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Abstract
The prevalence of heart failure is expected to increase almost 50% in the next
15 years because of aging of the general population, an increased frequency of
comorbidities, and an improved survival following cardiac events. Conventional
treatments for heart failure have remained largely static over the past 20 years,
illustrating the pressing need for the discovery of novel therapeutic agents for
this patient population. Given the heterogeneous nature of heart failure, it is
important to specifically define the cellular mechanisms in the heart that drive
the patient’s symptoms, particularly when considering new treatment
strategies. This report highlights the latest research efforts, as well as the
possible pitfalls, in cardiac disease translational research and discusses future
questions and considerations needed to advance the development of new
heart failure therapies. In particular, we discuss cardiac remodeling and the
translation of animal work to humans and how advancements in our
understanding of these concepts relative to disease are central to new
discoveries that can improve cardiovascular health.
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Introduction
Heart failure, the common end stage of heart disease, is defined 
clinically by fatigue, shortness of breath, and fluid retention, includ-
ing pulmonary edema1. Heart failure is a syndrome of major public 
health significance, impacting 5.7 million worldwide with an inci-
dence of 870,000 adults in the United States alone. The prevalence 
of heart failure is expected to increase by 46% by 2030, and this is 
due in large part to aging of the general population but also to the 
improved survival following events such as myocardial infarction 
and the increased prevalence of comorbidities such as obesity and 
diabetes2. The cost to society is consequential. The 5-year mortality 
for heart failure remains approximately 50%, despite current ther-
apies. Moreover, the financial costs associated with heart failure 
are expected to balloon to over $70 billion per year by 20301. As a 
result, the discovery of new drug targets for heart failure prevention 
or treatment (or both) remains an area of pressing concern.

The current approach to chronic heart failure therapy
Current therapies for heart failure are both medicinal and device-
driven3. The mainstays of heart failure pharmacotherapy include 
β-blockers (β-adrenergic receptor antagonists such as carvedilol, 
metoprolol, and bisoprolol), angiotensin-converting enzyme inhibi-
tors ([ACEI] e.g., enalapril and lisinopril), angiotensin II receptor 
blockers (e.g., losartan and valsartan), aldosterone antagonists, 
hydralazine and isosorbide dinitrate, and diuretics4. Ventricular 
assist devices, such as the implantable cardioverter-defibrillator, 
left ventricular (LV) assist device, and cardiac resynchronization 
therapy, are widely used, and cardiac transplant remains a therapy 
of last resort for some patients. There has been tremendous excite-
ment this year as the first new drugs since 1999 have been approved 
by the US Food and Drug Administration for chronic heart fail-
ure. Ivabradine (Corlanor) is a sinoatrial node I

f
 current inhibitor 

that has been shown to have efficacy in a variety of clinical trials, 
including SHIFT (Systolic Heart failure treatment with the I

f
 inhibi-

tor ivabradine Trial)5–7. LCZ696 (Entresto™) is a combination drug 
including a neprilysin endopeptidase inhibitor (sacubitril) and angi-
otensin receptor blocker (valsartan). In the PARADIGM-HF (Pro-
spective Comparison of ARNI With ACEI to Determine Impact on 
Global Mortality and Morbidity in Heart Failure) trial, LCZ696 was 
shown to reduce mortality in comparison with enalapril8. Finally, 
ranolazine improved hemodynamic status in the proof-of-concept 
RALI-DHF (RAnoLazIne for the Treatment of Diastolic Heart 
Failure) trial9. However, even with these new drugs, heart failure 
morbidity and mortality are expected to increase substantially in 
the near future.

Heart Failure: HFrEF vs. HFpEF
In considering the future of heart failure therapies, it is impor-
tant to remember that heart failure is not a homogenous entity 
but instead a clinical syndrome related to end-stage heart disease. 
Heart failure can be divided into two groups: (a) reduced ejec-
tion fraction (HFrEF) and (b) preserved ejection fraction (HFpEF) 
(ejection fraction >45%); the two forms confer a similar progno-
sis and have similar prevalence10–12. As the names suggest, HFrEF 
includes prominent systolic cardiac dysfunction, whereas HFpEF 
is more closely associated with diastolic dysfunction. Although the 
current therapies for heart failure have been established in clini-
cal trials involving HFrEF patients, none has been therapeutically 

useful for HFpEF patients10,11,13,14. Instead, exercise may be the only 
clinically effective, currently available HFpEF treatment15, and sev-
eral small-scale clinical trials show that exercise improves cardi-
orespiratory variables such as oxygen consumption (VO

2
), diastolic 

dysfunction, and quality of life in HFpEF patients16. The Exercise 
Training in Diastolic Heart Failure (EX-DHF) (ISRCTN 86879094) 
study will examine these findings on a larger scale and hopefully 
provide insight regarding the use of exercise to improve mortality. 
The lack of drug therapies for HFpEF may be due to the limited effi-
cacy of current drugs to treat diastolic dysfunction. Alternatively, it 
was recently suggested that many patients with diagnosed HFpEF, 
typically older women with diabetes and obesity, do not have struc-
tural heart disease but instead exhibit fairly general signs that define 
heart failure due to non-cardiac problems17. For example, although 
pulmonary edema is usually a reliable indicator of LV dysfunc-
tion (and high diastolic pressures), it can also be caused by pri-
mary pulmonary disease (e.g., adult respiratory distress syndrome) 
or low plasma colloid oncotic pressure due to other etiologies18. 
HFpEF should also be distinguished from high-output heart failure, 
a form of heart failure that typically is secondary to a non-cardiac 
disease19. In high-output heart failure, the heart responds normally 
and reversibly to extra-cardiac stress, often undergoing physiologic 
hypertrophy that is induced by low afterload and volume overload 
on the heart. Thus, when novel approaches to the treatment of heart 
failure are considered, it is important to precisely define the cohort 
of patients being considered and whether the heart is in fact the 
relevant target for therapeutic intervention.

Pathological cardiac remodeling
A long-term goal of heart failure therapies is to reverse or prevent car-
diac remodeling, the general term referring to the structural changes 
in the heart induced by chronic stress. While the heart can respond 
to acute demands for increased output by changes in chronotropy 
(heart rate), inotropy (contractility), and lusitropy (relaxation), the 
adult heart is generally limited to hypertrophy as a compensatory 
mechanism20. Cardiac hypertrophy at the whole-organ level reflects 
non-mitotic growth of the cardiac myocytes. The generally cylin-
drical adult myocyte can grow in either width (diameter) or length, 
resulting in thickened ventricular walls or chamber dilation, respec-
tively. In theory, concentric myocyte growth increases the width 
of cardiomyocytes, inducing parallel assembly of sarcomeres and 
thereby reducing ventricular wall stress (Laplace’s law). In contrast, 
eccentric myocyte growth increases cardiomyocyte length, induc-
ing serial addition of sarcomeres to accommodate greater ventricu-
lar volumes without stretching individual sarcomeres beyond the 
optimum length for contraction (Frank-Starling law)21. In pressure 
overload diseases, such as aortic stenosis or hypertension, there is 
increased systolic wall stress, and concentric hypertrophy initially 
predominates. In volume overload diseases, such as following a 
myocardial infarction or dilated cardiomyopathy, eccentric hyper-
trophy predominates, presumably in response to increased diastolic 
wall stress. Although sarcomeric assembly is considered initially 
compensatory, myocyte hypertrophy is eventually concomitant 
with altered myocyte gene expression, metabolism, excitation- 
contraction coupling, increased cell death, and myocardial fibrosis. 
Together, these factors contribute to systolic and diastolic cardiac 
dysfunction and promote pathological cardiac remodeling and 
subsequent heart failure.
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Outstanding questions in heart failure research
The above description of heart failure is the basis for the underlying 
paradigm driving most research in the field, primarily the identi-
fication of potential drug targets that protect cardiac contractility 
and inhibit myocyte death and interstitial fibrosis22,23. We propose 
the following issues as central to advancing the treatment of heart 
failure, including questions to stimulate discussion about the under-
lying assumptions concerning disease development:

1. A fundamental question concerns whether any of the features in 
cardiac remodeling are necessarily compensatory (i.e., can be safely 
targeted in the face of cardiac stress). For example, as recently dis-
cussed in a point-counterpoint editorial series in Circulation24,25, 
concentric LV hypertrophy is often considered compensatory in 
diseases of increased afterload. The current first-line therapies for 
heart failure target the adrenergic and renin-angiotensin systems, 
having effects both on cardiac myocytes and on the vasculature25. 
It has been argued that lowering afterload and LV wall stress is 
essential to the efficacy of these drugs in patients (whether by low-
ering blood pressure for hypertension or by contemporaneous aortic 
valve replacement for aortic stenosis) and that attenuating hypertro-
phy without lowering afterload would not be tolerated in humans26. 
However, diverse studies in rodents using pharmacological agents 
such as cyclosporine, and more elegantly with genetically modified 
mice, have shown that inhibition of hypertrophy not only is toler-
ated in the face of persistent pressure overload but also can prevent 
or treat heart failure22.

2. It remains unclear which features in cardiac remodeling are 
co-regulated by signal pathways that may be targeted and which 
features may be specifically targeted independently of other aspects 
of remodeling. Although most studies show that hypertrophy and 
fibrosis are tightly associated in disease, recent findings by the 
Backs laboratory showed that mice lacking the γ and δ isoforms of 
Ca2+/calmodulin-dependent protein kinase II had improved cardiac 
function and decreased fibrosis but persistent hypertrophy follow-
ing transverse aortic constriction27. Whereas some aspects of the 
changes in myocyte gene expression, metabolism, and excitation-
contraction coupling may be detrimental (e.g., the decreased sarco-
plasmic reticulum Ca2+ ATPase [SERCA2a] activity in heart failure), 
others may be beneficial (e.g., increased natriuretic peptide expres-
sion or concentric hypertrophy that decreases wall stress). These 
exciting findings suggest that the beneficial aspects of remodeling 
may be retained while therapeutically combatting the deleterious 
aspects that lead to heart failure.

3. It remains unclear what causes diastolic dysfunction, especially 
in HFpEF. Diastolic dysfunction is the result of reduced active 
relaxation or ventricular compliance. Active relaxation occurs 
in large part due to ATP-dependent Ca2+ reuptake during diastole 
primarily through SERCA2a, and reduced SERCA2a activity is 
associated with heart failure. Accordingly, in animal models, SER-
CA2a replacement has been effective in improving overall cardiac 
function28. Decreased compliance and associated atrial hypertro-
phy have long been associated with interstitial fibrosis29,30. How-
ever, the relative extent of fibrosis and altered Ca2+ reuptake can 
vary in different models for diastolic dysfunction30,31, raising the 

question of what should be targeted in diastolic dysfunction under 
different clinical scenarios. In numerous animal models, reversal or 
reduction of LV hypertrophy has been shown to improve diastolic 
function independently of hemodynamic alteration, implying that 
hypertrophy itself plays a role in diastolic dysfunction. However, 
clinical studies have shown that this relationship is less apparent 
in humans32. Finally, coronary vascular dysfunction may have a 
profound impact on myocardial oxidative capacity and diastolic 
dysfunction in heart failure33. Recent work has shown that swine 
with diastolic dysfunction have myocardial oxygen supply/demand 
imbalance34. This suggests that impaired coronary vasculature func-
tion may contribute to the inability of HFpEF patients to respond 
to situations of increasing stress by limiting ATP production and 
subsequent active relaxation.

4. Humans are not large mice. Little is known or being investigated 
about cardiac signal transduction in large mammals, despite the 
significant differences between large and small mammalian hearts. 
Instead, most of what is known about the regulation of myocyte 
hypertrophy and cardiac remodeling has been defined in mice and 
rats25. Differences between large and small mammals include life 
span, heart rate, excitation-contraction coupling and Ca2+ handling, 
α:β-myosin heavy chain ratio, tolerance for myocardial injury, and 
rate of progression of cardiac remodeling25. The successful devel-
opment of therapeutics for human patients is dependent upon the 
identification of mechanisms that are in fact relevant to the large 
mammalian heart. For example, many question whether large ani-
mals subject to pressure overload can tolerate diminished hyper-
trophy similar to mice24. A review by Dixon and Spinale discusses 
the importance of large animal models in translating basic science 
findings to the clinic and addresses the lack of studies using large 
animals to address pressure overload LV hypertrophy and its role 
in the development of heart failure35. An advantage of large animal 
models is that key determinants of myocardial work and energy 
consumption, including LV wall tension, heart rate, and vascular 
wall-to-lumen ratios36, are similar to those in humans. Thus, large 
animal models could provide an essential link to implement discov-
eries made in murines into models exhibiting functional and ana-
tomical similarities more analogous to humans as a means to assess 
therapeutic potential for treating heart failure clinically. Significant 
financial challenges exist in generating, sustaining, and implement-
ing large animal models of heart failure into research programs. 
Specific programs aimed at soliciting and supporting large ani-
mal cardiovascular research from both federal and private sources 
would help stimulate more large animal studies in the future and 
aid in bridging the gap between small animals, large animals, and 
humans.

Hope for the future
It is an exciting time to be involved in heart failure research. There 
are ample animal models, both small and large, addressing diverse 
types of heart diseases, as well as protocols to study cardiac cell 
types in vitro. Our knowledge of cardiac cell regulation continues 
to rapidly increase, and new tools, including novel methods for 
visualizing signaling in real time, are being developed37. In addi-
tion, adeno-associated viruses are emerging as a viable therapeu-
tic approach to deliver both small interfering RNA (siRNA) and 
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