Clinical Neuroradiology (2025) 35:521-532
https://doi.org/10.1007/s00062-025-01507-6

ORIGINAL ARTICLE

®

Check for
updates

Evaluation of CT and MRI Radiomics for an Early Assessment of Diffuse
Axonal Injury in Patients with Traumatic Brain Injury Compared to
Conventional Radiological Diagnosis

Anna-Katharina Mei3ner' (® - Robin Gutsche? - Lenhard Pennig? - Christian Nelles? - Enrico Budzejko* -
Christina Hamisch'# . Martin Kocher?> - Marc Schlamann? - Roland Goldbrunner’ - Stefan Grau* -
Philipp Lohmann2¢

Received: 8 November 2024 / Accepted: 8 February 2025 / Published online: 7 March 2025
© The Author(s) 2025

Abstract

Background De- and acceleration traumata can cause diffuse axonal injury (DAI) in patients with traumatic brain injury
(TBI). The diagnosis of DAI on CT is challenging due to the lack of structural abnormalities. Radiomics, a method from
the field of artificial intelligence (AI) offers the opportunity to extract additional information from imaging data. The
purpose of this work was the evaluation of the feasibility of radiomics for an improved diagnosis of DAI in comparison to
conventional radiological image assessment.

Methods CT and MR imaging was performed in 42 patients suspicious of DAI due to the clinical state, and two
control groups (n=44;42). DAI was diagnosed by experienced neuroradiologists. Radiomics features were extracted using
a standardized MRI-based atlas of the predilection areas for DAI. Different MRI and CT based models were trained and
validated by five-fold cross validation. Diagnostic performance was compared to the reading of two experienced radiologists
and further validated in an external test dataset.

Results The MRI and CT models showed significant differences in radiomics features between patients with DAI and
controls. The developed MRI based random forest classifier yielded an accuracy of 80-90%. The best performing CT
model yielded an accuracy of 88% in the training data and 70% in the external test data. The results were comparable to
conventional image analysis which achieved an accuracy of 70-81% for CT-based diagnosis.

Conclusion MRI- and CT-based radiomics analysis is feasible for the assessment of DAI. The radiomics classifier achieved
equivalent performance rates as visual radiological image diagnosis. Especially a radiomics based CT classifier can be of
clinical value as a screening and Al-based decision support tool for patients with TBIL.
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Introduction

Traumatic brain injury (TBI) is one of the main causes of
death and morbidity, especially in young adults, but also
in the growing elderly population. Worldwide more than
50 million TBIs per year are reported, illustrating that TBI
remains one of today’s main medical and socioeconom-
ical challenges [1-3]. De- and acceleration traumata can
cause shearing of the white matter tracts and result in dif-
fuse axonal injury (DAI) in up to 40-75% of patients with
mild to severe TBI [4-6]. These axonal injuries typically
occur in certain predilection areas as the brain stem, tha-
lamus, corpus callosum and corona radiata and seem to be
one of the most common and important features in TBI
[4, 5, 7]. Patients with DAI often present with immediate
onset coma and tend to have an increased risk for long-
term morbidity, neuropsychological deficits, and the devel-
opment of neurodegenerative diseases [7-9]. The standard
diagnostic procedure in the acute phase of TBI is a cranial
computed tomography (CT) scan. Minor imaging findings
as micro bleedings and diffuse brain edema can be rated

Fig.1 CT scan (a+b) and MRI (c DWI, d SWI) of a patient with DAI
at different levels in axial view. As the CT lacks distinct structural ab-
normalities, MRI sequences show a higher sensitivity with typical mi-
cro bleedings (black arrow) and diffusion impairment (white arrow) in
the predilection areas for DAI. DAI Diffuse axonal injury, DWI Diffu-
sion-weighted MRI, SWI Susceptibility-weighted MRI
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as indirect signs for DAIL. But due to the lack of distinct
structural abnormalities, the diagnosis of DAI on CT is
challenging [10-12] (see Fig. 1). To overcome this limita-
tion, in cases with clinically suspected DAI, MR imaging
is necessary. Diffusion (DWI)—and susceptibility-weighted
(SWI)—sequences seem to be particularly valuable to de-
tect white matter injuries [10, 13]. Nevertheless, MRI is
time consuming and cost expensive and not always suitable
for instable ICU patients. Therefore, DAI remains under-
diagnosed and the development of sensitive methods for an
early and reliable CT-based diagnosis are of high clinical
value.

Radiomics is a method from the field of artificial intelli-
gence aiming at the extraction of quantitative features from
routinely acquired imaging data, not accessible by conven-
tional image analysis [14, 15]. Especially in combination
with clinical parameters, radiomics can be used to develop
mathematical models to support clinical decision-making
[16-18]. Up to now, in the field of neurology and neuro-
surgery, radiomics is mainly used addressing neuroonco-
logical questions. Applications for TBI and especially DAI
are rare.

In a study from Hollie et al., MRI based texture anal-
ysis, as a type of basic radiomics, was feasible to detect
significant structural differences between the hemispheres
in patients with mild TBI in comparison to healthy con-
trols [19, 20]. With radiomics analysis of diffusion-kurtosis
imaging (DKI), statistically significant feature differences
were observed between patients with DAI and healthy con-
trols [21]. These previous studies extracted limited features
from small regions of interest and further validation of the
results in comparison to conventional image analysis and in
an independent test dataset is lacking. Up to now, there is no
data available on CT-based radiomics analysis in patients
with DAL

Here, we evaluated the potential of MRI radiomics as
a proof-of-concept study for the diagnosis of DAI in pa-
tients with severe TBI. We then transferred the concept to
consecutively evaluate the potential of CT radiomics for
this task. The validity and performance of the developed
models were evaluated in comparison to experienced radi-
ologists and the CT model was furthermore tested in an
independent data set from a second institution.

Patients and Methods
Ethics Statement
The present study was conducted according to the guide-

lines of the Declaration of Helsinki, and the retrospective
analysis of data was approved by the Ethics Committees of
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the University Hospital Cologne, Germany (approval num-
ber 21-1344).

Patients and Controls

From 2011 to 2023, we retrospectively identified patients
with clinically suspected DAI which was confirmed on MRI
from the Neurosurgical Centers of the University Hospital
Cologne and Hospital Fulda, Germany. MR imaging re-
ports were used as ground truth. Patients received a CT
scan on the point of admission and follow-up MRI includ-
ing DWI after trauma. Exclusion criteria were according to
the Marshall score [22] (i) large intraparenchymal hema-
toma >25cm? (ii) major traumatic subarachnoid bleeding
and (iii) midline shift >5mm in the CT scan at admission.
Clinical data were retrieved from an electronic database
and patients’ paper charts. We recorded gender, age, GCS
(severity of TBI), loss of consciousness and pupillary de-
fect at the point of admission. Two control groups (one
for CT and one for MRI) without previous history of TBI
and regular imaging including the required MRI sequences
were retrospectively identified from the hospital imaging
data bases.

MR Imaging

MR imaging procedures for diagnosis of DAI at both neu-
rosurgical centers comprised T2-weighted sequences, fluid
attenuated inversion recovery (FLAIR) imaging, DWI and
SWI or T2* sequences. At the university hospital cologne,
sequences for further analysis were performed at 3T (Inge-
nia, Philips Healthcare, Best, The Netherlands) with follow-
ing parameters: DWI: single-shot, spin echo planar imag-
ing with 30 slices with a thickness of 5mm and an incre-
ment of 0.5mm (TR 3330 msec, TE 76 msec, flip angle 90°,
acquisition matrix 168x111), obtaining baseline images
(b=0sec/mm?) and images with enabled diffusion gradient
along each of 3 orthogonal directions (b= 1000sec/mm?).
Diffusion trace maps were computed from the isotropic dif-
fusion image and were used to estimate the apparent diffu-
sion coefficient. The parameters for SWI were: 3D sequence
with 263 slices with a thickness of 0.6mm and an incre-
ment of 0.6mm (TR 44.76 msec, TE 24.38 msec, flip angle
10°, acquisition matrix 224 x223) and the parameters for
FLAIR were: 3D sequence with 308 slices with a thickness
of 1.12mm and an increment of 1 mm (TR 4800 msec, TE
340msec, TI 1650 msec, flip angle 90°, acquisition matrix
224 %x223).

At the hospital Fulda, sequences for further analysis were
performed at 3T (Ingenia, Philips Healthcare, Best, The
Netherlands) with following parameters: DWI: single-shot,
spin echo planar imaging with 35 slices with a thickness
of 4mm and an increment of 0.4 mm (TR 3946 msec, TE

71 msec, flip angle 90°, acquisition matrix 152x 122), ob-
taining baseline images (b=0sec/mm2) and images with
enabled diffusion gradient along each of 3 orthogonal direc-
tions (b=1000sec/mm?2). Diffusion trace maps were com-
puted from the isotropic diffusion image and were used to
estimate the apparent diffusion coefficient. The parameters
for venous BOLD were: 3D sequence with 250 slices with
an increment of —0.5mm (TR 21 msec, TE 27 msec, flip an-
gle 10°, acquisition matrix 220 x 181) and the parameters of
the FLAIR were: 3D sequence with 350 slices with a thick-
ness of 1.12mm and an increment of 0mm (TR 4880 msec,
TE 280msec, TI 1650 msec, angle 40°, acquisition matrix
224 x224).

CT Imaging

CT images at the University Hospital Cologne were ac-
quired using a 256 slice helical CT scanner (Brilliance iCT
256, Philips Healthcare, Best, The Netherlands) with fol-
lowing parameters: tube voltage 120kVp, tube current-time
product 320 mAs, pitch factor 0.4, rotation time 0.4 sec, col-
limation 40x0.625mm, slice thickness 1 mm, increment
0.5mm, matrix 512x512 and CTDI,, 44.2mGy. Images
were reconstructed using an iterative reconstruction algo-
rithm (iDose, kernel UB, Philips Healthcare).

CT images at the Hospital Fulda were acquired using
a 128 slice helical CT scanner (Siemens Somatom Defi-
nition EDGE 128) with following parameters: tube volt-
age 120kVp, tube current-time product 209-330 mAs, pitch
factor 0.55, rotation time 1 sec, collimation 128 x 0.66 mm,
slice thickness 1 mm, increment 1 mm, matrix 256 x 256 and
CTDi vol 29.65-55.12mGy. Images were reconstructed us-
ing a maximum intensity projection.

Standardized Brain Atlas for Predilection Areas of
DAl

To define the target volume for radiomics feature extrac-
tion a standardized anatomical MRI atlas of the predilec-
tion areas for shearing injuries was developed using the
open-source image analysis software ITK SNAP version 3.6
(http://www.itksnap.org/) [23]. Anatomical structures were
manually outlined on a standardized MRI template (T1-
weighted sequence, 1 mm slice thickness, MNI152 (Mon-
treal Neurological Institute)) [24, 25]. The atlas comprised
the following regions of interest (ROIs): brain stem divided
in mesencephalon, pons and medulla oblongata, thalamus,
basal ganglia, corpus callosum divided in rostrum, genus,
corpus and splenium, circular regions of interest (1cm di-
ameter) at white/matter gray matter junctions in the frontal,
temporal, parietal and occipital lobe (see Fig. 2).
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Fig.2 Workflow for development of the radiomics classifier

Image Preprocessing

Image preprocessing for MRI (DWI sequences) and CT
was performed using the FSL toolbox version 5.0 (FMRIB
Software Library, http://www.fmrib.ox.ac.uk/fsl) [25] the
MIC-DKFZ HD-BET brain extraction tool (https://github.
com/MIC-DKFZ/HD-BET) [16], the Advanced Normal-
ization Tools ANTS version 2.1 (http://stnava.github.io/
ANTSs) [26], following the conversion of all images to NifTI
format (dcm2niix, https://github.com/rordenlab/dcm?2niix)
[28]. After brain extraction using HD-BET, a nonpara-
metric normalization algorithm for the removal of low
frequency intensity nonuniformities (bias field) was per-
formed using N4ITK [29]. MR image intensities were
Z-score normalized according to current recommendations
[30]. All images were resampled to an isotropic voxel
size of 1x1x1mm? and warped to the MNI space using
the software PMOD (version 4.2) (PMOD Technologies
Ltd Zurich, Switzerland; www.pmod.com). Afterwards, the
atlas was applied for the definition of ROIs for further
analysis.

Radiomics Feature Extraction
Three basic group of mathematically predefined radiomics

features were extracted from the ROIs in the DWI and CT
scans of patients and controls using the open source pack-
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age PyRadiomics (version 3.0.1) in Python [31], including
26 shape, 18 histogram and 75 textural features. Features
were extracted on the original images as well as filtered ver-
sions of the images after wavelet transformation and Lapla-
cian-of-Gaussian filtering, resulting in a total number of
1328 features per scan. Shape features such as volume and
maximum diameter represent geometric relations in a ROI
[16]. Histogram features such as entropy and kurtosis de-
scribe the distribution of individual pixel or voxel intensity
values within the segmented ROI, without considering their
spatial orientation and relationship [16, 17]. In contrast,
textural features represent statistical relationships between
intensity levels of neighboring pixels or voxels or groups
of pixels or voxels, which are computed from descriptive
matrices that already encode specific spatial relations be-
tween pixels or voxels in the original images such as the
gray-level co-occurrence matrix (GLCM) [16, 26].

Feature Repeatability

As described previously [27, 28], a test-retest analysis was
performed to avoid the use of non-robust radiomics fea-
tures. For this purpose, augmented versions of the original
images were generated using the image perturbation method
chain translation, noise, and volume adoption [29, 30]. Re-
peatability between radiomics features from the original and
augmented images were evaluated by the intraclass correla-
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tion coefficient (ICC). Features were considered repeatable
if the lower and upper limits of the ICC 95% confidence
interval were in the range of 0.91 to 1.00 and selected for
further analysis.

Feature Selection and Standardization

After performing repeatability analysis, features were se-
lected based on their importance. In random forest mod-
eling, feature importances are calculated as the mean and
standard deviation of the accumulation of impurity decrease
within each tree (for ref, see [31]). We fitted the random
forest model to the repeatable features of the training set
from the University Hospital Cologne, prior dividing it into
training and validation sets in a 70/30 ratio. Subsequently,
the most important features were selected based on their
significance for classification in the validation set.

Finally, radiomics features were standardized by sub-
tracting the mean and dividing by the standard deviation.
In MRI and CT based models, mean and standard devi-
ation were based on the training set (University Hospital
Cologne).

Model Training and Testing

At first, for the proof-of-concept study, MRI based random
forest models for the different ROIs were generated using
the data set and DWI sequences from the University Hos-
pital Cologne. Five-fold stratified cross validation (training
and validation set in a 70/30 split ratio) was performed to
evaluate the performance of the selected most important
features and model in MRI. No test dataset was used for
the MRI model as the MRI study was designed as proof-
of-concept study to facilitate further CT analysis.

The concept was subsequently transferred to CT imaging
and independent random forest models were trained using
the CT dataset from the University Hospital Cologne. The
training performance was also evaluated by five-fold strat-
ified cross validation. Finally, the CT model was retrained
on the complete training data set and then one time applied
to the external CT test data set (Hospital Fulda). Impor-
tantly, the final model testing was performed blinded for
the diagnosis of DAI, and the diagnostic performance of
the classifier was assessed fully independent from the re-
searchers involved in model development. The radiomics
workflow is presented in Fig. 2. All processing steps were
implemented in Python (sklearn, version 0.24.1).

Visual Image Analysis
All included MRI (all sequences) and CT scans from pa-

tients and controls were retrospectively diagnosed for DAI
by two experienced board-certified radiologists with at least

6 years of experience using a DICOM viewing platform
(IMPAX, AGFA Health Care) blinded for clinical param-
eters and previous radiology reports. CT and MRI images
were reviewed independently. The raters classified the im-
ages using a dichotomous categorization (DAI yes or no).

Statistical Analysis

Descriptive statistics are provided as mean and standard de-
viation or median and range. The diagnostic performance of
each classifier was evaluated by receiver operating charac-
teristics analysis. To avoid experimental bias, the statistical
analysis of the test dataset was performed by a researcher
not involved in the model generation. Significant differ-
ences between features were tested using the two-tailed
Student’s t-test, with previous confirmation of a normal
distribution by the Shapiro-Wilk test. For neuroradiological
assessment diagnostic accuracy was calculated. Interrater
reliability was assessed using Cohens Kappa. P-values of
0.05 or less were considered statistically significant. Sta-
tistical analyses were implemented in Python (Pingouin,
version 0.3.9) [32] and IBM SPSS Statistics, version 29.

Results
Clinical Characteristics of Patients and Controls

A total of 47 patients (training dataset MRI and CT: 42;
test dataset CT: 5) and 91 controls (MRI control group:
44; CT control group: training dataset: 42, test dataset: 5)
from two major neurosurgical centers were retrospectively
included in the study. 72% of patients presented with severe
TBI (GCS< 8) and loss of consciousness in 81% of cases.
Clinically suspected DAI was confirmed in all patients by
multimodal MRI assessment by experienced neuroradiolo-
gists.

For MRI analysis, 42 patients (mean age, 33+ 15; age
range, 14-68; 11 females, 31 males) and 44 controls (mean
age, 33+ 15; age range, 14-81; 24 females, 20 males) from
the Department of General Neurosurgery of the University
Hospital of Cologne, Germany were included as training
dataset.

For CT analysis, 39 patients from two neurosurgical
centers were available. The training dataset comprised of
34 patients (mean age, 33+ 15; age range, 14-68; 9 females,
25 males) and 42 controls (mean age, 58+ 18; age range,
22-80; 26 females, 16 males) from the University Hospital
of Cologne, Germany (8 patients from the total dataset had
to be excluded due to insufficient accuracy of matching to
the MNI space). As test dataset 5 patients (mean age, 30+
17; age range, 16-52; 1 female, 4 males) and 5 controls
(mean age, 54+ 19; age range, 30-81; 2 females, 3 males)
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Table 1 Patient and control characteristics

Training Set—Cologne

Test Set—Fulda

Patients Controls Patients Controls
Imaging MRI CT MRI CT MRI+CT CT
(n=42) (n=34) (n=44) (n=42) (n=5) (n=5)
Sex (female/male) 11/31 9/25 24/20 26/16 1/4 2/3
Age in years 33+ 15 33+ 15 3315 58+ 18 3017 54+19
(mean= SD (range)) (14-68) (14-68) (14-81) (22-80) (16-59) (30-81)
Severity of TBI
Grade 1 (GCS 13-15) - - 1 -
Grade 2 (GCS 9-12) - - 0 -
Grade 3 (GCS<8) 30 26 - - 4 -
Initial unconsciousness 33/5/4 26/4/4 - - 5/0/0 -
(yes/no/n.a.)
Initial pupillary defect 10/31/1 9/25 - - 0/5/0 -

(yes/no/n.a.)

Table 2 Results of the visualimage classification for MRI and CT by two experienced radiologists and the best performing radiomics classifiers of

one anatomic region for each modality and dataset

Radiologist 1 Radiologist 2 Radiomics Classifier

Correct Incorrect Correct Incorrect Correct Incorrect
MRI analysis
Training + Validation set Validation
— Patients with DAI 41 1 41 1 set 13 0
— Controls 44 0 44 0 iil"l;’; an 12 1
— Total 85 1 85 0 classifier) 25 1
Accuracy (%) 98 N/A 98 N/A 96 N/A
Concordance (k) 1.0 N/A 1.0 N/A - N/A
CT analysis
Training + Validation set Validation
— Patients with DAI 19 14 20 13 set 10
— Controls 42 0 42 0 g:s“sll;%’ 10
— Total 61 14 62 13 20 3
Accuracy (%) 81 N/A 83 N/A 87 N/A
Concordance (k) 0.55 N/A 0.55 N/A - N/A
Test set Test set
— Patients with DAT 4 1 4 1 (Corpus 3 2
— Controls callo;um 4

classifier)

— Total 7 3 8 2 7 3
Accuracy (%) 70 N/A 80 N/A 70 N/A
Concordance (k) 0.8 N/A 0.8 N/A - N/A
N/A not applicable

from the Hospital Fulda, Germany were included. The mean
time interval between the CT scan and MRI in the dataset
from University Hospital Cologne was 23 +59 days (range,
0-317). Patient and control characteristics are summarized
in Table 1.

@ Springer

Classification Results—MRI Model

We compared six different MRI based models to predict
DALI in patients with TBI representing the different ROIs
of the atlas for predilection areas. The most significant dif-
ferences in radiomics features for DAI between patients
and controls using DWI were found in the ROIs of corpus
callosum, thalamus and basal ganglia.
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Fig. 3 a Classification results of the MRI-based models in the training
dataset. The best results were achieved using a random forest model.
The classifier yielded an area under the receiver operating character-
istic curve (AUC) of 0.77 to 0.91 for the different regions of inter-
est. b Classification results of the CT-based models in the training
dataset. The best performance was achieved for the ROIs of brain stem
(AUC 0.9), thalamus (AUC 0.85) and basal ganglia (AUC 0.85)

The best classification results were achieved using a ran-
dom forest classifier yielding mean receiver operating char-
acteristic curves (AUC) of 0.92 for the corpus callosum us-

Table 3 Results of the MRI radiomics classifier in the training dataset

ing 5 features (entropy, kurtosis, maximum, gray-level co-
occurrence matrix (GLCM) autocorrelation, GLCM inverse
difference moment normalized), 0.81 for the thalamus us-
ing 3 features (kurtosis, median, GLCM cluster shade) and
0.77 for the basal ganglia using 2 features (GLCM inverse
difference moment normalized, 90th percentile) in the train-
ing set (see Fig. 3a). The different classifiers achieved an
accuracy of 80-90% (see Table 2).

Classification Results—CT Model

The most significant CT radiomics features between pa-
tients and controls were found in the ROIs of brain stem,
thalamus, and basal ganglia. In the training set, the random
forest model yielded a mean AUC of 0.90, 0.85 and 0.85
with an accuracy of 84%, 88% and 83% for the prediction
of DAI in these areas, respectively (see Fig. 3b and Table 2).
In the blinded external test data, the classifier achieved the
best result for the ROI of corpus callosum with an AUC of
0.68 (accuracy 70%, sensitivity 60%, specificity 80%) (see
Tables 3 and 4). The other ROIs showed lower classification
performance (thalamus: AUC 0.52, ACC 40%; brain stem
AUC 0.48, ACC 40%; basal ganglia AUC 0.6, ACC 60%)
(see Tables 3 and 4). A combination of different anatomical
regions and classifiers did not further improve the overall
predictive performance.

Classification Results—conventional Radiological
Diagnosis

By visual radiological classification, 41 of 42 patients and
all controls were classified correctly In the MRI training set
with a high diagnostic accuracy of 98% and high interrater
reliability (Cohens kappa, 1.0). In contrast, CT-based anal-
ysis by the two raters achieved a lower overall accuracy of
81 and 83% (Cohens kappa, 0.55), comparable to the re-
sults of the radiomics classifier. All controls were correctly
classified. Nevertheless, 14 of 33 (42%) and 13 of 33 (39%)
of DAI patients were classified false negative, illustrating
the diagnostic challenges of visual CT analysis (see Ta-
bles 3 and 4). In the external test set a diagnostic accuracy

TRAINING SET (COLOGNE)

ROI Sen [%]* Spec [%]* Youden’s index Acc [%]* AUC*

Thalamus 83+6 78+6 0.61+0.12 81+4 0.80+0.05
Basal ganglia 60+6 100+0 0.60+0.06 80+3 0.77+0.03
Brainstem 89+ 15 897 0.78+0.16 89+11 0.88+0.08
Brainstem (without M.O.) 92+11 83+ 11 0.75+0.19 88+6 0.91+0.04
Corpus_callosum 83+8 97+7 0.80+0.11 90+5 0.88+0.04
ROIs 85+ 11 78+6 0.63+0.17 82+5 0.87+0.03

Sen Sensitivity; Spec Specificity; Acc Accuracy; AUC Area under the receiver operating characteristics curve

*Mean of 5-fold CVxSD
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Table 4 Results of the CT radiomics classifier in the training and test dataset

ROI Sen [%]* Spec [%]* Youden’s index Acc [%]* AUC*
TRAINING SET (COLOGNE)

Thalamus 84+11 91+6 0.75+0.17 88+6 0.85+0.07
Basal ganglia 82+4 85+5 0.67+0.09 83+2 0.85+0.05
Brainstem 76+9 8611 0.62+0.20 82+8 0.83+0.05
Brainstem (without M.O.) 88+ 11 82+7 0.70+0.18 84+2 0.90+0.02
Corpus_callosum 74+ 11 80+ 14 0.54+0.25 777 0.80+0.05
ROIs 78+ 13 78+ 14 0.56+0.17 78+5 0.79+0.04
TEST SET (FULDA)

Thalamus 20 60 - 40 0.52

Basal ganglia 100 20 0.2 60 0.6
Brainstem 20 60 - 40 0.32
Brainstem (without M.O.) 0 80 - 40 0.48
Corpus_callosum 60 80 0.4 70 0.68

ROIs 100 0 0 50 0.3

Sen Sensitivity; Spec Specificity; Acc Accuracy; AUC Area under the receiver operating characteristics curve

*Mean of 5-fold CV+SD

of 70, respective 80% was achieved by the two radiologists
with a good interrater reliability (Cohens kappa, 0.8) (see
Tables 3 and 4).

Discussion

In the present study, we showed that machine learning mod-
els based on radiomics features from MRI and CT can de-
tect structural differences in predilection areas of patients
with DAI compared to healthy controls. The developed ra-
diomics classifier achieved a diagnostic performance com-
parable to conventional image diagnosis by two board-cer-
tified radiologists for MRI and CT classification.

As CT usually only shows mild or no specific lesions
for DAI, we at first performed a proof-of-concept study to
evaluate the general potential of radiomics to assess DAI
using MRI, which is the current gold standard for diagnosis
and is known to display structural changes on DWI imaging.
We then transferred the concept to evaluate the potential
of radiomics using CT imaging, as especially a CT based
classifier would be of additional value in a routine clinical
setting.

For development of the MRI radiomics model, DWI as
standard sequence for DAI diagnosis was used. DWI de-
picts the diffusion along white matter tracts, which can be
interrupted due to shearing injuries, and is therefore known
to be more sensitive for DAI lesion detection compared to
structural MRI, especially in cases with non-hemorrhagic
lesions [13]. Besides DWI, MRI sequences with high sen-
sitivity for detection of microbleeds as, e.g., SWI is com-
monly used. As in our study the MRI radiomics model was
used for the proof-of concept with a focus on the develop-
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ment of a CT model, we did not include further MRI se-
quences. The extension of the MRI model with, e.g., SWI or
Diffusion-Tensor-Imaging (DTI) as a special type of DWI,
might further improve the model’s performance.

Up to now, in the literature no large studies of radiomics
analysis in patients with severe TBI or DAI have been con-
ducted and external testing of the developed models is lack-
ing. In a study by Danilov et al., radiomics analysis was
performed on DKI of 31 patients with DAI and statisti-
cal significant differences in radiomics features of patients
compared to controls were detected. Radiomics analyses
showed improved diagnostic results compared to simple
average DKI map values, supporting the high sensitivity
of radiomics for detection of microstructural changes [21].
Besides the application of radiomics for detection of DAI,
the performance was assessed in patients with mild TBI.
MRI based texture analysis, was feasible to detect signifi-
cant structural differences between the hemispheres in pa-
tients with mild TBI in comparison to healthy controls [19,
20]. Furthermore, using structural MRI and DTI in a series
of 91 athletes with a history of mild TBI and post-con-
cussion syndrome, with radiomics analysis the detection of
textural differences between patients and controls was pos-
sible with a high sensitivity of 0.8, even though the conven-
tional image analysis did not reveal any prominent findings,
highlighting the ability of radiomics to detect additional in-
formation. Especially the white matter radiomics features
indicating shearing injuries were strongly associated with
TBI [33]. These findings are in line with the results from
our study, although previous studies used DTI and DKI as
special types of diffusion-weighted imaging, which might
impede the comparison of the study results.
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The most significant differences and best classification
results were achieved in the typical white matter predilec-
tion areas of DAI as e.g. corpus callosum and brain stem.
In comparison, the results of the ROIs at the grey mat-
ter/white matter interfaces showed lower performance. As
shearing injuries might occur in all areas of the brain the
development of a whole brain radiomics model and feature
extraction without preselection might further improve our
promising results.

In TBI patients, CT-based machine learning models were
used to predict the intracranial pressure [34], for auto-
mated segmentation and volume assessment of intracranial
hematomas [35-39] and midline shift [36]. Furthermore,
using clinical and CT imaging data and machine learning
models, outcome prediction in patients with TBI was per-
formed with high diagnostic accuracy of up to 91% [40,
41]. Radiomics analyses were also used to predict the en-
largement of an intracranial hematoma in TBI over time.
In a study of Zhang et al., a CT-based radiomics model
combined with clinical features achieved a good perfor-
mance with an AUC of 0.90 [42]. In a comparable study of
Wei et al., a combined clinical radiomics model achieved
a high accuracy for hematoma progression prediction in
a test dataset with an AUC of 0.88 [43]. These promising
results indicate that CT radiomics seems to be generally
feasible in TBI patients with good results. To the best of
our knowledge, our study is the first to assess the use of CT
radiomics in DAI patients.

In our study, the results of the CT classifier were com-
pared to the reading of two board-certified radiologists and
furthermore tested in an external independent dataset. The
blinded analysis of the test dataset revealed a lower diag-
nostic accuracy of 40—70% compared to the training dataset
(accuracy, 77-88%). Nevertheless, the radiomics models’
performance in the ROI for corpus callosum was compa-
rable to the results of the conventional radiological CT as-
sessment with an overall accuracy of 75%. The other ROIs
did show lower accuracy and generally lower sensitivity for
DALI diagnosis. One explanation for the lower accuracy in
the test data might be the small size of the dataset due to the
low availability of cases with DAI patients with eligible full
datasets including high quality MRI and CT scans. Further-
more, the independent data set was acquired using different
scanners and imaging parameters which might have im-
paired the performance. As the model indeed showed com-
parable results to the reading of highly trained specialized
radiologists but no superior results, it must be considered
that the very subtle changes in the imaging of DAI patients
which complicate the visual analysis might also affect and
limit the performance of the radiomics classifier. Therefore,
the results of the developed CT classifier should be inter-
pretated with caution and need to be evaluated in a larger

test cohort to further assess the validity of CT radiomics for
DALI diagnosis.

The radiomics classifier achieved comparable results to
the experienced readers, but did not show superior perfor-
mance. This might be due to the very subtle changes in
imaging of DAI patients which might also affect the ra-
diomics classifiers performance. We also highly agree that
the small dataset might have impaired the classifiers per-
formance.

As up to 20% of CT studies in TBI patients are negative
without structural abnormalities [10, 44], conventional radi-
ological image assessment tends to underdiagnose DAI, as
was also shown in our study with up to 40% of DAI patients
classified as false negative. The developed CT based ra-
diomics model using routinely acquired imaging with good
diagnostic performance equivalent to the performance of
the radiologists might be used as potential screening tool
and Al-based decision support for visual image assessment
in TBI patients without the need for further invasive and
additional diagnostic procedures. Previous studies showed
that Al-based decision support might be especially valuable
for radiologists/clinicians in training with less experience to
support diagnosis and clinical decision making in challeng-
ing cases [45]. Further studies to assess the value of the CT
radiomics model as diagnostic support system, preferably
comparing the performance of different raters at different
levels of expertise with and without Al support are needed.
In addition, a CT based radiomics model or decision support
system might save resources and provide additional infor-
mation when no MRI is available or feasible in severely
traumatized ICU patient and especially in low- and middle-
income countries with a very high incidence of TBI [2, 46].

Besides the high incidence of DAI in cases with severe
TBI, structural changes in MRI of patients classified as
mild TBI with a higher risk to develop neuropsychological
deficits may also be observed in up to 20% of cases [44].
As these patients are usually classified as minor trauma
with unremarkable imaging, the treatment of neurocogni-
tive deficits might be delayed. Screening tools and prognos-
tic models for outcome prediction in these cases are rare.
CT radiomics analysis might identify patients at risk for the
development of further deficits which might lead to earlier
diagnosis and treatment. Further studies to evaluate CT ra-
diomics in patients with mild TBI are needed, preferably
with a correlation with clinical neuropsychological findings.

In patients with DAI shearing of the white matter tracts
leads to axonal degeneration and microscopic changes. Lon-
gitudinal MRI studies on DTI of the corpus callosum in DAI
patients were able to detect that imaging parameters show
changes over time, even up to 12 months after the injury
[47]. As structural damage of the brain develops and ag-
gravates over time [7, 8] a radiomics model based on the
initial CT scan in a short while after the trauma might still
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be wrong negative. Nevertheless, as patients tend to present
with immediate neurological deficits, the instant impact of
the trauma might lead to early changes detected by sensitive
radiomics analysis. One option to encounter that problem
and gain better insight in imaging parameters in DAI pa-
tients, might be the analysis of multiple CT scans over time
to detect potential longitudinal changes in the radiomics
features.

One limitation of our study is the rather small test dataset
and limited number of patients included in the training pro-
cess. High-quality MRI including SWI and DWI as gold
standard for diagnosis of DAI is not always feasible in
severely traumatized ICU patients. Therefore, the available
training and test dataset comprising patients with eligible
CT and MRI imaging for our study are rather small and the
results, especially in the test dataset, should be interpreted
with caution and further validated in a larger patient cohort.

Another limitation impeding the comparability of the pa-
tient and control group is an observed imbalance regarding
sex in the two cohorts. This imbalance might have occurred
due to the higher incidence of TBI in male patients and due
to the limited availability of eligible patients with complete
imaging datasets.

As TBI occurs in young patients, e.g., after accidents
but is also increasing in the elderly population we included
a wide age range in the study to represent this versatile
patient cohort. Nevertheless, this may also impair the inter-
pretability of our results.

Another challenge in the interpretation of the results of
radiomics analysis is the correlation of the detected imag-
ing features with pathological results and clinical biomark-
ers. The most important radiomics features detected in our
study such as the inverse difference moment of the GLCM
and GLCM cluster shade are measures of local homogene-
ity of an image. A significant difference of these features,
representing a difference in the local expression and coher-
ence of voxel intensities between the patient and control
group might be an indicator for subtle structural changes
due to DAI lesions that are not accessible by visual image
analysis. As radiomics analyses has the potential to capture
these differences and to provide additional information not
accessible by conventional image analysis, radiomics fea-
tures might help to gain a better insight in pathology of DAI
and might be used for individualization of trauma therapy
in the future. To enable a possible translation in clinical
practice, a better understanding of the biological meaning
of these features is crucial. Therefore, further prospective
studies correlating imaging features with clinical findings
and neurological outcome, preferably in a large dataset from
different scanners and institutions are needed.
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Conclusion

MRI and CT based radiomics analysis detects structural dif-
ferences of radiomics features in patients with DAI com-
pared to controls and offers the potential to support con-
ventional image analysis to improve the diagnosis of DAL
Especially a radiomics based CT classifier might be used as
a screening tool for patients with severe and mild TBI. To
enable a translation in clinical practice and further assess the
clinical value, larger prospective studies with multimodal
imaging preferably from different hospitals are needed.
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