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Single Phase Dual-energy CT 
Angiography: One-stop-shop 
Tool for Evaluating Aneurysmal 
Subarachnoid Hemorrhage
Qian Qian Ni, Chun Xiang Tang, Yan E Zhao,  Chang Sheng Zhou, Guo Zhong Chen, 
Guang Ming Lu & Long Jiang Zhang

Aneurysmal subarachnoid hemorrhages have extremely high case fatality in clinic. Early and rapid 
identifications of ruptured intracranial aneurysms seem to be especially important. Here we evaluate 
clinical value of single phase contrast-enhanced dual-energy CT angiograph (DE-CTA) as a one-
stop-shop tool in detecting aneurysmal subarachnoid hemorrhage. One hundred and five patients 
who underwent true non-enhanced CT (TNCT), contrast-enhanced DE-CTA and digital subtraction 
angiography (DSA) were included. Image quality and detectability of intracranial hemorrhage were 
evaluated and compared between virtual non-enhanced CT (VNCT) images reconstructed from DE-CTA 
and TNCT. There was no statistical difference in image quality (P > 0.05) between VNCT and TNCT. The 
agreement of VNCT and TNCT in detecting intracranial hemorrhage reached 98.1% on a per-patient 
basis. With DSA as reference standard, sensitivity and specificity on a per-patient were 98.3% and 
97.9% for DE-CTA in intracranial aneurysm detection. Effective dose of DE-CTA was reduced by 75.0% 
compared to conventional digital subtraction CTA. Thus, single phase contrast-enhanced DE-CTA is 
optimal reliable one-stop-shop tool for detecting intracranial hemorrhage with VNCT and intracranial 
aneurysms with DE-CTA with substantial radiation dose reduction compared with conventional digital 
subtraction CTA.

In today’s clinical practice, MR imaging seems to represent the cornerstone of neuroimaging because of its tissue 
characterization in the brain and functional imaging such as perfusion weighted imaging, diffusion weighted 
imaging, and MR spectroscopy. However, since it is relatively time-consuming and costly, CT remains preferred 
for the acutely ill patients presenting with intracranial hemorrhage or patients with contraindications to MR 
imaging1–3.

Dual-energy CT is the product of ongoing development of CT technology4. It has been increasingly and 
widely accepted by clinicians due to its additional attenuation measurement and various post-processing oppor-
tunities1,2,5,6. These techniques used in dual-energy CT were reported to increase image quality, improve diag-
nostic accuracy and reduce the radiation exposure6–8. Automated bone removal technology is one of the most 
appealing applications of dual-energy CT, which allows direct visualization of iodinated vessels without increase 
of radiation exposure9–10. In addition to bone removal, removing the iodine component allows for the creation of 
virtual non-enhanced CT (VNCT) image11–13. In this approach, the conventional true non-enhanced CT (TNCT) 
examinations might be able to be omitted. Other clinically relevant applications such as blood pool imaging14, 
urinary stone characterization15 and virtual monoenergetic imaging16 have also been used in many clinical trials 
to optimize the patients’ management.

Approximately 1–5% adults are in the danger of intracranial aneurysms in the United States. Rupture of an 
intracranial aneurysm causes 85% subarachnoid hemorrhages17. Such hemorrhages have high case fatality and 
morbidity, especially for relatively young patients less than 65 years old18. Compared to conventional angiography, 
CT angiography (CTA) is highly efficient for identifying intracranial aneurysms and planning surgical thera-
pies19, DE-CTA showed potentially superior diagnostic accuracy for evaluation of intracranial aneurysms to con-
ventional CTA10,20. Furthermore, dual-energy CT can be beneficial for iodine component removal to reconstruct 
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VNCT images, which has been shown to replace the conventional TNCT and reduce radiation exposure12,16. 
Although both techniques have been reported to separately detect intracranial aneurysm and subarachnoid hem-
orrhages, to the best of our knowledge, no study has been performed using single phase DE-CTA combining 
VNCT with bone removal techniques to optimize CT workflow for screening patients with aneurysmal subarach-
noid hemorrhage. This is very implicated for the critically ill patients.

Hence, the purpose of this study is to evaluate clinical value of single phase DE-CTA in detecting aneurysmal 
subarachnoid hemorrhage, which combines VNCT to evaluate hemorrhage focus and bone removal CTA tech-
nique to detect intracranial aneurysms with TNCT and DSA as reference standard, respectively.

Results
Image quality. Mean attenuation, noise, SNR, and CNR values of TNCT and VNCT images are presented in 
Table 1. The mean attenuation of bleeding focus was 61 ±  10 HU for TNCT, and 56 ±  11 HU for VNCT. The mean 
SNR and CNR of TNCT were 19 ±  6 and 10 ±  5, and 16 ±  4 and 7 ±  3 of VNCT. The mean attenuation, SNR and 
CNR of VNCT were lower than those of TNCT (all P <  0.01).

Subjective image scores of two series of non-enhanced images and DE-CTA by two independent readers are 
presented in Table 2. Kappa coefficients for inter-reader reliability between the two independent readers ranged 
from 0.474 to 0.824, interpreted as moderate (0.41–0.60) to excellent (0.81–1.00) agreement. Of non-enhanced 
CT, the image quality rated excellent (score =  4) was awarded in 95 patients (90.5%) of VNCT, and in 100 patients 
(95.2%) of TNCT; the image rated good (score =  3) was awarded in 10 patients (9.5%) of VNCT, and in 5 patients 
(4.8%) of TNCT. There was no significant difference for subjective overall image quality evaluation between 
TNCT and VNCT (P =  0.166). Of DE-CTA, the image quality rated excellent (score =  4) was awarded in 88 
patients (83.8%), good (15.2%, 16/105), and poor (1.0%, 1/105).

Diagnostic performance. Hemorrhage detection. Among the 105 patients, 58 patients had 101 bleeding 
focus based on TNCT. There were 11 patients with subarachnoid hemorrhage, 32 patients with subarachnoid 
hemorrhage combined with other bleeding focus (i.e., intracerebral hematoma, ventricular hematoma and oth-
ers), 15 patients with other intracranial hematoma. Of 101 bleeding focus, 43 were subarachnoid hemorrhage, 
17 lesions were intracerebral hematoma, 32 lesions were ventricular hematoma, and 9 were other lesions such as 
epidural hematoma.

VNCT correctly detected 98 bleeding lesions in 57 patients against TNCT reference standard. The sensitiv-
ities and specificities for detecting hemorrhage on a per-patient basis were 98.3% and 97.9%, and 97.0% and 
95.8% respectively on a per-lesion basis (Table 3, Figs 1 and 2). There were no statistically differences in diagnos-
tic accuracy between virtual and true non-enhanced CT on a per-patient and per-lesion basis (both P >  0.99). 
Sensitivities grouped by bleeding focus were 97.8%, 98.4%, 97.4%, and 100%, and specificities were 95.8%, 100%, 
100%, and 100%, respectively (Table 3). There was no difference in diagnostic accuracy for detecting different 
bleeding lesions between virtual and true non-enhanced CT (all P >  0.50).

Protocols TNCT VNCT P value

CT value (HU) 61 ±  10 56 ±  11 < 0.01

Noise (HU) 4 ±  2 4 ±  1 0.564

SNR 19 ±  6 16 ±  4 < 0.01

CNR 10 ±  5 7 ±  3 < 0.01

Table 1.  Objective image quality measurement in two series of non-enhanced images. Data are presented as 
mean ±  SD. TNCT =  true non-enhanced CT; VNCT =  virtual non-enhanced CT.

Image Dataset Reader 1 Reader2 Kappa Coefficient (k)

TNCT

 Image graininess 3.95 ±  0.21 3.93 ±  0.25 0.669

 Image delineation 3.96 ±  0.19 3.97 ±  0.17 0.694

 Overall image quality 3.95 ±  0.21 3.97 ±  0.17 0.502

VNCT

 Image graininess 3.91 ±  0.28 3.90 ±  0.31 0.824

 Image delineation 3.92 ±  0.27 3.97± 0.17 0.557

 Overall image quality 3.90 ±  0.30 3.95 ±  0.21 0.481

DE-CTA

 Bone removal 3.57 ±  0.57 3.50 ±  0.56 0.474

 Depiction of vascular structures 3.80 ±  0.51 3.86 ±  0.43 0.815

 Overall image quality 3.82 ±  0.48 3.81 ±  0.46 0.689

Table 2.  Subjective image quality scores of non-enhanced CT and DE-CTA by 2 independent readers. Data 
are presented as mean ±  SD. TNCT =  true non-enhanced CT; VNCT =  virtual non-enhanced CT;  
DE-CTA =  dual-energy CT angiography.
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Aneurysms detection. There were 69 aneurysms in 58 patients evaluated by DSA as reference standard. DE-CTA 
correctly detected 65 aneurysms in 57 patients. Table 4 reports that the sensitivity and specificity for detecting 
aneurysms by DE-CTA were 98.3% and 97.9% on a per-patient basis, while 97.1% and 95.8% on a per-aneurysm 

Approach

Results (n) Statistical Analysis (%)

TP TN FP FN Sensitivity Specificity PPV NPV Accuracy

Per-patient 57 46 1 1 98.3
(90.9, 99.7)

97.9
(88.9, 99.6)

98.3
(90.9, 99.7)

97.9
(88.9, 99.6)

98.1
(93.3, 99.5)

Per-lesion 98 46 2 3 97.0
(91.6, 99.0)

95.8
(86.0, 98.9)

98.0
(93.0, 99.5)

93.9
(83.5, 97.9)

96.6
(92.4, 98.6)

 Subarachnoid hemorrhage 43 46 2 0 100
(91.8, 100)

95.8
(86.0, 98.9)

95.6
(85.2, 98.8)

100
(92.3, 100)

97.8
(92.3, 99.4)

 Intracerebral hematoma 16 46 0 1 94.1
(73.0, 99.0)

100
(92.3, 100)

100
(80.6, 100)

97.9
(88.9, 99.6)

98.4
(91.5, 99.7)

 Ventricular hematoma 30 46 0 2 93.8
(79.9, 98.3)

100
(92.3, 100)

100
(88.7, 100)

95.8
(86.0, 98.9)

97.4
(91.1, 99.3)

 Others 9 46 0 0 100
(70.1, 100)

100
(92.3, 100)

100
(70.1, 100)

100
(92.3, 100)

100
(93.5, 100)

Table 3.  Intracranial bleeding detection with virtual non-enhanced CT compared to a true non-enhanced 
CT as reference standard. Data are presented as mean ±  SD. TP =  true positive; TN =  true negative; FP =  false 
positive; FN =  false negative; PPV =  positive predictive value; NPV =  negative predictive value.

Figure 1. A 59-year-old man with spontaneous subarachnoid hemorrhage and ventricular hematoma 
caused by ruptured aneurysm of right anterior superior cerebellar artery. (a,b) True non-enhanced CT 
image, (c,d) virtual non-enhanced CT image.
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basis. It did not show any statistical difference in diagnostic accuracy of DE-CTA and DSA in assessment of aneu-
rysms whether on a per-patient or per-aneurysm basis (Figs 2 and 3).

Of the 69 aneurysms detected by DSA, 24 were smaller than 3 mm, 34 were 3–8 mm, and 11 were larger than 
8 mm. Moreover, 43 aneurysms of them were located in anterior circulation, and 26 aneurysms were located in 
posterior circulation. The missed 2 aneurysms by DE-CTA were both smaller than 2 mm in anterior and posterior 
circulation, respectively, while the misdiagnosed 2 aneurysms were smaller than 3 mm and larger than 8 mm, 
respectively (Table 4). The McNemar test did not show any significant differences of sensitivity and specificity 
in detecting aneurysms of different sizes and locations between DE-CTA and DSA (all P >  0.99). Furthermore, 
DE-CTA in our study showed a high sensitivity and specificity (91.7% and 97.9%, respectively) for small aneu-
rysm detection (Supplementary Fig. S1).

Radiation dose. Table 5 reports the mean CTDIvol, DLP, and ED of TNCT, dual-energy CT, and the sum of 
values of TNCT and dual-energy CT that was taken as the radiation dose of conventional digital subtraction CTA. 
The mean CTDIvol, DLP, and ED of single phase contrast-enhanced dual-energy CT scan were 14.6 ±  1.4 mGy, 
238.5 ±  29.9  mGy*cm, and 0.5 ±  0.1 mSv, respectively. Nevertheless, when coupled with a non-enhanced 
CT examination, the mean CTDIvol, DLP, and ED changed to 59.8 ±  2.4 mGy, 965.4 ±  67.5, mGy*cm, and 
2.0 ±  0.1 mSv, respectively. So compared with conventional digital subtraction CTA, the CTDIvol, DLP, and ED 
was reduced by approximately 75.6%, 75.3% and 75.0%, respectively.

Discussion
The results of our study showed that, at significant radiation dose reducing and time saving, the new imaging 
protocol demonstrated in our study by combining VNCT with DE-CTA is comparable to the TNCT and DSA in 
terms of image quality and diagnostic accuracy of aneurysmal subarachnoid hemorrhage.

Figure 2. A 59-year-old women with spontaneous subarachnoid hemorrhage caused by ruptured aneurysm 
in left posterior communicating artery. (a) True non-enhanced CT image and (b) virtual non-enhanced CT 
image show subarachnoid hemorrhage, (c) volume-rendered dual-energy CTA image shows a true-positive 
aneurysm in the left posterior communicating artery (yellow arrow), which was confirmed by 3D-DSA (d).
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Conventional digital subtraction CTA has been widely accepted as the primary examination choice for 
patients suspected of intracranial aneurysms19,21,22. However, the limitations of it still be questioned by the minor-
ity, such as additional radiation exposure by a non-enhanced CT examination, patient movements between the 
2 scans, and incomplete bone removal at the skull base. DE-CTA appears to be a promising modality to mitigate 
the above-mentioned limitations of digital subtraction CTA. Watanabe et al.20 first introduced the bone removal 
application of DE-CTA for evaluating intracranial aneurysms in 12 patients. They stated that 3 of 9 aneurysms 
adjacent to the skull base were fully visible in DE-CTA but only partially visible in conventional CTA. Besides, the 
calcifications removal by dual-energy CT allowed a precise analysis of luminal structure of aneurysms than DSA. 
Zhang et al.23,24 published 2 articles about the diagnostic accuracy of intracranial aneurysm detection of DE-CTA 
in comparison with digital subtraction CTA and 3D DSA in 46 and 80 patients, respectively. They reported no 

Approach

Results (n) Statistical Analysis (%)

TP TN FP FN Sensitivity Specificity PPV NPV Accuracy

Per-patient 57 46 1 1 98.3
(90.9, 99.7)

97.9
(88.9, 99.6)

98.3
(90.9, 99.7)

97.9
(88.9, 99.6)

98.1
(93.3, 99.5)

Per-aneurysm 67 46 2 2 97.1
(90.0, 99.2)

95.8
(86.0, 98.9)

97.1
(90.0, 99.2)

95.8
(86.0, 98.9)

96.6
(91.5, 98.7)

 < 3 mm 22 46 1 2 91.7
(74.2, 97.7)

97.9
(88.9, 99.6)

95.7
(79.0, 99.2)

95.8
(86.0, 98.9)

95.8
(88.3, 98.6)

 3–8 mm 34 46 0 0 100
(89.9, 100)

100
(92.3, 100)

100
(89.9, 100)

100
(92.3, 100)

100
(95.4, 100)

 > 8 mm 11 46 1 0 100
(74.1, 100)

97.9
(88.9, 99.6)

91.7
(64.6, 98.5)

100
(92.3, 100)

98.3
(90.9, 99.7)

 Anterior circulation 42 46 0 1 97.7
(87.9, 99.6)

100
(92.3, 100)

100
(91.6, 100)

97.9
(88.9, 99.6)

98.9
(93.9, 99.8)

 Posterior circulation 25 46 2 1 96.2
(81.1, 99.3)

95.8
(86.0, 98.9)

92.6
(76.6, 97.9)

97.9
(88.9, 99.6)

95.9
(88.8, 98.6)

Table 4.  Aneurysm detection with DE-CTA with DSA as reference standard. Data are presented as 
mean ±  SD. TP =  true positive; TN =  true negative; FP =  false positive; FN =  false negative; PPV =  positive 
predictive value; NPV =  negative predictive value.

Figure 3. A 55-year-old women with a giant aneurysm in left posterior communicating artery. (a) Volume-
rendered dual-energy CTA image shows a true-positive aneurysm (arrow) in the posterior communicating 
artery, which was confirmed by 3D-DSA (b).

Protocols TNCT DE-CTA TNCT+DE-CTA P value

CTDIvol (mGy) 45.2 ±  2.0 14.6 ±  1.4 59.8 ±  2.4 < 0.01

DLP (mGy*cm) 726.9 ±  45.0 238.5 ±  29.9 965.4 ±  67.5 < 0.01

ED (mSv) 1.5 ±  0.1 0.5 ±  0.1 2.0 ±  0.1 < 0.01

Table 5.  Radiation dose comparison between the two different CT protocols. Data are presented as 
mean ±  SD. TNCT =  true non-enhanced CT: DECT =  dual-energy CT; CTDIvol =  Volume CT dose index; 
DLP =  dose-length product; ED =  Effective dose.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:26704 | DOI: 10.1038/srep26704

statistical difference of image quality between DE-CTA and digital subtraction CTA. The sensitivity and specific-
ity of aneurysm detection were 95.0–95.7% and 95–100% on a per-aneurysm basis with DSA as reference stand-
ard. DE-CTA reduced the radiation dose by approximately 60% compared to digital subtraction CTA.

The results of our study were similar to the previous studies in aneurysms detection by DE-CTA10,23,24. Our 
study demonstrated high sensitivity and specificity for intracranial aneurysms detection by DE-CTA when com-
pared with DSA in a relatively large patient population. Furthermore, our study first gave an accurate diagnostic 
accuracy in smaller aneurysm (< 3 mm) detection by DE-CTA, as the smaller aneurysms involved in the pre-
vious studies were all less than 10 cases20,23,24. For neuroradiologists, smaller intracranial aneurysm has always 
presented particular technical challenges. The diagnostic accuracy of smaller intracranial aneurysms detection 
was controversial for either MR angiography or CT angiography19,25–27. In our study, the 2 false-negative aneu-
rysms were all smaller than 2 mm in diameter. The sensitivity and specificity for detecting smaller aneurysms 
were 91.7% and 97.9%, respectively. This result demonstrated that the diagnostic accuracy of smaller aneurysm 
detection by DE-CTA was comparable to digital subtraction CTA, which was based on a large patient size19,28. 
Besides, aneurysms located in vessels adjacent to skull base were easier to be missed by conventional CTA due to 
its limited bone removal technique. DE-CTA was reported superior to conventional CTA in detecting aneurysm 
adjacent to skull base20. This was convinced in our study as DE-CTA detected all the skull base aneurysms against 
DSA reference standard. One missed small aneurysm (< 2 mm) in our study was located in anterior superior cer-
ebellar artery. This reminded us that small aneurysms in uncommon locations were extremely easy to be missed.

The reconstruction of VNCT image is based on material quantification by dual-energy CT, which removes 
the iodine component from enhanced CT images29. This application is desirable in the CT evaluation of various 
clinical settings such as kidney, liver, and pulmonary diseases11,13,30. Conventional non-enhanced CT and MR 
imaging both have limitations in hemorrhage detection, as they can not differentiate hemorrhage from contrast 
medium. It makes VNCT a promising application in intracranial hemorrhage detection12,31. Ferda et al.12 first 
evaluated the VNCT technique in screening the intracranial hemorrhage. Their results stated that the image 
quality was found to be sufficient in 96% (12/13) VNCT images, and the intracranial bleeding detection accuracy 
was 96% in per-lesion basis and 100% in per-patient basis. However, the patient size of their study was limited, 
and no negative cases might cause an overestimation of the sensitivity. A recent study32 evaluated the ability of 
VNCT in diagnosing subarachnoid hemorrhage in 84 patients. Comparisons between VNCT and TNCT in this 
study showed no difference in subarachnoid hemorrhage detection at both “individual level” (i.e., based on the 
CT scan as whole for a given patient) and “lesion level” (i.e., on the basis of 4 different bleeding regions on the CT 
scan). The CTDIvol was reported to reduce significantly when TNCT was omitted. There were still 3 patients with 
subarachnoid hemorrhage missed by VNCT, which were attributed to small size of bleeding sites, low number of 
hemorrhage focus, higher image noise, and long examination interval. Brisman33 stated that despite high sensi-
tivity and specificity of VNCT, the missed diagnosis of even one aneurysm could lead to a significant possibility 
of neurologic devastation, which might outweigh any potential benefit from radiation spared. Furthermore, he 
stated that etiology diagnosis was secondarily to hemorrhage diagnosis, because the management of hemorrhage 
was less controversial. Thus, obtaining CTA first upended the workflow.

In the clinical setting, the etiology of subarachnoid hemorrhage will be further investigated with CTA or DSA 
if non-enhanced CT demonstrated fatal subarachnoid hemorrhage. It was the etiology of vascular lesions that 
determined the treatment planning of subarachnoid hemorrhage and preventative methods of rebleeding. For 
example, microaneurysm in the posterior inferior cerebellar artery was difficult to detect because of the tortuous 
arteries and various branches. Its diagnosis relied on the consistency of suspected lesions and bleeding focus. 
When there were no signs of subarachnoid hemorrhage, CTA was the most important modality to work-up a 
potential aneurysm in posterior inferior cerebellar artery. Hence, DE-CTA, as a one-stop-shop tool, should be 
the first-choice technique to screen subarachnoid hemorrhage together with aneurysms. The results of our study 
demonstrated that the high sensitivity, specificity and image quality of VNCT image made it a promising tool to 
replace TNCT, although there did exist some limitations of VNCT images such as the lower CT attenuation of 
hematomas and the suboptimal image delineation of small lesions, which affected the diagnosis of small hemor-
rhage locus. In our study, 2 of the missed bleeding focus were located in ventricle, combining with subarachnoid 
bleeding. However, the aneurysms of the 2 patients were all detected by DE-CTA, which were confirmed by 
DSA and surgery. Besides, there was no hemorrhage focus in TNCT of the 2 false negative cases of aneurysms 
detection, in which the aneurysms were smaller than 2 mm in diameter. Our results demonstrated that DE-CTA 
could be the first choice to evaluate suspected aneurysmal subarachnoid hemorrhage by simultaneously provid-
ing VNCT and DE-CTA images in a single phase contrast-enhanced CTA in dual-energy mode scanning.

Our study had some limitations. First, we did not compare the image quality and diagnostic accuracy of intrac-
ranial aneurysms detection between DE-CTA and conventional digital subtraction CTA. The previous investiga-
tors23 obtained the conventional CTA images by average weighted 120 kVp images reconstructed from DE-CTA 
and post-processing opportunities for digital subtraction CTA images. However, we think it was not ideal for this 
comparison between subtraction CTA from the average weighted 120 kVp images and non-enhanced CT images 
and DE-CTA. On the other hand, we thought it was unethical to persuade the patients to undergo additional CTA 
scanning, while some bias might be introduced if we set a conventional CTA group as reference. Second, the true 
radiation doses of conventional digital subtraction CTA examinations were not reported in our study because we 
did not set a conventional CTA group. In our study, we added up the CTDIvol of TNCT and contrast-enhanced 
dual-energy CT scan and took the sum as CTDIvol of conventional CTA. Our result of radiation dose reduction 
was consistent with that of the previous study24. However, the actual radiation dose value of dual-energy CT and 
conventional enhanced CT was not in full agreement. Third, the patient size of our study limited the generaliza-
tion of our results. In our study, the aneurysmal subarachnoid hemorrhage accounted for a large percentage of 
hemorrhage, while hemorrhage caused by other cerebral vascular events such as vascular malformations were too 
little. So we could not conclude whether the high diagnostic accuracy could be kept if this new imaging protocol 
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by combining VNCT with DE-CTA was applied in other cerebral vascular abnormalities. So a larger patient size 
is probably warranted to verify more applications of this new imaging protocol. Last, VNCT images visually 
showed a little higher image noise compared with TNCT and this might affect the diagnosis of microhemorrhage. 
However, there was no significant difference in detecting SAH between the two protocols in our study.

In conclusion, at significant radiation dose reducing and time saving, our study suggests a useful contribution 
of single phase contrast-enhanced DE-CTA for both the detection of hemorrhage with virtual non-enhanced 
CT and the detection of intracranial aneurysms with DE-CTA in the emergent setting. This is very implicated in 
critically ill patients with suspected aneurysmal subarachnoid hemorrhage because of simplified CT workflow, 
high diagnostic accuracy for detecting both intracranial hemorrhage and aneurysms, and substantial reduction 
of radiation dose.

Materials and Methods
Patients. Approved by the Medical Research Ethics Committee of Jinling Hospital, 105 consecutive patients 
(46 male and 59 female; mean age, 50 ±  13 [SD] years) were included in our study between April 2013 and August 
2015. Written informed consent was obtained from all patients or their legal guardian. Patients were enrolled 
in this study if they were clinically suspected subarachnoid hemorrhage or aneurysms, i.e., patients presented 
with severe headache, vomiting, or a lowered level of consciousness, or suspicion of intracranial aneurysm after 
medical examinations. Our study was carried out in accordance with the relevant guidelines. All patients should 
undergo both TNCT and DE-CTA within 3 days before DSA (conventional and/or 3D-DSA). Exclusion criteria 
for this study were history of prior reaction to iodinated contrast media, hemodynamic instability, renal insuffi-
ciency (i.e., creatinine level >  120 mol/L), and under the age of 18.

CT imaging. CT acquisition and image reconstruction. All CT examinations were performed in a 
second-generation dual-source CT scanner (Somatom Flash; Siemens Healthcare, Forchheim, Germany). First, 
a conventional non-enhanced CT covering the lower jaw to the vertex of the head was acquired using a routine 
automatic tube current modulation (Care Dose 4D) with the following parameters: tube potential 120 kVp, effec-
tive tube current 300 mA, pitch 0.6, rotation time 0.5 second, collimation 64 ×  2 ×  0.6 mm, and reconstruction 
slice thickness width 5 mm with a reconstruction increment of 5 mm. Then, CT angiography was performed 
in the dual-energy mode using 140 kVp tube voltage and 112 effective milliampere second for measurement 
system A and 80 kVp tube voltage and 224 effective milliampere second for measurement system B, respectively; 
0.33-second rotation time; 32 ×  2 ×  0.6 mm collimation; and a pitch of 0.7. For vessel enhancement, 60 mL iodi-
nated contrast medium (iopromide, Ultravist, 300 mg I/mL, Bayer Schering Pharma, Berlin, Germany) with sub-
sequent 40 mL of saline solution were injected into the antecubital vein at a flow of 4.0 mL/s. The scanning was 
begun 4 second after CT threshold value reached to 100 HU for triggering. The region of interest was placed in 
the internal carotid artery.

The 140 and 80 kVp images were reconstructed separately with a slice thickness of 0.75 mm at 0.5 mm incre-
ments using a Q30f kernel for a field of view of 180 mm. Sinogram affirmed iterative reconstruction (SAFIRE, 
Siemens) at strength level 3 was employed in all cases. The dual-energy images (140 and 80 kVp images) were 
loaded onto a workstation (Multi Modality Workplace; Siemens Medical Solutions, Erlangen, Germany). By using 
the brain hemorrhage virtual non-enhanced (VNC) application in default setting, iodine was subtracted from the 
enhanced CT image, resulting in a VNCT image. Consistent with TNCT images, the VNCT images were recon-
structed with 5 mm section thickness and 5 mm increment in the same window and level settings. Meanwhile, 
by using “head bone removal” application, bone removal CTA images were obtained. The dedicated software of 
Inspace (Multi Modality Workplace; Siemens Medical Solutions, Erlangen, Germany) was then used to reformat 
the three-dimensional images by volume rendering (VR), multiplanar reconstruction (MPR), and maximum 
intensity projection (MIP).

The volume CT dose index (CTDIvol, mGy) and dose-length product (DLP, mGy*cm) were recorded from the 
existing patient protocol. The effective radiation dose (ED, unit in mSv) was derived by multiplying DLP with the 
weighting value (κ ), a conversion factor for head CT imaging (κ  =  0.0021 mSv/mGy*cm).

CT image quality evaluation. Both VNCT and TNCT images were transferred to a dedicated workstation (Multi 
Modality Work Siemens). One radiologist (Q.Q.N. with 3 years experience in neuroradiology) performed all 
non-enhanced CT measurements independently. The CT attenuation values of hemorrhagic focus were measured 
using a user-defined circular region of interest (ROI) with an area of 0.1–0.2 cm2 in the largest slice of the lesion 
for each case. The radiologist prescribed three independent ROIs to mitigate partial volume effects and operator 
dependent measurements. ROIs of 1 cm2 were placed in the white matter to measure the attenuation values of 
the brain parenchyma, which was selected as background. Meanwhile, the standard deviation (SD) was selected 
as image noise. Signal-to-noise ratio (SNR) was calculated as SNRa =  CTnumberlesion/SD, while contrast-to-noise 
ratio (CNR) was calculated as CNRa =  (CTnumberlesion −  CTnumberparenchyma)/SD34.

All subjective image quality evaluation of non-enhanced CT and DE-CTA was performed in consensus by 
two radiologists (L.J.Z and C.X.T. with 15 and 8 years’ experience for interpretation in neuroradiology studies, 
respectively). The overall image quality of non-enhanced CT and DE-CTA was rated according to a 4-point 
scale (1 =  poor; 2 =  moderate; 3 =  good, 4 =  excellent), which in turn contained two parts respectively12,23,35. 
For non-enhanced CT (TNCT and VNCT), image graininess (1 =  marked unacceptable noise level; 2 =  average 
image noise; 3 =  below average noise; 4 =  absent perceivable noise) and image delineation (1 =  hardly visible 
lesion; 2 =  subtle but detectable lesion; 3 =  easily detectable; 4 =  excellent delineation or structures contours) were 
evaluated. For DE-CTA, quality of bone removal (1 =  large bone remnants; 2 =  partial bone remnants; 3 =  only 
tiny bone remnants; 4 =  no bone remnants evaluation of vasculatures) and depiction of vascular structures 
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(1 =  blurring of vascular structures; 2 =  moderate delineation of vascular structures; 3 =  more than moderate 
delineation of vascular structures; 4 =  perfect delineation of vascular structures) were evaluated.

Hemorrhage and intracranial aneurysm evaluation. The same two neuroradiologists performing the subjective 
image analysis independently evaluated the presence or absence of intracranial hemorrhage and aneurysms on 
two series of non-enhanced CT images and DE-CTA. In case of disagreement, another two experienced neurora-
diologists (Y.E.Z. and C.S.Z. both with 15 years of experience) were invited to reach the final diagnosis.

The presence of subarachnoid hemorrhage, intracerebral hematoma, ventricular hematoma and other hem-
orrhage focus such as epidural hematoma on both TNCT and VNCT images were recorded. The readers first 
evaluated the TNCT images followed by VNCT after 2 months.

Aneurysms were measured according to the diameters (< 3 mm, 3–8 mm, and > 8 mm) and recorded by loca-
tions (anterior circulation: anterior cerebral arteries, middle cerebral arteries, internal carotid arteries, and ante-
rior choroidal arteries; posterior circulation: vertebral and basilar arteries, posterior communicating arteries, 
posterior cerebral arteries, anterior superior cerebellar arteries, and posterior inferior cerebellar arteries).

DSA imaging. DSA was performed in all 105 patients involved using a biplane DSA unit with rotational 
capabilities by femoral catheterization (AXIOM Artis dTA; Siemens Medical Systems, Forchheim, Germany). 
Before removing the catheter in target vessel(s) with confirmed or suspected aneurysm(s), a single 3D-DSA 
acquisition was obtained. Then the angiographic data were transferred to an adjacent 3D workstation (Siemens) 
for reconstruction of 3D-DSA images. All the angiographies, aneurysms detection, and aneurysms measurement 
were performed by a group of highly experienced interventional neuroradiologists (non-authors, with more than 
10 years of neuroangiographic experience).

Statistical analysis
Statistical evaluation was performed using SPSS software (SPSS, version 16, SPSS Inc., Chicago, IL, USA). 
Continuous variables were expressed as mean ±  SD and categorical variables were expressed as frequencies or 
percentages. Paired t-test was used to compare mean attenuation, noise, SNR and CNR of TNCT and VNCT 
images. Kappa analysis was used to evaluate the inter-reader agreement for assessing the image quality. Strength 
of consistency based on the κ  value was interpreted as follows: < 0.2, poor; 0.21–0.40, fair; 0.61–0.80, good; 0.81–
1.00, excellent. The Wilcoxon test was used to compare the scores of qualitative grading between the two series 
non-enhanced CT images. With TNCT and DSA used as reference standard for detection of intracranial hemor-
rhage and aneurysms, respectively, the sensitivity, specificity, positive predictive value (PPV), negative predictive 
value (NPV), accuracy and the corresponding 95% confidence interval (CI) were calculated on a per-patient, 
per-lesion, and per-aneurysm basis. The ability of VNCT and DE-CTA to detect intracranial hemorrhage focus 
and aneurysms were compared using the McNemar test. P <  0.05 was considered to indicate a statistically  
significant difference.
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