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Prediction of biomarkers of oral 
squamous cell carcinoma using 
microarray technology
Guang Li1,*, Xian Li2,*, Meng Yang3, Lvzi Xu1, Shixiong Deng1 & Longke Ran1

Microarray data is used to screen the genes of oral squamous cell carcinoma (OSCC). Microarray data of 
OSCC and normal tissues were downloaded from GEO database and analyzed with Benjamini-Hochberg 
(BH) method. Differentially expressed genes (DEGs) were then uploaded on DAVID database to process 
enrichment analysis. Target genes were finally chosen for verification experiment in vitro and in vivo. 
78 DEGs were selected from 54676 genes, including 46 up- and 32 down- regulation. GO term showed 
that these genes were related to epidermal growth (biological processes), extracellular region (cellular 
components) and cytokines activity (molecular function). Protein network interaction demonstrated 
that OSCC was closely allied to the five key genes including CXCL10, IFI6, IFI27, ADAMTS2 and COL5A1, 
which was consistent with the RT-PCR data. High-expressed gene CXCL10 was chosen for further 
cell experiment, and the results indicated that CXCL10 can promote the proliferation, migration and 
invasion of normal cells and inhibited the cancer cells after si-RNA transfection. Moreover, it has been 
proven that CXCL10 was possibly related to the occurrence and development of OSCC. Understanding 
the regulation of OSCC expression will shed light on the screening of cancer biomarker.

1.6 million people in the world suffered from head and neck squamous cell carcinoma (HNSCC)1, and 330 
thousand people died every year. About half were oral squamous cell carcinoma (OSCC)2, which was a highly 
aggressive head and neck tumor and prone to local recurrence and metastasis3. The development of OSCC was a 
long-time, multi-stage and multi-factor process, and many regulatory factors were involved in cell carcinogenesis4.  
However, the detailed molecular mechanism of this cancer was still unclear. Previous studies5 have reported that 
consecutive reactions were formed through various abnormal expressed genes, and the gene expression profile 
was the key to find pathological mechanism of OSCC6. Traditional methods of gene expression analysis, such as 
Northern-Blotting technology7, were mainly concerned with single or several genes. However, the interaction 
effects can not be found from multiple genes.

Microarray, as a novel technology, represented that thousands of DNA probes corresponding to target genes 
were placed on a tiny chip, which can determine the gene expression from the samples8,9. The method was mainly 
applied to comparison difference between cancer and normal tissues, different subtypes of cancer, or patients with 
different prognosis, and so on10. From these studies, people could gradually understand the mechanism of dis-
eases, master effective methods for the diagnosis and detection of disease, and predict patients’ prognosis, which 
showed a great significance for the diagnosis and treatment of the disease in the future.

In 1999, T.Golub11 firstly focused on cancer classification using microarray, and the results represented that 
gene expression data obtained from oligonucleotide microarray, including acute myeloid leukemia (AML) and 
acute lymphoblastic leukemia (ALL) were successfully separated, and DEGs were listed in the two diseases, which 
revealed feasibility and potential of microarray technology in cancer classification. A new leukemia subtype was 
followed and divided through clustering analysis with these gene expression data. Recently, microarray technol-
ogy has been widely applied in cancer research, including various types of leukemia12, lung cancer13, and prostate 
cancer14, which provides a new strategy of pathogenesis of cancer on the molecular level.

In this study, we aimed to analyze the differentially expressed genes (DEGs) using the gene expression profile 
analysis between OSCC and normal tissues by microarray technology. DEGs were selected and regarded as the 
genes related to OSCC development, and verification experiments were used to understand the pathogenesis of 

1Department of Bioinformatics, Chongqing Medical University, Chongqing, China. 2College of Medical Informatics, 
Chongqing Medical University, Chongqing, China. 3Research Department, Children Hospital of Chongqing Medical 
University, Chongqing, China. *These authors contributed equally to this work. Correspondence and requests for 
materials should be addressed to S.D. (email: dengshixiong1963@163.com) or L.R. (email: longkeran@aliyun.com)

received: 20 September 2016

accepted: 06 January 2017

Published: 08 February 2017

OPEN

mailto:dengshixiong1963@163.com
mailto:longkeran@aliyun.com


www.nature.com/scientificreports/

2Scientific Reports | 7:42105 | DOI: 10.1038/srep42105

oral cancer. In addition, further molecular mechanism and genetic characteristics of OSCC were discussed to 
explore a potential gene therapy of OSCC.

Materials and Methods
Gene screening.  Data preparation.  From GEO data searching, a total of 141 OSCC affimetrix literature 
were documented to identifiy, 23 studies were retained after removing duplicated records. 8 articles were excluded 
according to the title and sample names, and the remained 15 full-text articles were assessed for eligibility. Over 
half of these data were not passed for containing null values or the median-centered across samples was non-zero, 
which was not suitable for comparison. After that, 7 microarry datasets were finally recuited in analysis. These 
GSE datasets were downloaded from NCBI database (GEO http://www.ncbi.nlm.nih.gov/geo/), which can be 
detected by Affymetrix Human Genome Array Platform. All the GSE samples including OSCC and normal tissue 
two groups, we converted the data to (log)2(ratio) format and RMA expression software was applied to carry on 
data normalization, data transformation and quality control to guarantee reliable data in subsequent analysis15.

Differential expression analysis.  R (3.1.1) limma package and Benjamini-Hochberg (BH) method16 was intro-
duced for gene screening (P <​ 0.01), and differences between two groups were examined for more than 3 times. 
DEGs were then clustered by Cluster 3.0 and visualized with Java TreeView. These differential genes were 
uploaded to DAVID17 database to process function enrichment analysis and pathway analysis. Finally, with the 
help of STRING18, the probe number of DEGs was converted into protein, and the co-expression graph of protein 
network was obtained.

Validation experiment.  Sample preparation.  12 cases of OSCC were collected from Oral Hospital of 
Chongqing Medical University, and 6 normal oral tissues were taken as controls. OSCC and normal cell lines 
were purchased from Chongqing Manuik Company, and cultured in MEM/EBSS medium containing 10% fetal 
bovine serum (FBS).

RT-PCR experiment.  RNA samples were firstly extracted from OSCC and normal tissues, then superscript III 
kit (Invitrogen) were used to reverse transcription. Each sample was amplified with differentially expressed gene 
and relarant gene, and primers were designed according to the target genes. The scramble siRNA sequence was 
employed as the control transfection for both normal cell and OSCC cells.

CXCL10 siRNA transfection.  OSCC cells were cultured in cell plate (6 holes) after 12 to 24 h, washed twice with 
serum-free MEM and stored in incubator. CXCL10 siRNA solution was added into the plate with 6 holes, blended 
and cultured after 4 to 6 h, then replaced with complete medium containing 10% FBS.

MTT method.  Cells suspension (1 ×​ 106/ml) were collected after 48-hour transfection. Each hole was added 
with 20 μ​l 0.5% MTT solution, cultured for 4 h. The supernatant was centrifuged and drained, and 150 μ​l dimethyl 
sulfoxide was added in each hole, shaked on bed with low oscillation speed for 10 min to dissolve the crystals. 
Absorbance value of each hole was determined with enzyme-linked immune reader (OD 570 nm). At the same 
time, zero adjusting holes were contained with medium, MTT, dimethyl sulfoxide, control hole including cells, 
same concentration of drug dissolution medium, culture solution, MTT, and dimethyl sulfoxide, each group 
setting with 4 holes. Cell survival rate =​ (processed cells absorbance/ control group absorbance) ×​ 100%, and the 
growth curve was drawing.

Wound healing experiment.  After CXCL10 siRNA transfection, a linear wound was made by scraping a non-
opening Pasteur pipette across the confluent cell layer. Cells were washed with PBS to remove detached cells 
and debris and incubated in serum-free medium. Images were observed with inverted microscope camera and 
analyzed with MATLAB software to measure the size of wounds at the indicated times. Gap fusion rate =​ (0 h gap 
width ~ 12 h gap width)/0 h gap width.

Transwell experiment.  The upper room of Transwell was filled with 20 μ​l Matrigel and MEM (1:2), reacted 
in 37 °C for 30 min to form gel. The other room was added 500 μ​l medium containing serum. 200 μ​l of cell 

Series Platform Affymetrix GeneChip References

1 GSE31056 GPL10526 [HG-U133_Plus_2] Affymetrix GeneChip Human 
Genome HG-U133 Plus 2 Array [Brainarray Version 12] 25

2 GSE2280 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array 26

3 GSE41116 GPL5175 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array 
[transcript (gene) version] 27

4 GSE31853 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array 28

5 GSE3524 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array 29

6 GSE25099 GPL5175 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array 
[transcript (gene) version] 30

7 GSE30784 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array 31

Table 1.   A summary of OSCC microarray datasets from different GEO datasets.

http://www.ncbi.nlm.nih.gov/geo/
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suspension were prepared, and 3 ×​ 104 cells were added in the upper room for 48 h, then fixed with paraformal-
dehyde for 3 min, followed by crystal violet staining for 5 min. Cells were observed under inverted microscope. 3 
visions were selected randomly and the number of transmembrane cells was counted in each field.

Statement.  The use of human oral tissue samples were approved with Chongqing Medical University (CQMU), 
all experiments were performed in accordance with relevant guidelines and regulations, all methods were carried 
out in accordance with relevant guidelines and regulations, and all experimental protocols were approved by 
CQMU. Informed consent was obtained from all subjects.

Statistical methods.  Mean and standard deviation (SD) values were calculated for each group of data. 
Analysis of variance (ANOVA) was performed to detect whether a significant difference (p <​ 0.05, n ≥​ 3) existed 
between groups. The Holm t-test was used to identify any differences.

Results
Data profile.  In this study, we collected a total of 7 gene expression profile datasets from previously pub-
lished articles about OSCC. We transformed the GSE Series Matrix files(cel), platform sets, and annotation files 
(cdf) from the gene Expression Omnibus(GEO). We chose 8 normal data and 8 cancer data in each GSE dataset, 
including 112 array samples in total. According to RMA, normalization data were confirmed with high quality 
and can be used for further analysis. Details of all data sets were summarized in Table 1. The oral cancer tissues 
were performed as experiment group (C), while normal tissues were regarded as control (N).

Differential expression analysis.  For data precision and consistency, we use the BH method to dispose 
the data and adjust p-value to correct the data, FC was declared to be at least 3 fold and p <​ 0.01 was regarded as 
significant. Compared to normal tissues, 78 DEGs were selected from all the 7 datasets, including 46 up-regulated 
genes and 32 down-regulated genes. Figure 1 showed the heatmap of different expression of these genes.

Enrichment analysis and pathway analysis.  Enrichment analysis were performed with DAVID to fur-
ther explore the function of DEGs. GO showed that the DEGs were related to epidermal development, biofouling 
and other biological processes (BP), molecular structure activities and actin binding molecular function (MF), 
cell components (CC) with extracellular region (Fig. 2). KEGG pathway revealed that pathways including extra-
cellular matrix interactions, small cell lung cancer and focal adhesion were mainly affected.

Figure 1.  Hierarchical clustering heat map of DEGs by normal tissues (N) and cancer tissues (C) in OSCC. 
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Protein-protein interaction analysis.  All the gene probes were successfully translated to correspond 
expressed protein. Through uploading the multiple proteins on STRING, we obtained total 74 proteins identified 
as human, half of which were associated with each other, while the rest proteins were isolated. Then, a further 
analysis of protein co-expression network image (Fig. 3) were carried out and 5 key genes from the most network 
binding nodes were found including CXCL10, IFI6, IFI27, ADAMTS2 and COL5A1, which were all up-regulated 
in the mentioned expression results.

Figure 2.  Biological process (BP), molecular function (MF) and cellular component (CC) of DEGs by 
function enrichment in PPI network. 

Figure 3.  Protein-protein interaction (PPI) network of DEGs by STRING. The interaction score was set to 
high confidence (0.720).
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RT-PCR.  The expression of five genes were verified in tissues using RT-PCR. As shown in Fig. 4, the expres-
sion of these genes in OSCC tissues were all significantly higher than normal tissues. The log2 (fold change) 
between normal and cancer was calculated. Among CXCL10 (3.99), IFI6 (3.57), IFI27 (3.35), ADAMTS2 (3.30) 
and COL5A1 (3.10), CXCL10 showed the highest fold and was chosen as the target gene in our further validation 
experiment. Then, OSCC and normal cell lines were transfected with CXCL10 siRNA and continuous observa-
tions were obtained. Figure 4 presented that the expression of CXCL10 significantly inhibited in two cell lines and 
reached the maximum in 48 h.

Cell proliferation assay by MTT.  According to Fig. 5, cell proliferation was decreased significantly in can-
cer cells with low-expressed CXCL10. In contrast, after CXCL10 siRNA transfection for 48 h, the normal cells 
showed a growth of blowout, and the relative survival rate gradually increased, suggesting that differences were 
significant before and after transfection experiment (P <​ 0.05).

Figure 4.  (A) Five target genes expression in normal and cancer tissues, the fold change of CXCL10 was 
higher among these genes; (B) CXCL10 expression at different transfection time (0–72 h), the scramble siRNA 
sequence was employed as control, at 48 h both cells showed lower expression.

Figure 5.  Rate of viable cells after different days (0–5d) siRNA transfection in both normal and cancer cells. 
siRNA-mediated CXCL10 promoted normal cells and inhibited cancer cells proliferation.



www.nature.com/scientificreports/

6Scientific Reports | 7:42105 | DOI: 10.1038/srep42105

Cell migration ability by wound healing test.  The wound healing rate of cell lines in 0 h and 12 h were 
calculated (Fig. 6). Results showed that the rate of cancer cells was slower after transfection, while the rate of 
siRNA CXCL10 in normal cells was significantly increased (P <​ 0.05).

Invasion ability by Transwell assay.  The image was treated with MATLAB software and accessed by 
grey value. According to the random counting views of Transwell experiment showed that after transfected with 
siRNA CXCL10 for 48 h, normal cells appeared weaker invasion ability with non-transfected normal cells. On the 
contrary, the number of cancer cells was significantly increased in 48 h transfection (Fig. 7). A significant differ-
ence was observed in both cell lines and the numbers of migrating cells were counted (P <​ 0.05).

Discussion
In this study, we downloaded microarray data from GEO, and finally found 78 DEGs through bioinformati-
cal methods, including 46 up-regulated genes and 32 down-regulated genes, which were involved in transcrip-
tion, apoptosis, anti-apoptosis, stress, RNA metabolism and so on. The diverse function made it possible that we 
could find the target genes of cancer and reveal molecular mechanism. The maximum expression genes reached 
7.9(MMP1), 5.7(PTHLH) and 5.3(MMP3), and these genes were also closely connected each other in enrich-
ment, clustering, protein co-expression network and KEGG pathway. Moreover, these gene links could be found 
in other cancers19, which were mainly related to gene transcription process. Recognition of the data enabled us to 
consider the further expansion of signal transduction pathway.

From all the genes, CXCL10, IFI6, IFI27, ADAMTS2 and COL5A1 were involved in the co-expression net-
work, especially, CXCL10 was a up-regulated gene which linked the most number of nodes. However, the molec-
ular mechanisms by which CXCL10 regulated cancer cell proliferation and invasion remained unclear. CXC 
chemokine ligand, also known as interferon inducible protein, can regulate immune response, angiogenesis, cell 

Figure 6.  Wound healing experiment (100 μm) with CXCL10 siRNA transfection (0–12 h). Data and 
representative images were shown for normal and cancer cells. Bar charts showed the migration rate of each 
treatment.
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apoptosis, cell cycle and cell proliferation. CXCL10 20 was usually associated with the process from tumor occur-
rence, development and therapy to prognosis of cancer. Previous studies found that CXCL10 was a novel candi-
date oncogene which may be a therapeutic target for several types of human cancer. It had a dual effect on tumor, 
inhibition21 and promotion22.

It has been known that CXCL10 could directly combine with chemokine receptor3 (CXCR3) and have biolog-
ical effect in cancer behaviors such as anti-proliferation. Giuliani23 showed that CXCL10 can affect the biological 
characters of myeloma through autocrine modes of action. It combined with CXCR3B receptor and significantly 
inhibited cell proliferation. CXCL10 activates CXCR3A receptors on myeloma cells, which attenuated apoptosis 
mediated by FAS (CD95). Besides, CXCL10 can promote cancer cell apoptosis by interfering oncogene expres-
sion. Zhang’s24 research presented that CXCL10 can inhibit the expression of HPV oncogene E6 and E7 and 
promoted the p53 expression, which finally caused Hela cell apoptosis. These findings provide evidence that 
the regulation of CXCL10 may play an important role in tumorigenesis. However, the abnormal expression of 
CXCL10 and its possible carcinogenesis in OSCC have not been addressed previously.

In this study, we detected changes in the expression of CXCL10 in cancer which was significantly higher than 
that of normal tissues. Further cell experiment indicated that CXCL10 expression obviously declined in cancer 
cells after its siRNA transfection, which inhibited the cancer cell proliferation and in turn promoted normal 
cell growth. Moreover, wound healing experiment showed normal cells speed up with low expressed CXCL10, 
while cancer cells demonstrated an obvious decline. In Transwell invasion experiment, the number of cancer 
cells through Transwell room decreased sharply while normal cells increased. These results indicated that the 
inhibition of CXCL10 can weaken the proliferation, migration and invasion ability of tumor, which suggested that 
CXCL10 abnormal expression may relate to the occurrence and development of oral cancer.

Conclusion
In summary, bioinformatic methods were used to analyze the microarray data of OSCC, and 72 genes were finally 
screened out including 46 up-regulated genes, and 32 down-regulated genes. The results of RT-PCR on five signif-
icantly DEGs were consistent with theoretical analysis in 12 cases of OSCC and normal tissues, which expression 
changed by at least 3-fold. We performed cell experiment on CXCL10, whose gene expression reached the lowest 
after 48 hours transfection, and its inhibition can effectively restrain OSCC tumor proliferation and metastasis. 
Such gene may be a novel biomarker of OSCC and diagnostic tool for doctors. However, the molecular mecha-
nism, biological behavior and its clinical application need further study and explore.
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