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ABSTRACT

Motivation: Various approaches based on features extracted from pro-

tein sequences and often machine learning methods have been used in

the prediction of protein folds. Finding an efficient technique for inte-

grating these different protein features has received increasing atten-

tion. In particular, kernel methods are an interesting class of techniques

for integrating heterogeneous data. Various methods have been pro-

posed to fuse multiple kernels. Most techniques for multiple kernel

learning focus on learning a convex linear combination of base kernels.

In addition to the limitation of linear combinations, working with such

approaches could cause a loss of potentially useful information.

Results: We design several techniques to combine kernel matrices by

taking more involved, geometry inspired means of these matrices in-

stead of convex linear combinations. We consider various sequence-

based protein features including information extracted directly from

position-specific scoring matrices and local sequence alignment. We

evaluate our methods for classification on the SCOP PDB-40D bench-

mark dataset for protein fold recognition. The best overall accuracy on

the protein fold recognition test set obtained by our methods is

�86.7%. This is an improvement over the results of the best existing

approach. Moreover, our computational model has been developed

by incorporating the functional domain composition of proteins

through a hybridization model. It is observed that by using our pro-

posed hybridization model, the protein fold recognition accuracy is

further improved to 89.30%. Furthermore, we investigate the perform-

ance of our approach on the protein remote homology detection

problem by fusing multiple string kernels.

Availability and implementation: The MATLAB code used for our

proposed geometric kernel fusion frameworks are publicly available

at http://people.cs.kuleuven.be/*raf.vandebril/homepage/software/

geomean.php?menu¼5/

Contact: pooyapaydar@gmail.com or yves.moreau@esat.kuleuven.be

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Knowledge on functions of proteins can be provided by infor-
mation about their tertiary structure; hence, determining this

structure is among the most essential objectives in molecular
biology, cell biology, proteomics and bioinformatics. Structural

information also provides a much better understanding of

protein–protein interaction. Furthermore, this information is

potentially useful for drug design studies. Unfortunately, experi-

mentally identifying the 3D structure of proteins is expensive and

time-consuming. By contrast, recent development in genome

sequencing projects has tremendously increased the number of

protein coding sequences. Because there is much slower growth

in information on 3D structure, there is an increasing gap be-

tween the protein sequence information and protein structure

information. Despite these problems, knowledge about protein

folds can be useful in determining its structural properties.

Because of the limitation of homology modelling methods,

when there is no sequence similarity to homologous proteins of

known structure, the taxonomic approach is usually considered

as a trustworthy alternative. This approach is based on the as-

sumption that the number of protein domain folds is restricted

(Dubchak et al., 1999; Murzin et al., 1995). Promising results are

reported using taxonomic approaches (Ding and Dubchak, 2001;

Shen and Chou, 2006; Yang et al., 2011), but they are still far

from tackling the classification of protein folds completely. So,

fold recognition or protein threading is still among the most

challenging tasks in bioinformatics. In many bioinformatics

tasks, it is worthwhile to consider several representations of the

data, which will not always be vectors. In particular, we should

be able to deal with them using the same algorithm, regardless

whether they are represented as binary vectors, real vectors on

different scales, sequences, graph data, etc. Various approaches

based on features extracted from protein sequence and often

machine learning approaches have been used to tackle the fold

recognition problem. Several informative fold data sources can

be constructed based on various representative models of protein

features (PFs), such as primary structural information (Chen and

Kurgan, 2007; Ding and Dubchak, 2001; Yang et al., 2011), local

pairwise sequence alignment-based feature spaces (Damoulas

and Girolami, 2008), physicochemical properties of constituent

amino acids (Ding and Dubchak, 2001; Lin et al., 2013) and

sequence evolution information (Chen and Kurgan, 2007;

Kavousi et al., 2011; Sharma et al., 2013; Shen and Chou,

2009; Yang et al., 2011). More attention needs to be paid to

finding an efficient and cost-effective technique for integrating

these different discriminatory data sources for protein fold clas-

sification. Nevertheless, to deal with biological data, there are

not only a lot of issues in machine learning algorithms but also

a lot of difficulties in data analysis. Full integration and decision

integration are common techniques for fusing protein fold data

sources. In particular, full integration is a fast and easy way to

fuse data sources. However, because of heterogeneity of the*To whom correspondence should be addressed.
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biological data, combining data sources at the data level is not
always feasible in practice. By contrast, fusing data sources at
decision level, such as in the ensemble learning framework, is

considered as an intuitive manner to deal with heterogeneous
data. Various decision-based integration approaches have been
proposed for protein fold classification (Kavousi et al., 2011; Lin

et al., 2013; Nanni, 2006; Shen and Chou, 2006, 2009; Yang
et al., 2011). In addition to limitations of using ad hoc ensemble
learning, the computational cost of decision-based approaches

increases corresponding to the number of data sources.
The heterogeneous biological data sources can also be inte-

grated intelligently using partial integration, such as kernel-

based data fusion. Using kernel methods is an elegant and
versatile strategy because it decouples the original data from
the machine learning algorithms by using a representation of

the data as a kernel matrix. The main idea behind kernel meth-
ods is, rather than using original data directly, to use only a
kernel matrix. Symmetric positive definite (SPD) kernel matrices

are the non-linear extension of covariance/correlation matrices
and encode the similarity between samples in their respective
input space. This implies that the heterogeneous data (binary

vectors, real vectors on different scales, graph data) can all be
replaced by appropriately scaled kernel matrices, which all have
the same size, and thus that the data heterogeneity disappears.

Then other algorithms (such as classification, clustering and
prioritization) can access the same data, which is currently not
possible. Constructing the same representation for all datasets

and integrating these representations systematically is the main
intuition behind kernel fusion methods. In the simplest scenario,
we can compute kernel matrices separately for each data source

and then average them together.
The standard approach for combining kernel matrices is to take

the (weighted) arithmetic average. There are several methods for

obtaining a valid and fitting kernel by tuning the kernel matrices
weights (Gönen and Alpaydin, 2011). Finding such weights from
training data and replacing the single kernel by a linear combin-

ation of weighted base kernels is usually referred to as multiple
kernel learning (MKL). These weights can also be interpreted as
their corresponding importance in the fused kernel. During the

past decades, several MKL methods have been proposed in the
literature (Bach et al., 2004; Lanckriet et al., 2004a,b; Sonnenburg
et al., 2006; Rakotomamonjy et al., 2008; Vishwanathan et al.,

2010) and are shown to yield good results in various applications,
in particular in bioinformatics applications (De Bie et al., 2007;
Lanckriet et al., 2004b; Ying et al., 2009; Yu, 2011; Zien and Ong,

2007). Most of these approaches try to learn a linear combination
of base kernels, which can be interpreted as the concatenation of
the base kernel feature space or an ‘OR’ combination of the indi-

vidual kernels.
The kernel integration problem is often reduced to a convex

optimization problem. In addition to the limitation of linear

combinations, solving this optimization problem is only possible
for a small number of kernels and small number of data points.
Furthermore, because this type of averaging is often sensitive to

deal with complementary and noisy kernels, it is not appropriate
for biological data. In fact, going with such approaches could
cause a loss of potentially useful latent information in the data.

Recent biological applications have demonstrated that even
using uniformly weighted kernel integration can boost the

generalization capability of the decision function (Daemen
et al., 2009; De Bie et al., 2007; Lanckriet et al., 2004b; Ying
et al., 2009). By contrast, the results obtained by using such

averaging of the kernel matrices are comparable with the results
of the best existing MKL approaches in general applications
(De Bie et al., 2007; Lanckriet et al., 2004b; Ying et al., 2009).

Hence, using the uniformly weighted average of the base kernels
can be considered as a reliable and computationally more scal-
able alternative. Uniformly weighted kernel integration can also

be considered as the arithmetic mean (AM) of kernel matrices,
which is always a generator of a valid Mercer kernel. Similar to
the AM, other types of means of SPD matrices [such as the

harmonic mean (HM), Log-Euclidean mean (LogEM; Arsigny
et al., 2007) and geometric mean (GM)] result in SPD kernels. In

this study, we propose and develop several new techniques that
combine the Mercer kernel matrices through other types of aver-
aging than convex linear combination. Such averaging of the

base kernels can be interpreted as a kind of fusion that expresses
the non-linear relationship between the individual kernels. In
particular, we focus on taking the matrix GM of base kernels.

However, computing the GM of a general number of SPDmatri-
ces is a challenge. In fact, for a general number of SPD matrices,
a proper definition of a GM with some natural properties has

only recently been developed (Bhatia, 2007). We present two
methods for computing the GM. The first approach is focused
on computing the actual GM using the definition of the Karcher

mean (Jeuris et al., 2012). The second, however, only computes a
rough approximation of the actual GM using a proposed heur-
istic method based on Arithmetic-Geometric-Harmonic (AGH)

mean. We show in the second section that it is a computationally
scalable method for computing an approximate GM. We also

consider the behaviour of combining kernels by taking HM and
log-EM, where this last one can be seen as a consensus between
the AM and GM. Moreover, our computational model has been

developed by incorporating the functional domain information
through the hybridization model. Experimental results on the
SCOP PDB-40D benchmark dataset (Ding and Dubchak,

2001) demonstrate that our integration technique can effectively
improve the accuracy of the state-of-the-art kernel fusion model.

2 GEOMETRIC KERNEL FUSION

To improve the efficiency of kernel data fusion through the

convex combination of kernel matrices, there are several complex
convex optimization-based approaches (Bach et al., 2004;
Lanckriet et al., 2004a; Rakotomamonjy et al., 2008;

Sonnenburg et al., 2006; Vishwanathan et al., 2010) that try to
optimize the kernel weights based on different optimization cri-
teria. The optimized weights of kernel matrices reflect the relative

importance of the different dataset in the fused kernel. It is ex-
pected that the kernel matrices that have more information than
others receive higher weights in such weighted convex linear com-

bination. However, convex combination of kernel matrices often
leads to mixed results. Moreover, it has also been shown that
optimization of weights causes an improvement in performance

only when dealing with redundant or noisy kernel matrices
(Lanckriet et al., 2004b). Linear convex combination of kernel
matrices often fails to fully capture all the information for kernels

containing complementary non-redundant information. This is,
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however, a typical situation in biological applications. This is also

affirmed by the equal weights theorem (Wainer, 1976), which

states when all optimized weights are uniformly distributed on

the interval [0.25; 0.75], the performance is barely changed

using equal weights. Therefore, when dealing with many data

sources, which are all not informative, a more practical scenario

could be to select the reliable data sources and discard the rest,

then take an unweighted averaging between kernel matrices.

Using the Euclidean distance on a convex cone whose interior

contains all SPD matrices PðnÞ, we can obtain the AM. For a

given set of SPD kernel matrices K1,K2, :::,Kn, the AM is given

by AðK1,K2, :::,KnÞ ¼
1
n

Pn
i¼1 Ki. By contrast, because it has been

shown that this type of averaging mixed the result and has usually

sensitive behaviour in dealing with complementary and noisy ker-

nels, Euclidean distance on SPD matrices might not be appropri-

ate. Moreover, SPD matrices form a convex cone and not a

vector space. This has an effect on the ‘natural’ geometry of

SPD matrices, which may not be Euclidean, but rather should

rely on concepts from Riemannian geometry. This motivates us to

think about other means between SPD matrices that are not rela-

tive to the Euclidean distance on PðnÞ and necessarily a linear

combination of SPD matrices. For example, the mean corres-

ponding to Riemannian distance on PðnÞ is the GM. For a

given set of SPD kernel matrices K1,K2, :::,Kn, the GM

GðK1,K2, :::,KnÞ is the unique solution of the non-linear matrix

equation
Pn

i¼1 logðK
�1
i KÞ ¼ 0. Because of the non-commutative

property of matrix multiplication, the equation can not be solved

in closed form. However, the GM of two SPD kernel matrices K1

and K2 can be defined explicitly as follows (Bhatia, 2007):

GðK1,K2Þ ¼ K
1
2

1 K
� 1

2

1 K2K
� 1

2

1

� �1
2

K
1
2

1 ð1Þ

This leads to the fusion of K1 and K2 as FðK1,K2Þ ¼ GðK1,K2Þ.

The GM has several properties that make it useful, of which an

important one is its invariance under inversion. On the contrary,

the AM is not invariant under inversion, which means that if

K ¼ 1
n

Pn
i¼1 Ki, then in general, K�1 6¼ 1

n

Pn
i¼1 K

�1
i . This property

becomes interesting when kernel matrices are considered under

analogy to covariance matrices of Gaussian distributions. In the

Gaussian case, the covariance matrix K can be used as a positive

semi-definite kernel representation of a data sources. But the co-

variance matrix is not the most interesting object to investigate.

For a multivariate normal distribution, the precision matrix P

(which is the inverse of the covariance matrix, P ¼ K�1)

encodes independence relations between variables in the form

of partial correlations. Zeros in the precision matrix indicate

some notion of partial correlation independence between

two variables. Some immediate manipulations result in

equalities such as ðGðP1,P2ÞÞ
�1
¼ GðP�11 ,P�12 Þ ¼ GðK1,K2Þ and

ðGðK1,K2ÞÞ
�1
¼ GðK�11 ,K�12 Þ ¼ GðP1,P2Þ. Hence, computing the

GM of the covariance matrices is equivalent to computing the

GM between the precision matrices, which is a particularly at-

tractive idea in the case of Gaussian distributions, and may thus

be a valuable property when fusing kernels. For a general number

of matrices, the fused kernel is obtained by taking the GM

FðK1,K2, . . . ,KnÞ ¼ GðK1,K2, . . . ,KnÞ: ð2Þ

We describe our proposed methods for computing the GM

ofSPDmatrices and someapproximations in the following sections.

2.1 Karcher mean and AGH mean

For two SPD matrices A and B, the GM is given by the explicit

formula (1). However, for more than two matrices, a proper def-
inition of a GM with some natural properties remained elusive for
long. The most popular instance of the matrix GM is considered
to be the Karcher mean (Jeuris et al., 2012). The Karcher mean of

SPD matrices A1, . . . ,Ak is defined as the barycenter of these
matrices on the manifold of SPD matrices with its Riemannian
geometry. In practice, this is obtained by searching the minimizer

of an optimization problem, given as follows:

GðA1, . . . ,AkÞ ¼ min
X2Pn

Xk
i¼1

jj logðA�1=2i XA�1=2i Þjj2F, ð3Þ

where Pn represents the set of SPD n� n matrices and jj:jjF is
the Frobenius norm. To find the minimizer, we use manifold
optimization (Absil et al., 2008; for more details see the

Supplementary Material). However, retrieving the Karcher
mean can be computationally expensive, which is why we also
discuss the AGH mean, which can be considered as an approxi-
mation to the Karcher mean. For every two positive scalars,

alternatively computing the AM and HM repeatedly will con-
verge to the GM. At the base of the AGH mean lies the obser-
vation that the GM of two matrices can be obtained by taking

the AM and HM (for more details see the Supplementary
Material) of the matrices and iteratively repeating this procedure
with the new matrices (Foster and Phillips, 1984). Generalizing

this to more than two matrices, we duplicate the original set of
matrices and combine both in arithmetic and harmonic oper-
ations, as illustrated by the matrices Bi and Ci in Algorithm 1.

To counteract the decrease of speed of this technique, a random-
ization is introduced (last step in Algorithm 1). The result is a
rapidly converging algorithm that provides a decent approxima-
tion to the Karcher mean.

This approximate mean requires a computational cost of the
order Oðn2 logðnÞkÞ per iteration, which is an improvement when
compared with the Karcher mean. The stopping criteria of the

algorithm are the same as those of the Karcher mean, except
when determining the distance between the consecutive iter-
ations, where only the first of the Bi-matrices is considered.

The kernel fusion framework approaches using the Karcher
and AGH mean are called Karcher-KF (geometric kernel
fusion 1, GKF1) and AGH-KF (GKF2), respectively.

Algorithm 1 The approximate AGHmean algorithm where A denotes the

AM and H the HM

Let A1, . . . ,Ak be SPD matrices

� For all i set Bi ¼ Ai and Ci ¼ Ai;

� while not converged

� For all i set ~Bi ¼ HðBi,Cði mod nÞþ1Þ;

� For all i set ~Ci ¼ AðBi,Cði mod nÞþ1Þ;

� For all i set CpðiÞ ¼ ~Ci, BpðiÞ ¼ ~Bi, with p a random per-

mutation of ½1, . . . , n�.

� end
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2.2 Log-Euclidean mean

In this section we describe a new approach (Arsigny et al., 2007)

to compute a mean of SPD matrices called the LogEM.
Given SPD matrices S1, . . . ,SN, their Log-Euclidean Fréchet

mean exists and is uniquely given by the explicit formula

ELEðS1, . . . ,SNÞ ¼ exp
1

N

XN
i¼1

log Sið Þ

 !
: ð4Þ

The LogEM is similarity-invariant, invariant by group multi-

plication, inversion and exponential-invariant. The LogEM also

has outstanding behaviour with respect to the determinant (for

more details see the Supplementary Material). Because of the

nice properties of the LogEM and the high computational cost

of GM, it will also be considered in our fusion framework for

combining kernels (LogE-KF).

3 MATERIAL AND METHODS

3.1 Benchmark datasets

We use the benchmark dataset from Ding and Dubchak (DD) (Ding and

Dubchak, 2001), which has been widely used for evaluating protein fold

recognition predictors. This benchmark dataset consists of 27 SCOP fold

classes for 694 protein domains (311 proteins for the training set and 383

proteins for the test set). The identity between any two proteins in the

training and test set is kept to535% to get balance between the hom-

ologous bias and the size of the dataset. Supplementary Table S1 lists a

summary of training and test datasets belonging to the 27 protein domain

folds of SCOP corresponding to all major structural classes:

�, �,�=�, �þ �. We also developed the model based on the newer

SCOP database (version 1.75; newDD) as it is used in (Yang and

Chen, 2011). This database version contains 3397 protein sequences in

the 27 folds.

3.2 Feature vectors

The first 12 PFs listed in Supplementary Material S2 are the most popular

representative models of protein domains, which have been employed

frequently for classification of DD protein domain folds. These PFs in-

clude six types of structural information [Amino Acid composition (C),

Predicted Secondary Structure (S), PseAAC � ¼ 1 (L1), PseAAC � ¼ 4

(L4), PseAAC � ¼ 14 (L14) and PseAAC � ¼ 30 (L30)], four kinds of

physicochemical properties of constituent amino acids [Hydrophobicity

(H), Polarity (P), van der Waals volume (V) and Polarizability] and two

local pairwise sequence alignment-based feature spaces [based on Smith

Waterman using BLOSUM62 (SWr1) and PAM50(SWr2)] (Damoulas

and Girolami, 2008). In addition, because these features were already

considered by two kernel-based data integration approaches (Damoulas

and Girolami, 2008; Ying et al., 2009), we are able to compare and

evaluate the performance of our approach more precisely using those

results.

Sequence evolution information. Recently, sequence evolution infor-

mation is often used to perform protein fold classification (Kavousi et al.,

2011; Sharma et al., 2013; Shen and Chou, 2009; Yang and Chen, 2011)

because good results can be obtained when using such information to

determine protein secondary structure (Kaur and Raghava, 2003), sub-

cellular localization (Rashid et al., 2007; Xie et al., 2005) and subnuclear

localization (Shen and Chou, 2007). In particular, promising results have

been reported recently using only the sequence evolution information

through a new feature extraction method (bi-gram; Sharma et al.,

2013) from position-specific scoring matrices (PSSM; Schaffer et al.,

2001).

A protein sample P with L amino acid residues can be represented by

its evolutionary information through PSSM or position-specific fre-

quency matrices (PSFM) profiles (Rangwala and Karypis, 2005), which

both have L columns and 20 rows. Each row of PSSM (Mi!:) represents

the log-likelihood of the residue substitution at the corresponding pos-

ition in the protein sequence. In particular, the ði, jÞ-th entry of the PSSM

matrix (Mi!j) represents the possibility of the amino acid type j appear-

ing in the i-th position of the protein domain during the evolution

process. The PSSM entries are obtained using the PSI-BLAST program

to search the non-redundant protein database, like the Swiss-prot data-

base, through three iterations with the E-value cut-off set to 0.001. We

use four common profile-based representative models of protein

sequences:

(1) A 400 dimensional feature vector created by summing up each

column of the same amino acid in the PSSM and dividing by the

length of the protein domain, followed by a normalization 1
1þe�s

h i
that scales each score to the range of [0,1] (PS1).

(2) A 20 dimensional feature vector created by summing up each

column in the PSFM profile and dividing by the length of the

domain (PS2).

(3) A 20 dimensional feature vector created by summing up each

column in the PSSM profile and dividing by the length of the

domain (PS3).

(4) The PsePSSM was originally introduced in (Chou, 2001) to avoid

complete loss of the sequence-order information (for more details

see the Supplementary Material).

Functional domain composition. To incorporate the available functional

domain information (FunD) of proteins, we consider the FunD compos-

ition of protein sequences using integrated FunD databases, which con-

tain protein sequences with noted FunD descriptions. A protein sequence

can be summarized by its known functional domains. This representative

model for a protein sequence was first introduced in (Cai et al., 2002,

2003) and is also considered for protein fold classification (Shen and

Chou, 2009), protein structural recognition (Chou and Cai, 2004), protein

subcellular location prediction (Cai et al., 2002) and prediction of protein

submitochondria locations (Zakeri et al., 2011). In fact, fold information

is a useful clue in determining a protein’s tertiary structure, which can

facilitate the identification of its function. Hence, the FunD composition

features are considered based on the rationale that the function of a

protein is often correlated with its structural characteristics. For this pur-

pose, we use the InterPro database (Apweiler et al., 2001; Hunter et al.,

2012), which is an integrated database of recognized protein families,

domains and functional sites to functionally characterize a new protein

sequence. Moreover, we use the Conserved Domain Database (CDD;

Marchler-Bauer et al., 2007, 2013), which is known as the integrated

FunD database, to identify the putative function of a new protein

sequence.

4 RESULT AND DISCUSSION

In this section, we discuss the extensive study of integrating mul-

tiple informative fold data sources. First, we focus on the indi-

vidual performance of each PF data source. We should note that
the GM applies only to SPD matrices. Besides the flexibility of

the radial basis function (RBF) kernel function and its good

generalization through the non-linear mapping of the input

space to the infinite-dimensional feature space, the RBF kernel
function produces SPD matrix. Two types of Gaussian RBF

kernel functions are used for these data sources. Then, classifi-

cation is performed using a Gaussian support vector machine

(SVM) model, and its performance is estimated on an

1853

Protein fold recognition using geometric kernel data fusion

Log-Euclidean mean
Log-Euclidean mean
Log-Euclidean mean
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu118/-/DC1
Log-Euclidean mean
geometric mean
less than 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu118/-/DC1
)
(
,
protein features (
)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu118/-/DC1
protein feature
6 
(
,
)
4 
(
)
,
2 
(
)
since 
; Kavousi etal., 2011; Sharma etal., 2013
since 
; Rashid etal., 2007
)
)
 (NR)
3 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu118/-/DC1
,
employ 
)
protein feature
geometric mean
employed 
.


independent test set. Parameter selection details are provided in

Supplementary Material. A one-against-other SVM classifier is

constructed based on each representative model of the protein

samples. To train SVMs, we used LIBSVM-3.1 implementation

of the SVM algorithm (Chang and Lin, 2011). The performance

of the individual classifiers on the test data is listed in

Supplementary Table S2.
Next, to see the advantage of fusing heterogeneous data

sources for protein fold classification through intermediate-

based data integration, we focus on combining 26 RBF kernel

matrices derived from each view on protein domains. The kernel

matrices are combined through various types of means like

GKF1, GKF2, AM, HM and LogE. Afterwards, the combined

kernel is used to determine the performance. The general archi-

tecture of the proposed approaches for classifying protein folds is

shown in Figure 1.
Furthermore, to compare the performance of our proposed

approaches, we also consider three types of MKL approaches

[MKLdiv-dc and MKLdiv-conv (Ying et al., 2009) and

SimpleMKL (Rakotomamonjy et al., 2008)], which have already

been used for protein fold classification (Ying et al., 2009). We

also consider a heuristic and simple MKL method (Qiu and

Lane, 2009), which chooses the kernel weights based on the re-

lationship between the kernel matrix and the covariance matrix

of the target labels (AK-MKL) (for more details see the

Supplementary Material). Then, a one-against-other SVM clas-

sifier is again constructed, now based on each of the combined

kernels. The parameter C is chosen through 5-fold cross valid-

ation and is searched over a grid of values C ¼ f2�1, 20, . . . , 29g.
Table 1 provides the total prediction accuracies of the existing

approaches for classification of protein folds in the DD dataset.

Table 1 also lists the success rates of our proposed kernel fusion

approaches based on averaging of the kernel matrices. According

to Table 1, classification results of the combined kernels using

Karcher-KF, AGH-KF and LogE-KF show considerable im-

provement compared with the state-of-the-art. Figure 2

illustrates the behaviour of integrating kernel matrices using

GKF1, GFK2 and LogE-KF. According to Table 1, the per-

formance of GKF1, GKF2 and LogE-KF including all 26 se-

quence-based features achieves a test accuracy of 86.68, 86.16

and 81.72%, respectively. This implies that, in terms of similarity

between protein samples, the fused kernel based on our proposed

alternative algorithm (AGH mean) holds the same information

as the fused kernel obtained using the Karcher mean, while the

computational cost is lower. Also, promising results are achieved

by our alternative fusion approach using the LogEM, which has

an even lower computational cost.

In Figure 2, we consider the effect of sequentially incorporat-

ing sequence-based features according to the decreasing order

of their kernel performances. The performance of uniformly

weighted linear combinations of base kernels increases slowly

by varying degrees until we include the 16 most informative

data sources, resulting in a best performance of 73.37%. By con-

trast, its performance decreases continuously if we continue to

incorporate less informative PFs. However, there is a slight rise

after adding PSp9, and then the performance decreases again

when combining all kernels. This observation suggests that

sequence-based PsePSSM features that reflect the effect of se-

quence order carry almost no complementary information with

other PFs extracted from the PSSM profile (PS1, PS2, PS3 and

PSp0). Similar trends are apparent for MKLdiv-dc, MKLdiv-

conv and KA-MKL. Contrary to the previous methods, the per-

formance of AGH-KF increases gradually even when adding

kernels considered to carry non-complementary information by

AM. Its success rate is consistently outperforming other

Table 1. Comparison of proposed models with the existing predictor and

meta-predictors

Methods PERF Description

SVM 56 (Ding and Dubchak, 2001)

SE 61.1 (Nanni, 2006)

PFP-Pred 62.1 (Shen and Chou, 2006)

PFRES 68.4 (Chen and Kurgan, 2007)

VBKC 68.1 (Damoulas and Girolami, 2008)

MLKdiv-dc 73.36 (Ying et al., 2009) 12 PFs

MLKdiv-conv 71.01 (Ying et al., 2009) 12 PFs

MLKdiv-dc 75.19 (Ying et al., 2009) 7 PFs

PFP-FunDseqE 70.5 (Shen and Chou, 2009)

Classifier Fusion 67.02 (Kavousi et al., 2011)

MarFold 71.7 (Yang et al., 2011)

Tax-Fold 71.5 (Yang and Chen, 2011)

Bi-grams 69.5 (Sharma et al., 2013)

HPFP 74.21 (Lin et al., 2013)

MKLdiv-dc 61.1 26 PFs

MKLdiv-conv 63.70 26 PFs

AK-MKL 61.88 26 PFs

SimpleMKL 56.92 26 PFs

Harmonic mean 65.80 26 PFs

Arithmetic mean 60.57 26 PFs

Karcher-KF (GeoFold1) 86.16 GFK1 (geometric mean) 26 PFs

AGH-KF (GeoFold2) 86.68 GFK2 (geometric mean) 26 PFs

LogE-KF (LogEFold) 81.72 LogE (Log-Euclidean mean) 26 PFs
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Fig. 1. The architecture of our fusion model for protein fold recognition.

GeoFold refers to the fusion model that uses 26 different data sources,

and FunGeoFold refers to the kernel fusion model that incorporates the

FunD information through GM between FunD kernel and fused kernel

produced by GeoFold (GeoFold kernel)
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uniformly weighted kernel integration methods and almost

always increases until the 26th kernel is included, resulting in

the best performance of 86.68%.The experimental results on

the SCOP PDB-40D benchmark dataset demonstrate that the

geometric-based averaging of kernel matrices can effectively im-

prove the accuracy of the state-of-the-art kernel fusion model.

According to Table 2, promising test set accuracy is obtained

using each individual FunD information-based feature (FunD-

cdd and FunD-InterPro). Now, our computational model

(GeoFold) has been developed by incorporating these FunD

compositions of proteins through the proposed hybridization

model (FunGeoFlod), described in Figure 1. It is observed that

by using this hybridization model, the protein fold recognition

accuracy is improved to 89.30%, which is significant for this

problem.

Next, to compare the efficiency of the proposed formulations

AGH-FK and LogE-KF with other MKL approaches, we con-

sider 201 various convex combinations of two different kernels.

For this purpose, we assign different weights to each kernel as

follows:

Ki ¼ wiK1 þ ð1� wiÞK2, 15i � 201, ð5Þ

where w ¼ ½1, 0:995, 0:99, . . . , 0�. These weights can also be

interpreted as their corresponding importance in the fused

kernel. In fact, finding such weights is the objective of any

MKL approach. As illustrated in Figure 3 and Supplementary

Material S2, we observe better success rates on the majority of

the interval of kernel weight pairs for the new approaches. These

results indicate the limitation of MKL approaches in terms

of their sensitive behaviour in dealing with kernel weights.

They also demonstrate that the best linear combination of two

kernels usually is the one where we assign more weight to the

kernel with a higher performance. This is particularly true when

the difference between the performances of the two kernels is

considerable. Our results show that the evolutionary-based fea-

tures and either the S or C convey the considerable complemen-

tary information with respect to each other. Moreover, the

evolutionary information extracted from PSSM profiles through

Psp0 and PS2 carries complementary information with respect to

other features.
Moreover, we investigate the performance of our approach on

the newer SCOP database (version 1.75; Yang and Chen, 2011).

As the results on the SCOP PDB-40D benchmark dataset sug-

gest, it is interesting to consider only two PFs including predicted

secondary structural information of the protein sequence and

information extracted directly from PSSM. For this propose,

the PS2 and predicted secondary structure results from

NetSurfP (Petersen et al., 2009) are used. Composition,
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Fig. 2. The effect of sequentially incorporating PFs according to the decreasing order of their kernels performance. The results of sequentially adding

sequence-based features are further discussed in the Supplemental Material

Table 2. The results of incorporating the FunD composition

Methods PERF Methods PERF

FunFold-cdd 69.94 FunLogFold-cdd 87.43

FunFold-InterPro 73.89 FunLogFold-InterPro 89.30

FunFold-Combined 76.50 FunAmtFold-cdd 77.2

FunGeoFold-cdd 87.71 FunAmtFold-InterPro 84.07

FuncGeoFold-InterPro 89.30

FunLogEFold (FunAmFold) is referred to the kernel fusion model, which incorp-

orates the FunD information (extracted from CDD or InterPro) and GeoFold

kernels through LogE(AM).
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transition and distribution descriptors as described in (Dubchak

et al., 1995) are used to construct the feature vector for the rep-

resentation of S. Table 3 provides the mean percentage accuracy

with standard deviation from our proposed kernel data fusion

methods using 10-fold cross validation for classification of pro-

tein folds in the newDD dataset (Yang and Chen, 2011).
It is observed that by incorporating the available functional

domain information (nterPro) through our proposed hybridiza-

tion model, we are almost able to completely crack the protein

fold recognition problem for 27-folds. In addition, it is observed

that using FunFold-cdd, FunFold-InterPro, LogEFold and

GeoFold models, we achieve competitive results compared

with the Taxfold webserver (Yang and Chen, 2011).

We also investigate the performance of our GKF approach on

the protein remote homology detection problem (Liao and

Noble, 2003) by fusing multiple kernels. In the Supplementary

Material, we report the competitive results on this problem.

5 CONCLUSION

In this study, we enhance the fold recognition results on the

SCOP PDB-40D benchmark dataset through a novel kernel

data fusion framework based on the GM of kernel matrices

(GFK). We present two methods (Karcher-KF and AGH-KF)

for computing the GM, where the second one is a computation-

ally scalable method that computes an approximate GM.

The experimental results demonstrate that the GM of kernel

matrices can effectively improve the accuracy of the state-of-

the-art kernel fusion model. In addition, we obtain similar results

using the LogEM, which is a more cost-effective technique for

integrating different PFs.
Our meta-predictor is developed by incorporating the avail-

able knowledge on functions of protein domains into our kernel

data fusion framework, giving a promising total accuracy of

89.30%.
Understanding the relationship between primary and tertiary

structure in proteins is one of the main objectives of protein

sequence analysis. This relation is still elusive, but our results

suggest that combining the evolutionary and secondary struc-

tural information could be crucial to elucidate such a latent

link. This claim is investigated on the newer SCOP database

(version 1.75; Yang and Chen, 2011), where our new methods

again have good performance. In addition, by incorporating the

available functional domain information using our FunGeoFold

model, nearly exact protein fold recognition for 27-folds is

achieved.
Furthermore, the limitation of convex linear combinations in

dealing with fusion of different PFs that carry complementary

information is considered. Our proposed fusion frameworks, by

contrast, can be used to detect these features with complemen-

tary information, which provides an insightful approach for

fusing different features of other problems in bioinformatics.
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Fig. 3. The performance of convex linear combination of two different kernels using 201 different pairs weights of kernels (blue line). The relative

performances of fused kernels through weighted LogEM (red line). The relative performances of fused kernels using weighted GM (for more details see

the Supplementary Material) (magenta line)

Table 3. Perfomance of our proposed data fusion approach on newDD

dataset

Methods Performance Protein features

Tax-Fold 90 (Yang and Chen, 2011)

PS2 76:22� 0:0040 Sequence evolution information

S 79:05� 0:0025 Predicted secondary structure

FunFold-cdd 86:82� 0:0023 FunD-cdd

FunFold-InterPro 92:85� 0:0015 FunD-InterPro

GeoFold (AGH-KF) 88:80� 0:0027 PS2 and S

FunGeogEFold-cdd 94:36� 0:0009 PS2,S,FunD-cdd

FunGeoFold-InterPro 96:88� 0:0012 PS2,S,FunD-InterPro

LogEFold (LogE) 88:52� 0:0020 PS2 and S

FunLogEFold-cdd 94:65� 0:0008 PS2,S,FunD-cdd

FunLogEFold-InterPro 96:88� 0:0011 PS2,S,FunD-InterPro
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