N-glycosylation does not have an effect on the local
or global protein conformation, yet it reduces the overall
protein dynamics compared to the nonglycosylated form.261

O-Glycosylation, on the other hand, can be stabilizing or
destabilizing depending on the interactions it introduces or
impairs. A recent MD simulation study also supported these
findings by discovering glycan-involved hydrogen bonds
inducing proteolytic stability in O-glycosylated insulin.262,263

Other attempts toward streamlining force-field parameters and
a computational platform for studying post-translational
modifications are also equally appreciable.75,76 Recently, free
energy calculations by combining molecular dynamics with the
generalized Born and surface area continuum solvation
methods were performed to study the effects of acetylation
and phosphorylations over yeast proteins. While acetylation
induced a locally stabilizing effect on protein−protein
interactions, phosphorylations played an opposing role; their
co-occurrence was discussed to be more complicated than the
sum of individual effects.264

Harnessing Perturbative Effects Advantageously.
Engineering proteins that have biotechnological applications
often requires tuning of function optimally at extreme
conditions. For instance, thermostable enzymes including
extremozymes can catalyze specific reactions at high temper-
atures and therefore have high industrial importance.265

Figure 5. Effects of solvent (water) and cosolvents (urea and TMAO)
on stability of folded protein. Adapted from ref 250. Copyright 2020
American Chemical Society.
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However, due to the challenge in replication of exact host
conditions, it is challenging to use these thermophiles at
industrial levels.265 Molecular level understanding of thermo-
stable systems can help in designing an appropriate mutation
that introduces additional surface H-bonds, salt bridges, and
disulfide bridges or stabilizes the hydrophobic core for the
rational design of such enzymes.266 Similarly, acid-stable
enzymes are greatly used in multiple industries including
biomining metals from low-grade ores, food processing, and
pharmaceuticals.267,268 Incorporation of the common features
of acid-stable proteins such as reduced charged density at
protein surfaces can help in the design of industrially important
enzymes that are stable and functional at low pH conditions.267

Sustainable production of biodiesel by lipase-based enzyme
catalysis is gaining attention among biofuel production
techniques. Such a production system requires methanol in a
high amount that can result in reduction in activity and
stability of the lipases.269 However, studies including MD
simulation have confirmed that the N-glycosylation of these
enzymes can improve both their activity and stability in the
presence of organic solvents through the formation of non-
native H-bonds.269 Such mutations were utilized to signifi-
cantly enhance the production of biodiesel from colza oil and
waste soybean oil.
Rational and semirational protein design methods have

major implications in biomedical applications as well. Although
cryopreservation can help in storing biosamples for medical
demands, it is challenging to effectively avoid the risks of
freezing and cryoprotectant toxicity. Therefore, antifreezing
proteins that help organisms to survive in low-temperature
conditions have high technological significance.270 Computa-
tional studies supporting experimental observations have
revealed the alteration of long-range water dynamics as a ice-
inhibition mechanism of glycoproteins and their mimics.271

Synthesis of such bioinspired cryoprotectants are increasingly
considered for efficient cryopreservation. Other usage of post-
translational modifications can be noticed in pharmaceutical
industries.272 Computational design of stereoselective enzymes
and ranking their substrate-binding efficiency with molecular
simulations can replace a significant amount of laboratory work
before experimental screening.273 Modern usage of highly
purified protein molecules as antigens are found to be safer for
vaccine preparation than the old techniques using killed/
inactivated or live-attenuated pathogenic organisms. To induce
a high level of immunity, however, these proteins are required
to be assembled properly to mimic the pathogen surface.
Design of an interaction that forms self-assembling protein
nanoparticles needs to mention this direction.274

Understanding protein−protein interface interactions in
atomistic details allows engineering of bionanomaterials by
utilizing the self-assembly mechanism of proteins.275,276 These
nanomaterials can have multiple applications ranging from
photosynthetic apparatus, drug encapsulation and delivery,
bioimaging, biocatalysis, biosensors, vaccine and antibody
design, etc. For instance, ferritin has been explored for drug
encapsulation and delivery in cancer treatment, due to its high
selectivity to the cancer cells overexpressing TfR-1. However,
its assembly was limited to work for a specific drug size.
Recently, by controlling intra- and intersubunit disulfide
bonds, protein nanocages of different geometries have been
fabricated for encapsulating larger proteins including en-
zymes.277 Another key example of material bioengineering is
the design of silk proteins for multipurpose applications.278,279

Silks are biopolymers that offer high mechanical strength and
extensibility, promoting their usage in textile industries and in
producing medically important wound dressings and sutures.
In general, these silks are comprised of protein fibrils aligned
along the fiber axis. Modifications of these proteins are helping
in engineering recombinant silk polymers having commercial
applications in cosmetics, regenerative medicine, textile
fabrication, and customized material design.280 Furthermore,
the design of smart biopolymers related to scaffoldlike
materials has great utility in tissue engineering and regenerative
medicine.281

■ SUMMARY AND CONCLUSIONS
Proteins can be viewed as polymers of amino acids; however,
when folded in their optimal tertiary forms they can perform
diverse functionalities required for a cell to survive. Obtaining
an optimal fold is dependent not only on the internal
polypeptide sequence but also on the external environment
that is composed of different physiological forces, solvents,
other chemical factors, macromolecular crowding, etc.
Perturbations in one or more of these factors can introduce
diverse changes in the protein stability, dynamics, and
interactions. In the current context, we have reviewed major
computational approaches that provide a microscopic view
complementary to experimental observations into environ-
mental perturbations to protein folding and stability. This
review summarizes that the role of temperature changes in
either direction from the physiological condition may have
different consequences on the protein monomer and amyloid
fibrils. We have seen that proteins under high-pressure
conditions, macromolecular crowding, or confinement may
exert a common volumetric effect on the solute, yet they can
ramify distinct protein responses depending on solvent
properties and molecular elements composing the perturbative
factor. Moreover, we have discussed chemical factors and post-
translational modifications of individually opposing effects that
can either win over the other or introduce an altogether
different phenomenon more complex than the sum of single
factor contributions. The review also contains responses of
protein surfaces to different kinds of biomolecules such as
water, nucleic acid, other proteins, and lipid bilayer. However,
owing to limitations in scope, we have not included a detailed
discussion on membrane−protein interactions. For better
insights on the same, the reader is referred to other
comprehensive reviews related to the subject.

The discussion on technological advancements in protein
engineering, cryopreservation, material designs, and related
industries has summarized the applications of the insights on
protein behavior upon environmental perturbations, derived
from extensive experiments and theoretical research. Whereas
these environmental effects are easy to study individually, in
cells, proteins need to face much more complicated and
multifactorial perturbatons that can be challenging to
incorporate both in experiments and in computational models.
Interestingly, a recent effort has reported a protein phase
diagram over the temperature−pressure−crowding space,
combining results from fluorescence spectroscopy and
molecular simulation techniques.282 Other challenges lie in
appropriately modeling the cellular crowding via computation.
Atomistic models that can probe the results of crowding
beyond the simplistic volume exclusion viewpoint requires
high-end supercomputers; therefore, it is always a compromise
between available resources and required accuracy.283 How-
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ever, the developments of advanced algorithms and models
that allow mixed resolution (partially atomic and coarse-
grained) simulations can provide a satisfactory trade-off.58,136

Studying the stability, dynamics, and interactions of membrane
embedded proteins poses a similar difficulty related to
modeling. Further complexities are introduced while consid-
ering the heterogeneity and protein−protein interactions in a
membrane environment.284 Besides the improvements in
coarse-grained models and enhanced sampling techniques,
the concept of hydrogen mass repartitioning in accelerating
membrane simulations is quite appreciable.285 Moreover, an
advanced X-ray crystallographic technique recently offered a
real-time perspective in the investigation of membrane−
protein interactions.209,286 Therefore, in conclusion, the
advancements in computational techniques and architectures
along with the developments of time-resolved crystallographic
and spectroscopic methods are underpinning a platform for
better understanding of protein biophysics in real time and
with real environmental conditions.
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(264) Šosťaric,́ N.; van Noort, V. Molecular dynamics shows
complex interplay and long-range effects of post-translational

modifications in yeast protein interactions. PLoS Comput. Biol.
2021, 17, No. e1008988.
(265) Rigoldi, F.; Donini, S.; Redaelli, A.; Parisini, E.; Gautieri, A.
Engineering of thermostable enzymes for industrial applications. APL
Bioeng 2018, 2, 011501.
(266) Sharma, S.; Vaid, S.; Bhat, B.; Singh, S.; Bajaj, B. K. In
Advances in Enzyme Technology; Elsevier: 2019; pp 469−495.
DOI: 10.1016/b978-0-444-64114-4.00017-0.
(267) Sharma, A.; Parashar, D.; Satyanarayana, T. Acidophilic
microbes: biology and applications. Biotechnology of Extremophiles
2016, 1, 215−241.
(268) Hujslová, M.; Bystriansky,̀ L.; Benada, O.; Gryndler, M. Fungi,
a neglected component of acidophilic biofilms: do they have a
potential for biotechnology? Extremophiles 2019, 23, 267−275.
(269) Tian, M.; Yang, L.; Lv, P.; Wang, Z.; Fu, J.; Miao, C.; Li, Z.;
Li, L.; Liu, T.; Du, W.; et al. Improvement of methanol tolerance and
catalytic activity of Rhizomucor miehei lipase for one-step synthesis of
biodiesel by semi-rational design. Bioresour. Technol. 2022, 348,
126769.
(270) Dou, M.; Lu, C.; Rao, W. Bioinspired materials and
technology for advanced cryopreservation. Trends Biotechnol 2022,
40, 93.
(271) Mallajosyula, S. S.; Vanommeslaeghe, K.; MacKerell, A. D., Jr
Perturbation of long-range water dynamics as the mechanism for the
antifreeze activity of antifreeze glycoprotein. J. Phys. Chem. B 2014,
118, 11696−11706.
(272) Walsh, G.; Jefferis, R. Post-translational modifications in the
context of therapeutic proteins. Nat. Biotechnol. 2006, 24, 1241−1252.
(273) Wijma, H. J.; Floor, R. J.; Bjelic, S.; Marrink, S. J.; Baker, D.;
Janssen, D. B. Enantioselective enzymes by computational design and
in silico screening. Angew. Chem., Int. Ed. 2015, 54, 3726−3730.
(274) López-Sagaseta, J.; Malito, E.; Rappuoli, R.; Bottomley, M. J.
Self-assembling protein nanoparticles in the design of vaccines.
Comput. Struct. Biotechnol. J. 2016, 14, 58−68.
(275) Khoury, G. A.; Smadbeck, J.; Kieslich, C. A.; Floudas, C. A.
Protein folding and de novo protein design for biotechnological
applications. Trends Biotechnol 2014, 32, 99−109.
(276) Gainza-Cirauqui, P.; Correia, B. E. Computational protein
design�the next generation tool to expand synthetic biology
applications. Curr. Opin. Biotechnol. 2018, 52, 145−152.
(277) Zeng, R.; Lv, C.; Wang, C.; Zhao, G. Bionanomaterials based
on protein self-assembly: Design and applications in biotechnology.
Biotechnol. Adv. 2021, 52, 107835.
(278) Zheng, K.; Ling, S. De novo design of recombinant spider silk
proteins for material applications. Biotechnol. J. 2019, 14, 1700753.
(279) Dinjaski, N.; Kaplan, D. L. Recombinant protein blends: Silk
beyond natural design. Curr. Opin. Biotechnol. 2016, 39, 1−7.
(280) Saric, M.; Scheibel, T. Engineering of silk proteins for
materials applications. Curr. Opin. Biotechnol. 2019, 60, 213−220.
(281) Furth, M. E.; Atala, A.; Van Dyke, M. E. Smart biomaterials
design for tissue engineering and regenerative medicine. Biomaterials
2007, 28, 5068−5073.
(282) Gasic, A. G.; Boob, M. M.; Prigozhin, M. B.; Homouz, D.;
Daugherty, C. M.; Gruebele, M.; Cheung, M. S. Critical phenomena
in the temperature-pressure-crowding phase diagram of a protein.
Phys. Rev. X 2019, 9, 041035.
(283) Ostrowska, N.; Feig, M.; Trylska, J. Modeling crowded
environment in molecular simulations. Front. Mol. Biosci. 2019, 6, 86.
(284) Muller, M. P.; Jiang, T.; Sun, C.; Lihan, M.; Pant, S.;
Mahinthichaichan, P.; Trifan, A.; Tajkhorshid, E. Characterization of
lipid−protein interactions and lipid-mediated modulation of mem-
brane protein function through molecular simulation. Chem. Rev.
2019, 119, 6086−6161.
(285) Balusek, C.; Hwang, H.; Lau, C. H.; Lundquist, K.; Hazel, A.;
Pavlova, A.; Lynch, D. L.; Reggio, P. H.; Wang, Y.; Gumbart, J. C.
Accelerating membrane simulations with hydrogen mass repartition-
ing. J. Chem. Theory Comput. 2019, 15, 4673−4686.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c06199
ACS Omega 2022, 7, 44556−44572

44571

https://doi.org/10.1016/j.bpj.2011.01.028
https://doi.org/10.1016/j.bpj.2011.01.028
https://doi.org/10.1073/pnas.0930122100
https://doi.org/10.1073/pnas.0930122100
https://doi.org/10.1073/pnas.1400752111
https://doi.org/10.1073/pnas.1400752111
https://doi.org/10.1021/acsomega.8b01911?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.8b01911?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp105160a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp105160a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1315453111
https://doi.org/10.1073/pnas.1315453111
https://doi.org/10.1021/acs.jpcb.0c04357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-physchem-040412-110156
https://doi.org/10.1146/annurev-physchem-040412-110156
https://doi.org/10.1021/ct200471w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct200471w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bpc.2011.05.020
https://doi.org/10.1016/j.bpc.2011.05.020
https://doi.org/10.1007/s10822-016-9914-3
https://doi.org/10.1073/pnas.1222245110
https://doi.org/10.1073/pnas.1222245110
https://doi.org/10.1016/j.atg.2012.06.002
https://doi.org/10.1016/j.atg.2012.06.002
https://doi.org/10.1002/prot.25702
https://doi.org/10.1002/prot.25702
https://doi.org/10.1073/pnas.2100425118
https://doi.org/10.1073/pnas.2100425118
https://doi.org/10.1016/j.bpj.2017.11.3787
https://doi.org/10.1016/j.bpj.2017.11.3787
https://doi.org/10.3390/ijms18102207
https://doi.org/10.3390/ijms18102207
https://doi.org/10.1038/srep08926
https://doi.org/10.1038/srep08926
https://doi.org/10.1038/srep08926
https://doi.org/10.1021/acs.biochem.7b00195?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.7b00195?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10822-022-00453-6
https://doi.org/10.1007/s10822-022-00453-6
https://doi.org/10.1371/journal.pcbi.1008988
https://doi.org/10.1371/journal.pcbi.1008988
https://doi.org/10.1371/journal.pcbi.1008988
https://doi.org/10.1063/1.4997367
https://doi.org/10.1016/b978-0-444-64114-4.00017-0?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-319-13521-2_7
https://doi.org/10.1007/978-3-319-13521-2_7
https://doi.org/10.1007/s00792-019-01085-9
https://doi.org/10.1007/s00792-019-01085-9
https://doi.org/10.1007/s00792-019-01085-9
https://doi.org/10.1016/j.biortech.2022.126769
https://doi.org/10.1016/j.biortech.2022.126769
https://doi.org/10.1016/j.biortech.2022.126769
https://doi.org/10.1016/j.tibtech.2021.06.004
https://doi.org/10.1016/j.tibtech.2021.06.004
https://doi.org/10.1021/jp508128d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp508128d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nbt1252
https://doi.org/10.1038/nbt1252
https://doi.org/10.1002/anie.201411415
https://doi.org/10.1002/anie.201411415
https://doi.org/10.1016/j.csbj.2015.11.001
https://doi.org/10.1016/j.tibtech.2013.10.008
https://doi.org/10.1016/j.tibtech.2013.10.008
https://doi.org/10.1016/j.copbio.2018.04.001
https://doi.org/10.1016/j.copbio.2018.04.001
https://doi.org/10.1016/j.copbio.2018.04.001
https://doi.org/10.1016/j.biotechadv.2021.107835
https://doi.org/10.1016/j.biotechadv.2021.107835
https://doi.org/10.1002/biot.201700753
https://doi.org/10.1002/biot.201700753
https://doi.org/10.1016/j.copbio.2015.11.002
https://doi.org/10.1016/j.copbio.2015.11.002
https://doi.org/10.1016/j.copbio.2019.05.005
https://doi.org/10.1016/j.copbio.2019.05.005
https://doi.org/10.1016/j.biomaterials.2007.07.042
https://doi.org/10.1016/j.biomaterials.2007.07.042
https://doi.org/10.1103/PhysRevX.9.041035
https://doi.org/10.1103/PhysRevX.9.041035
https://doi.org/10.3389/fmolb.2019.00086
https://doi.org/10.3389/fmolb.2019.00086
https://doi.org/10.1021/acs.chemrev.8b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.8b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.8b00608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(286) Standfuss, J. Membrane protein dynamics studied by X-ray
lasers−or why only time will tell. Curr. Opin. Struct. Biol. 2019, 57,
63−71.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c06199
ACS Omega 2022, 7, 44556−44572

44572

https://doi.org/10.1016/j.sbi.2019.02.001
https://doi.org/10.1016/j.sbi.2019.02.001
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

