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A B S T R A C T   

Ginger is well known for its pungent flavour and health-benefitting properties, both of which are imparted by 
various gingerol derivatives and other volatile constituents. Although there has been a considerable amount of 
research into the chemical constituents found in fresh ginger, there is little information available on the quality 
of Australian-grown dried ginger, particularly that intended for processing purposes. Here, we investigate dif-
ferences in the chemical composition of three samples of processing-grade ginger, ranging from very poor to 
good quality. Gingerols and 6-shogaol were quantified using high performance liquid chromatograph (HPLC), 
while gas chromatography coupled with mass spectrometry (GC-MS) was used to identify and semi-quantify the 
volatile constituents and other gingerol derivatives. Significant differences were found between the samples in 
their content of gingerols and [6]-shogaol, as well as in their total phenolic content and antioxidant capacity. A 
total of 100 volatile compounds were identified in the dried ginger samples, including 54 terpenoid derivatives 
and 35 gingerol derivatives. Several compounds are reported from ginger for the first time, including limonene 
glycol and neryl laurate. In addition, we provide the second report of the presence of shyobunol, geranyl-p- 
cymene and geranyl-α-terpinene in ginger.   

1. Introduction 

The rhizomes of ginger (Zingiber officinale Roscoe) are characterised 
by a pungent flavour, resulting from the presence of gingerol compounds 
(Kumara et al., 2017), the most abundant of which are [6]-gingerol, 
[8]-gingerol and [10]-gingerol (Yudthavorasit et al., 2014). Further-
more, numerous derivatives of gingerols are also present in fresh and 
dried ginger, including shogaols and paradols (Jolad et al., 2004, 2005; 
Yudthavorasit et al., 2014). In combination with some of these de-
rivatives, gingerols are reported to provide most of the documented 
medicinal properties of ginger (Govindarajan and Connell, 1983; 
Grzanna et al., 2005; Kubra and Rao, 2012), as well as its characteristic 
pungent taste and odour (Fisher and Scott, 2007). 

When fresh ginger is dried, gingerols are converted to their respec-
tive shogaols (alkene side chain derivatives) through an elimination 
dehydration reaction (Ghasemzadeh et al., 2018; Huang et al., 2011; 
Wohlmuth et al., 2005). The proportion of gingerols converted to sho-
gaols depends on the drying temperature, but can approach ~50% 
conversion under very high drying temperatures (180 ◦C) (Ghasemza-
deh et al., 2018). As shogaols are twice as pungent as gingerols (Nar-
asimhan & Govindarajan, 1978), this increases the pungency of dried 

ginger proportionally. Furthermore, shogaols also show higher bioactive 
and medicinal properties (Ghasemzadeh et al., 2018) compared to their 
respective gingerols (Wei et al., 2005). 

[6]-paradol, the alkane derivative of [6]-shogaol, can be formed 
from [6]-shogaol through enzymatic reduction of the alkene bond (Jo 
et al., 2016), although little has been published on the purported syn-
thesis pathway in ginger. [6]-paradol is present in fresh and dried ginger 
(Jolad et al., 2005; Nagendra chari et al., 2013), albeit at much lower 
concentrations compared to the gingerols and shogaols. However, it 
possesses greater bioavailability and neuroprotective effects compared 
to 6-shogaol (Choi et al., 2017; Park et al., 2016; Sapkota et al., 2019). 
Other reported health benefits of [6]-paradol include anti-tumour ac-
tivity (Chung et al., 2001; Lee and Surh, 1998; Surh et al., 1999), 
anti-inflammatory activity (Ilic et al., 2014; Saptarini, 2013) and upre-
gulation of metabolic activity and glucose usage providing 
anti-hyperglycaemic activity (Iwami et al., 2011; Wei et al., 2017). 
Whilst many of these bioactive properties can also be imparted by gin-
gerols and shogaols, they are slightly less potent compared to the cor-
responding paradols. Notably, Chen et al. (2012) demonstrated that 
shogaols are metabolised to paradols in rats, suggesting that consump-
tion of shogaols may have more beneficial health effects than that 
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anticipated from in vitro studies on the bioactivity of shogaols. 
Previous studies have investigated the volatile constituents of fresh 

and dried ginger (Jolad et al., 2004, 2005), profiled the variation be-
tween different varieties and growing locations (Bailey-Shaw et al., 
2008; Wohlmuth et al., 2005), and determined the effects of processing 
methods such as drying on these constituents (Bartley and Jacobs, 
2000). However, there is limited information available on the chemical 
composition of dried processing-grade ginger, and even fewer studies 
correlating variations in the chemical constituents with the perceived 
quality of the ginger. To this end, we characterise the major pungent and 
volatile constituents of three samples of dried Australian 
processing-grade ginger. 

2. Material and methods 

2.1. Sample processing 

Three samples of Queensland-grown processing-grade fresh ginger 
from three different growing years (2017, 2018 and 2019) were dried 
and powdered. Based on anecdotal information and organoleptic 
testing, these samples were identified as being low quality (2017 sam-
ple), average quality (2018) and high quality (2019). 

2.2. Extraction protocols 

Polar compounds, such as gingerols and their derivatives, were 
extracted from the dried ginger samples using the extraction protocol 
previously reported by our laboratory for the extraction of phenolics 
(Johnson et al., 2019, 2020a, 2020b). Briefly approximately 0.5 g of 
dried ginger was combined with 7 mL of 90% aqueous methanol and 
shaken end-over-end for 60 min. After centrifuging (1000 g; 10 min) and 
collecting the supernatant, this was repeated with another 7 mL of fresh 
90% methanol. The two supernatants were combined and volumetri-
cally made up to 15 mL. Extracts were prepared in triplicate, with results 
expressed in mg kg− 1 (as-is basis). These extracts were used for HPLC 
profiling of gingerol and its derivatives as well as measuring the total 
antioxidant and phenolic contents. 

To extract the volatile compounds for GC-MS analysis, most of which 
are relatively non-polar in nature, a separate extract was prepared. A 
portion of ginger powder (0.3000 ± 0.0001 g) was weighed into a glass 
vial, to which 5 mL of dichloromethane (DCM) was added. The vials 
were sonicated for 30 min (Soniclean 160TD ultrasonic cleaner; Dudley 
Park, South Australia) before the supernatant was syringe filtered (0.45 
μm PTFE; Livingstone) into mass spectrometry-grade GC-MS vials 
(Shimadzu). 

2.3. Measurement of total phenolics and total antioxidant content 

Total phenolics (TP) were measured in the polar methanolic extracts 
using the Folin-Ciocalteu method of Singleton and Rossi (1965). The 
total antioxidant content was estimated using the CUPRAC (cupric 
reducing antioxidant capacity) assay of Apak et al. (2013). The results 
were quantified as equivalents of gallic acid (GA) and Trolox equivalents 
(TE), respectively. Both methods have been previously described by our 
laboratory (Johnson et al., 2020a, 2020b, 2020c). 

2.4. Gingerol profiling by HPLC 

Gingerol profiling was performed on the polar extracts using high- 
performance liquid chromatography (HPLC), following an in-house 
method previously developed by our laboratory for the analysis of 
these constituents in dried ginger samples (unpublished data). The 90% 
methanol extracts were syringe filtered (0.45 μm PTFE; Livingstone) 
before being directly injected without any further preparation. The 
separation and quantification of gingerols and 6-shogaol was achieved 
on an Agilent 1100 HPLC system, comprising a G1313A autosampler, 

G1322A vacuum degasser, G1311A quaternary pump, G1316A ther-
mostatted column compartment and G1365B multi-wavelength detector 
module. A reversed phase C18 column was used (Agilent Eclipse XDB- 
C18; 150 × 4.6 mm; 5 μm pore size) with the column temperature 
controlled at 27 ± 0.8 ◦C. An injection volume of 5 μL was used, while a 
wavelength of 230 nm was used for the quantification of gingerols and 6- 
shogaol. 

A gradient mobile phase of water (A) and methanol (B) was used, 
beginning at 30% B (0 min), ramping to reach 60% B by 2 min, 63% by 
10 min, 65% by 16 min and 100% at 28 min, before holding for a further 
5 min. The sample run time was 33 min, followed by a flushing period of 
5 min, making an overall run time of 38 min per sample. A flow rate of 1 
mL/min was used throughout. 

The peaks of interest were identified using authentic standards of 
[6]-gingerol (Toronto Research Chemicals; Toronto, Canada), [8]- 
gingerol (Glentham Life Sciences; Corsham, United Kingdom), [10]- 
gingerol (Glentham Life Sciences) and [6]-shogaol (Toronto Research 
Chemicals), as well as through their UV spectral characteristics. Stan-
dard curves of these four compounds were prepared in methanol 
(10–100 mg L− 1) for quantification purposes. All standard curves 
showed high linearity (R2 = 0.9991–0.9998), with the detector response 
factors ranging between 4.29 (for [10]-gingerol) to 27.32 (for [6]- 
shogaol). The typical repeatability of the analysis (for [6]-gingerol) 
from consecutive injections was 0.10% relative standard deviation 
(RSD) in the peak area, while the inter-day precision was 0.31% for 
retention time and 2.02% for peak area (from four injections over the 
course of a week). Triplicate injections of the sample ginger extract also 
showed high repeatability (RSD of 0.24% for [6]-gingerol, 0.32% for 
[8]-gingerol, 0.63% for [10]-gingerol and 0.24% for [6]-shogaol). 

2.5. GC-MS analysis 

In addition to the pungent gingerols and their derivatives, volatile 
compounds also play a large role in determining the organoleptic 
properties and hence the perceived flavour of ginger. Gas chromatog-
raphy coupled with mass spectrometry (GC-MS) was used to profile the 
volatile compounds present in the previously described DCM extracts. 
Although no internal standard was used, care was taken to ensure that 
the same mass of powdered ginger sample was used in each extraction 
(±0.0001 g), allowing for semi-quantification of each constituent by its 
peak area on the total ion chromatogram (TIC). 

GC-MS analysis was performed on a Shimadzu QP2010 Plus system 
fitted with an autoinjector/autosampler (AOC-20i/s) and a Shimadzu 
SH-Rxi-5Sil MS column (29 m × 0.25 mm i.d. × 0.25 μm thickness). 
Three solvent rinses (in DCM) were performed pre- and post-injection, 
with two rinses of the needle with the extract prior to injection. The 
injection volume was 0.5 μL using split mode (split ratio = 15) and an 
injection temperature of 250 ◦C. Helium was used as a carrier gas, at a 
column flow rate of 1.31 mL/min and pressure of 73.2 kPa. The oven 
temperature began at 50 ◦C, ramped at 10 ◦C/min until 130 ◦C, slowed 
to 5 ◦C/min until 200 ◦C, then returned to a ramp of 10 ◦C/min until 
340 ◦C, where it held for 3 min to remove any residue from the column. 
The total run time was 39 min. The ion source and mass spectrometer 
interface temperatures were both set at 200 ◦C. The mass spectrometer 
was set to scanning mode, with acquisition (35–500 m/z) between 2.5 
and 37 min. For quantitative purposes, peaks on the total ion chro-
matogram (TIC) were integrated if their slope was >1000 counts/min 
and their peak height was >100,000 counts. Compounds were identified 
from comparison of their mass spectra to the NIST library (https://ch 
emdata.nist.gov/) and from their linear retention indices (LRIs), calcu-
lated from their retention times compared against a set of C8–C30 alkane 
standards, following the method of van Den Dool and Kratz (1963). 

2.6. Data analysis 

Statistical testing was performed in IBM SPSS v. 26 (New York, USA). 
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As all data was approximately normally distributed, one-way ANOVAs 
were used to compare data between different samples, followed up by 
post-hoc Tukey testing (at α = 0.05) if a significant result was returned. 
Plots were created in Microsoft Excel. Where applicable, results are 
presented as mean ± 1 standard deviation. 

3. Results and discussion 

3.1. Antioxidant properties and pungent constituents 

The total phenolic content and total antioxidant capacity of the dried 
ginger samples showed a consistent trend, from lowest in the oldest 
ginger sample (2017) to highest in the 2019 sample (Table 1). However, 
the difference between the 2018 and 2019 samples was not significantly 
different. The [6]-gingerol content was significantly different between 
samples, with the lowest levels in the 2017 ginger and highest in the 
2019 ginger (see Fig. 1). For both [8]-gingerol and [10]-gingerol, no 
significant differences in concentration were found between the 2017 
and 2018 samples, while the 2019 sample had significantly higher levels 
of both compounds. The [6]-shogaol content did not appear to show any 
clear changes with age, being lowest in the 2019 ginger and highest in 
the 2018 ginger, but remaining relatively low in the 2017 ginger. 
However, the ratio of [6]-gingerol to [6]-shogaol did decrease signifi-
cantly with the sample age, indicating that the youngest (2019) sample 
contained significantly higher levels of [6]-gingerol compared to its [6]- 
shogaol content. 

The lack of a clear trend in [6]-shogaol content with increasing age of 
the sample was consistent with previous research by our laboratory 
(Johnson et al., 2020d), which found no significant increase in 
[6]-shogaol with aging, but rather suggested that the equilibrium point 
for the dehydration of [6]-gingerol into [6]-shogaol may be dependent 
upon the drying conditions, rather than on the [6]-gingerol concentra-
tion. In other words, younger dried ginger samples contained approxi-
mately the same amount of [6]-shogaol as the older samples, 
irrespective of their higher [6]-gingerol levels. 

3.2. GC-MS: volatile constituents 

The GC-MS profiling of the ginger samples revealed the presence of 
100 volatile compounds which were identified from their mass spectral 
data and linear retention indices (see Supplementary Materials; 
Table SM1). A total of 54 terpenoid-related compounds were identified, 
comprising 20 monoterpenes, 27 sesquiterpenes, and 7 diterpenes 
(Table SM1; Fig. 2). 

The majority of volatile constituents presented in this work had been 
reported by previous authors (e.g. Chen and Ho, 1988; Cornell and 
Jordan, 1971; Dhanik et al., 2017; Jiang et al., 2006; Nishidono et al., 
2020; Wohlmuth et al., 2006). However, the sesquiterpene shyobunol 
has only been reported in ginger from Iraq by Shareef et al. (2016). 

Although both p-cymene (Nigam et al., 1964; Smith and Robinson, 
1981; Wohlmuth et al., 2006) and geraniol (Baldin et al., 2019; 

Jayashree et al., 2014) have been reported in ginger by numerous re-
searchers, geranyl-p-cymene has only recently been reported by Hazim 
et al. (2020) from fresh ginger. Similarly, geranyl-α-terpinene was only 
identified from ginger oil by Ismaeel and Usman (2021). In this work, we 
also tentatively identified the presence of isomers of shyobunol and 
geranyl-α-terpinene in the ginger samples. 

Other compounds that have been identified in this work, which do 
not appear to have been previously reported in ginger, included limo-
nene glycol and neryl laurate (Table SM1). Limonene glycol has been 
found in a variety of plants, including oil from the conifer Torreya grandis 
(Niu et al., 2010) and cardamom oil (Núñez-Carmona et al., 2018). This 
compound can be produced from the hydrolysis of limonene oxide, 
which in turn is produced by the oxidation of limonene. D-limonene was 
detected in the ginger samples (Table SM1), indicating the potential 
origin of limonene glycol in this matrix. In contrast, neryl laurate has 
only been reported from a few species, including Rosa damascena (Ansari 
et al., 2017) and possibly from Cedrus atlantic (Ainane et al., 2019). 
However, the related ester neryl butyrate is a common constituent from 
volatile oils derived from aromatic plants (de Carvalho et al., 2020). 

In addition, several compounds were tentatively identified from 
ginger for the first time, including hydroxycitronellol – previously found 
in the herb Pelargonium crispum (Sadgrove, 2018) and Citrus junos (Park 
et al., 2004), dihydrofarnesol – previously reported from fragrant or-
chids (Julsrigival et al., 2013) and Cyclamen spp. (Shibusawa et al., 
2018), and 4,6-bis(4-methylpent-3-en-1-yl)-6-methylcyclohexa-1, 
3-diene-carbaldehyde – previously known from the marine bryozoan 
Flustra foliacea (Peters et al., 2002). However, as suggested by Holst et al. 
(1994), this latter compound may potentially be produced from the 
condensation of citral during the extraction or analysis process, rather 
than being naturally found in the original sample matrix. 

Forty-two of the major peaks were selected for quantification and 
comparison purposes between the three ginger samples, comprising 5 
monoterpenes, 14 sesquiterpenes, 3 diterpenes and 20 gingerol-related 
compounds (termed ‘gingerol derivatives’) (Table 2). Relatively, the 
2018 ginger sample had the highest levels of volatiles extracted (sum-
med peak area of 14.9 million arbitrary units), followed by the 2017 
sample (9.6 million arbitrary units). The 2019 ginger sample containing 
the least volatiles (summed peak area of 8.6 million arbitrary units). 

For the monoterpenes, the 2018 ginger had the highest levels of 
β-citronellol, geraniol, geranyl acetate and corymbolone. The 2017 
sample also had a relatively high content of corymbolone, but low levels 
of β-citronellol. Within the sesquiterpenes, notable differences between 
the three samples were observed for α-curcumene, trans-sesquisabinene 
hydrate and β-sesquiphellandrene. For most of the remaining volatiles, 
the proportion of each compound was comparable to that found in the 
other samples. 

3.3. GC-MS: pungent compounds 

In terms of the gingerol-related (pungent) compounds, a total of 35 
gingerols and gingerol derivatives were identified, as well as 5 
methoxyphenols with a related structure to gingerol. All of the gingerol 
derivatives were previously identified by Jolad et al. (2005) in dried 
ginger or by Nishidono et al. (2020) in fresh ginger. The presence of 
[10]-isoshogaol was notable, as this compound has only been previously 
reported from ginger by a limited number of authors (Nishidono et al., 
2020; Zhan et al., 2008), likely due to its very low concentrations. For 
example, the average concentration of [6]-shogaol across the samples 
was found to be 48.8 ± 5.4 (n = 3) times higher than its isomeric form, 
[6]-isoshogaol, indicating high favourability toward the more conju-
gated and more stable isomer of [6]-shogaol. This trend would likely 
hold true for other isoshogaols, such as [10]-isoshogaol. Similarly, 
[6]-gingerdiol-(2E)-geranial acetal appears to have only been previously 
identified by a few authors (Jolad et al., 2005; Nishidono et al., 2020). 

The proportions of most of the pungent constituents were similar 
between the three samples. The largest differences in the relative 

Table 1 
Physical and chemical characteristics of the three powdered ginger samples.  

Parameter 2017 ginger 2018 ginger 2019 ginger 

Total phenolics/mg GAE 100g− 1 (n 
= 3) 

1834 ±
106a 

2654 ±
434b 

3193 ±
297b 

CUPRAC/mg TE 100g− 1 (n = 3) 3106 ±
287a 

4932 ±
244b 

5440 ± 20b 

[6]-gingerol/mg kg− 1 (n = 3) 2215 ±
101a 

3491 ± 26b 5383 ±
270c 

[8]-gingerol/mg kg− 1 (n = 3) 674 ± 46a 764 ± 17a 1167 ± 59b 

[10]-gingerol/mg kg− 1 (n = 3) 1475 ±
127a 

1524 ± 42a 2065 ± 58c 

[6]-shogaol/mg kg− 1 (n = 3) 836 ± 50b 1063 ± 19c 709 ± 15a 

Ratio of [6]-gingerol:[6]-shogaol 2.65 ±
0.08a 

3.28 ±
0.04b 

7.59 ±
0.36c  
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proportions of the pungent constituents was found for acetoxy-[6]- 
gingerol, followed by [4]-gingerol, [10]-gingerdione and methyl-[6]- 
shogaol. In contrast, the proportions of diacetoxy-[6]-gingerdiol and 
the 5-acetoxy-[6]-gingerdiol isomer were quite consistent between 
samples. 

The 2019 ginger had the highest proportion of [6]-gingerol (12.5% 
of the total peak area) and the lowest proportion of [6]-shogaol (18.5%). 
After [6]-shogaol and [6]-gingerol, the next greatest constituent was 
diacetoxy-[6]-gingerdiol, which comprised between 7.4 and 8.7% of the 
total peak area. [10]-shogaol was also present in relatively high con-
centrations (4.2–7.0% of the total peak area). 

4. Conclusion 

Significant differences were found between the three ginger samples 
in their pungent components, as well as in the volatile terpenes present. 
The 2019 sample contained much higher levels of 6-gingerol and 
possessed a higher 6-gingerol:6-shogaol ratio. A total of 54 terpenoid 
derivatives were identified in the dried ginger samples, alongside 35 
gingerol derivatives. Several compounds are reported from ginger for 
the first time. Further research is recommended to allow the correlation 

of specific compounds with specific aspects of ginger flavour and 
quality. 
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Fig. 1. HPLC chromatograms of the three powdered ginger samples. The labelled peaks are (1) [6]-gingerol, (2) [6]-shogaol, (3) [8]-gingerol and (4) [10]-gingerol.  

Fig. 2. The total ion chromatogram of the three ginger samples. Black = 2019, pink = 2018, blue = 2017. Compound numbers correspond to those provided in 
Table 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Table 2 
GC-MS profiles of the major volatile and pungent constituents of the three dried ginger samples. Data are given as percent of total peak area in each chromatogram. 
Compound numbers correspond to the chromatogram in Fig. 2.  

# Rt 

(min) 
LRI Lit 

LRI^ 
M+

(m/z) 
Base peak 
(m/z) 

Compound Class 2017 
ginger (%) 

2018 
ginger (%) 

2019 
ginger (%) 

1 4.33 953 953 136 93 Camphene Monoterpene 0.38 0.27 0.24 
2 8.41 1223 1228 156 69 β-citronellol Monoterpene 0.18 0.30 0.21 
3 8.80 1247 1245 154 69 Geraniol Monoterpene 0.95 1.03 0.73 
4 11.00 1374 1376 196 69 Geranyl acetate Monoterpene 0.64 0.64 0.35 
5 13.11 1482 1483 202 132 α-curcumene Sesquiterpene 1.40 1.89 0.69 
6 13.39 1496 1495 204 119 Zingiberene Sesquiterpene 1.42 2.49 1.19 
7 13.53 1503 1504 204 93 α-farnesene Sesquiterpene 0.67 1.44 0.82 
8 13.66 1509 1509 204 69 β-bisabolene Sesquiterpene 0.56 0.93 0.34 
9 13.99 1525 1518 204 69 β-sesquiphellandrene Sesquiterpene 1.41 2.31 0.83 
10 14.51 1550 1547 222 59 Elemol Sesquiterpene 0.54 0.55 0.41 
11 14.70 1559 1556 222 69 trans-nerolidol Sesquiterpene 0.51 0.58 0.37 
12 15.36 1591 1588 222 69 cis-sesquisabinene hydrate Sesquiterpene 0.43 0.42 0.41 
13 15.87 1614 1620 222 69 Zingiberenol Sesquiterpene 0.67 0.63 0.62 
14 16.22 1631 1638 222 69 trans-sesquisabinene hydrate Sesquiterpene 0.39 0.48 0.60 
15 16.29 1635 1622 222 121 Epiglobulol Sesquiterpene 0.30 0.42 0.27 
16 16.37 1638 1638 194 137 Zingerone Gingerol 

derivative 
0.50 0.55 0.60 

17 16.80 1658 1654 222 59 β-eudesmol Sesquiterpene 0.92 0.97 0.80 
18 17.38 1686 1687 222 137 Shyobunol Sesquiterpene 1.01 0.99 0.93 
19 19.90 1805 1781 272 69 α-springene Diterpene 2.09 2.08 1.29 
20 21.06 1862 1853 236 109 Corymbolone Monoterpene 0.87 1.01 0.54 
21 22.78 1952 1980 270 119 Geranyl-p-cymene Diterpene 1.05 0.54 0.46 
22 24.05 2029 2033 290 69 Geranyl linalool Diterpene 0.66 0.35 0.45 
23 25.15 2109 2113 286 137 Tentative: 4,6-bis(4-methylpent-3-en-1-yl)-6- 

methylcyclohexa-1,3-diene-carbaldehyde 
Sesquiterpene 1.69 1.81 1.29 

24 26.02 2172 2183 266 137 [4]-gingerol Gingerol 
derivative 

0.14 0.31 0.49 

25 26.54 2214 2224 276 137 [6]-isoshogaol Gingerol 
derivative 

0.51 0.40 0.41 

26 26.67 2226 2235 278 137 [6]-paradol Gingerol 
derivative 

1.34 1.68 1.78 

27 27.37 2291 2289 276 137 [6]-shogaol Gingerol 
derivative 

23.68 21.96 18.49 

28 27.66 2319 ND 290 151 Me-[6]-shogaol Gingerol 
derivative 

0.61 0.71 0.38 

29 27.76 2328 2335 292 137 [6]-gingerdione Gingerol 
derivative 

1.90 1.57 2.56 

30 28.38 2387 2383 294 137 [6]-gingerol Gingerol 
derivative 

6.04 9.45 12.46 

31 28.56 2403 ND 308 151 Me-[6]-gingerol Gingerol 
derivative 

0.44 0.48 0.65 

32 28.97 2449 2454 336 137 Acetoxy-[6]-gingerol Gingerol 
derivative 

0.25 0.18 0.97 

33 29.25 2480 ND 296 137 [6]-gingerdiol Gingerol 
derivative 

3.27 3.49 4.32 

34 29.37 2494 2489 338 137 Isomer of 5-acetoxy-[6]-gingerdiol Gingerol 
derivative 

0.86 0.92 1.16 

35 29.47 2504 2506 380 137 Diacetoxy-[6]-gingerdiol Gingerol 
derivative 

8.72 7.38 8.31 

36 29.66 2526 2524 394 151 Methyl diacetoxy-[6]-gingerdiol Gingerol 
derivative 

1.35 1.40 2.01 

37 29.80 2541 ND 320 137 [8]-gingerdione Gingerol 
derivative 

1.00 0.36 1.11 

38 30.28 2595 2592 290 177 1-dehydro-[6]-gingerdione Gingerol 
derivative 

2.56 1.66 3.34 

39 31.28 2717 2720 332 137 [10]-shogaol Gingerol 
derivative 

6.96 4.30 4.16 

40 31.61 2758 2762 348 137 [10]-gingerdione Gingerol 
derivative 

3.39 1.49 3.16 

41 34.02 3078 3077 430 137 [6]-gingerdiol (2E)-geranial acetal Gingerol 
derivative 

1.67 2.64 2.80 

42 34.53 3146 ND 356 137 Gingerenone A Gingerol 
derivative 

0.41 0.48 0.59 

Sum of quantified volatiles 84.34 83.54 83.59 

^literature LRI values: Bartley and Jacobs (2000), El-Sayed (2021), Huang et al. (2012), Nishidono et al. (2020), Singh et al. (2008). 
ND = no data available. 
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