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Background
Curated databases, such as UniProt [1], DrugBank [2], CTD [3], IUPHAR/BPS [4], Reac-
tome [5], OMIM [6], or COSMIC [7], are pivotal to the development of biomedical 
science. Such databases are usually populated and updated with expensive and time-con-
suming human effort [8], that slows down the biological knowledge discovery process. 
To overcome this limitation, Biomedical Information Extraction (BioIE) aims to shift 
population and curation processes to machines by developing effective computational 
tools that automatically extract meaningful facts from the vast unstructured scientific 
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literature [9, 10]. Once extracted, machine-readable facts can be fed to downstream 
tasks to ease biological knowledge discovery. Among the various tasks, the discovery of 
Gene-Disease Associations (GDAs) is one of the most pressing challenges to advance 
precision medicine and drug discovery [11], as it helps to understand the genetic causes 
of diseases [12]. Thus, the automatic extraction and curation of GDAs is key to advance 
precision medicine research and provide knowledge to assist disease diagnostics, drug 
discovery, and therapeutic decision-making.

Most datasets for GDA extraction are hand-labeled corpora [13–15]. Among them, 
EU-ADR [13] only contains a small portion of GDA instances, making it difficult to train 
robust RE models for GDA extraction. On the other hand, PolySearch [14] only focuses 
on ten specific diseases, which are not sufficient to develop comprehensive models. 
Similarly, CoMAGC [15] only comprises gene-cancer associations on prostate, breast, 
and ovarian cancers. Hence, all datasets lack enough GDA heterogeneity to train effec-
tive RE models. Furthermore, hand-labeling data is an expensive process requiring large 
amounts of time to expert biologists and, therefore, all of these datasets are limited in 
size.

To address this limitation, distant supervision has been proposed [16]. Under the dis-
tant supervision paradigm, all the sentences mentioning the same pair of entities are 
labeled by the corresponding relation stored within a source database. The assumption 
is that if two entities participate in a relation, at least one sentence mentioning them 
conveys that relation. As a consequence, distant supervision generates a large number of 
false positives, since not all sentences express the relation between the considered enti-
ties. To counter false positives, the RE task under distant supervision can be modeled as 
a Multi-Instance Learning (MIL) problem [17–20]. With MIL, the sentences containing 
two entities connected by a given relation are collected into bags labeled with such rela-
tion. Grouping sentences into bags reduces noise, as a bag of sentences is more likely 
to express a relation than a single sentence. Thus, distant supervision alleviates manual 
annotation efforts, and MIL increases the robustness of RE models to noise.

Since the advent of distant supervision, several datasets for RE have been developed 
under this paradigm for news and web domains [16, 18, 21, 22], and recently also for bio-
medical science [10, 23, 24]. The most relevant biomedical datasets are BioRel [24]—a 
large-scale dataset for domain-general Biomedical Relation Extraction (BioRE)—and 
DTI [10]—a large-scale dataset developed to extract Drug–Target Interactions (DTIs). 
However, despite the success of distant supervision for RE tasks, its evaluation is known 
to be flawed [25, 26]. In this regard, previous works either employ inconsistent and 
expensive approaches to manually evaluate a small sample of model predictions or test 
models directly on distant-labeled data—which are inherently noisy and can skew the 
model’s performance. Only recently some progress has been made towards enhancing 
distantly-supervised datasets with human annotations [25–28].

Regarding GDA datasets, Bravo et al. [27] developed a semi-automatically annotated 
corpus based on the (GAD) [29], a retired archive of human genetic association studies 
of complex diseases. GAD provides the sentence in which a GDA is stated, but omits 
the information on the exact location of the gene and the disease within such sentence. 
Thus, the authors were required to perform Named Entity Recognition (NER)—which 
inevitably introduces noise into the annotation pipeline—to identify genes and diseases 
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within GAD sentences. Once identified, the authors kept those sentences where the gene 
and disease reflect a GDA annotated by GAD curators as positive or negative. Then, to 
store false GDAs—that is, GDAs where the gene and the disease co-occur within a sen-
tence but are not semantically associated—Bravo et al. selected sentences with co-occur-
ring genes and diseases that were not annotated by GAD curators as GDAs. Similarly, 
Nourani and Reshadat [28] exploited DisGeNET [12] to develop a semi-automatically 
annotated dataset for GDA extraction. DisGeNET is one of the largest available collec-
tions of genes and variants involved in human diseases, integrating data from expert-
curated repositories, Genome-Wide Association Studies (GWAS) catalogs [30], animal 
models, and scientific literature. For each GDA, DisGeNET provides the publication(s) 
supporting the association, a representative sentence from each publication, the origi-
nal source, as well as information on the gene and disease involved in the association. 
Hence, the authors kept the GDAs—and the corresponding sentences—coming from 
DisGeNET curated resources as true instances, whereas they obtained false GDAs 
through distant supervision by selecting sentences where co-occurring genes and dis-
eases do not participate in any GDA within DisGeNET. However, despite the use of large 
source databases and distant supervision, both the produced datasets are limited in size 
and have not been designed for a MIL setting, which is the de facto standard for dis-
tantly-supervised datasets.

To overcome the limited size of current manually or semi-automatically annotated 
GDA datasets, as well as the noisy nature of fully distantly-supervised BioRE datasets, 
we make the following contributions. First, we present TBGA, a novel large-scale, semi-
automatically annotated dataset for GDA extraction based on DisGeNET. We chose Dis-
GeNET as source database since it is one of the most comprehensive databases for GDAs 
[31], integrating several expert-curated resources, such as UniProt [1], CTD [3], and Psy-
GeNET [32]. Furthermore, DisGeNET spans several different types of GDAs, as opposed 
to other databases like OMIM [6], COSMIC [7], TTD [33], BioMuta and BioXpress [34], 
which only focus on specific GDA types. Specifically, we used the portion of DisGeNET 
with curated resources to make validation and test sets, whereas we used the rest for 
training. On the other hand, we generated false GDAs by selecting sentences where co-
occurring genes and diseases do not participate in DisGeNET GDAs. Compared to the 
dataset developed by Bravo et al. [27], TBGA exploits DisGeNET—which is three orders 
of magnitude larger than GAD—to gather true GDAs as well as to generate false ones. 
Regarding the dataset by Nourani and Reshadat [28], TBGA fully exploits DisGeNET 
resources and does not limit to curated ones. In this way, all the available expert-curated 
resources can be used to build validation and test sets, making the produced dataset 
larger than previous attempts and more realistic than fully distantly-supervised datasets. 
As a side note, we do not compare TBGA to the fully distantly-supervised GDA dataset 
by Teng et al. [23] as the dataset is not publicly available. To the best of our knowledge, 
TBGA is the largest available dataset for GDA extraction.

Secondly, we trained and tested several state-of-the-art RE models on TBGA to create 
a large and realistic benchmark for GDA extraction. We built models using OpenNRE 
[35], an open and extensible toolkit for Neural Relation Extraction (NRE). The choice 
of OpenNRE eases the re-use of the dataset and the models developed for this work to 
future researchers.
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Finally, we publicly release TBGA on Zenodo [36], whereas we store source code 
and scripts to train and test RE models in a publicly available GitHub repository [37]. 
Besides, thanks to the continuous growth of DisGeNET, the released dataset can be 
updated and expanded regularly.

Results
TBGA is the first large-scale, semi-automatically annotated dataset for GDA extraction. 
The dataset consists of three text files, corresponding to train, validation, and test sets, 
plus an additional JSON file containing the mapping between relation names and IDs. 
Each record in train, validation, or test files corresponds to a single GDA extracted from 
a sentence, and it is represented as a JSON object with the following attributes:

•	 text: sentence from which the GDA was extracted.
•	 relation: relation name associated with the given GDA.
•	 h: JSON object representing the gene entity, composed of:

–	 id: NCBI Entrez ID associated with the gene entity.
–	 name: NCBI official gene symbol associated with the gene entity.
–	 pos: list consisting of starting position and length of the gene mention within 

text.

•	 t: JSON object representing the disease entity, composed of:

–	 id: UMLS Concept Unique Identifier (CUI) associated with the disease entity.
–	 name: UMLS preferred term associated with the disease entity.
–	 pos: list consisting of starting position and length of the disease mention within 

text.

If a sentence contains multiple gene-disease pairs, the corresponding GDAs are split into 
separate data records.

Overall, TBGA contains over 200,000 instances and 100,000 bags. Table  1 reports 
per-relation statistics for the dataset. Notice the large number of Not Associated (NA) 
instances. Moreover, Fig.  1 depicts the 20 most frequent genes, diseases, and GDAs 

Table 1  Per-relation statistics for TBGA

Statistics are reported separately for each data split. Columns represent, from left to right, the considered granularity level, 
the data split, and the number of instances and bags associated with Therapeutic, Biomarker, Genomic Alterations, and NA 
relations

Granularity Split Therapeutic Biomarker Genomic 
alterations

NA

Sentence-level Train 3139 20,145 32,831 122,149

Validation 402 2279 2306 15,206

Test 384 2315 2209 15,608

Bag-level Train 2218 13,372 12,759 56,698

Validation 331 2019 1147 6994

Test 308 2068 1122 6996
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within TBGA. The most frequent genes are tumor suppressor genes, such as TP53 and 
CDKN2A, and (proto-)oncogenes, like EGFR and BRAF. Among the most frequent dis-
eases, we have neoplasms such as breast carcinoma, lung adenocarcinoma, and prostate 
carcinoma. As a consequence, the most frequent GDAs are gene-cancer associations.

TBGA is two orders of magnitude larger than current available datasets for GDA 
extraction [13–15, 27, 28]. Moreover, TBGA focuses on different association types, 
whereas most of current datasets only consider positive, negative, or false GDAs. The 
only exception is CoMAGC [15], where relations focus on different aspects of the gene 

Fig. 1  The 20 most frequent genes, diseases, and GDAs within TBGA
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expression changes and their association with cancer. Therefore, training and then test-
ing RE models on TBGA allows for a more fine-grained and realistic evaluation that 
helps building effective solutions for GDA extraction. Table 2 compares global statistics 
between TBGA, EU-ADR [13], CoMAGC [15], PolySearch [14], GAD [27], and GDAE 
[28] datasets.

On the other hand, compared to current large-scale, fully distantly-supervised BioRE 
datasets—i.e., BioRel [24] and DTI [10]—TBGA contains expert-curated data. Hence, 
TBGA represents a more accurate benchmark than fully distantly-supervised data-
sets where to train and test RE models—helping to understand the current status and 
future steps required to improve BioRE research [26]. Despite the use of expert-curated 
data, TBGA has a size comparable to that of fully distantly-supervised BioRE data-
sets. Besides, with the continuous growth of DisGeNET, the size of TBGA can further 
increase. Table 3 compares global statistics between TBGA, DTI [10], and BioRel [24] 
datasets.

Discussion
Data validation
In order to validate TBGA, we conducted comprehensive experiments with state-of-
the-art RE models under the Multi-Instance Learning (MIL) setting. MIL is the typical 

Table 2  Global statistics comparison between TBGA, EU-ADR [13], CoMAGC [15], PolySearch [14], 
GAD [27], and GDAE [28] datasets

Columns represent, from left to right, the considered dataset, the type of annotation, the total number of instances and 
publications, the average number of instances per publication, as well as the total number of genes, diseases, and relations

Dataset Annotation Instances Publications Inst.s/pub. Genes Diseases Relations

CoMAGC​ Manual 821 408 2.01 538 3 15

EU-ADR Manual 355 65 5.46 221 118 4

PolySearch Manual 522 374 1.40 245 10 2

GAD Weak 5329 4112 1.30 1139 535 3

GDAE Weak 8000 5875 1.36 3635 1904 2

TBGA Weak 218,973 134,059 1.63 11,784 9199 4

Table 3  Global statistics comparison between TBGA, BioRel [24], and DTI [10] datasets

Statistics are reported separately for each data split. Columns represent, from left to right, the considered granularity level, 
the data split, the total number of instances and bags, the average number of instances per bag, as well as the total number 
of relations

Dataset Split Instances Bags Inst.s/bag Relations

BioRel Train 534,277 39,969 13.37 125

Validation 114,506 20,675 5.54

Test 114,565 20,756 5.52

DTI Train 604,303 472,033 1.28 6

Validation 6133 4769 1.29

Test 6312 4817 1.31

TBGA Train 178,264 85,047 2.10 4

Validation 20,193 10,491 1.92

Test 20,516 10,494 1.96
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setting used for distantly-supervised RE, where sentences are divided into bags based 
on pairs of entities and the prediction of relations occurs at bag-level. For example, the 
following two instances compose the “ADM-Schizophrenia” bag, where the target rela-
tion is Biomarker. Instance 1: “Our data support that ADM may be associated with the 
pathophysiology of schizophrenia, although the cause of the association needs further 
study.” Instance 2: “These findings suggest the possible role of ADM and SEPX1 as bio-
markers of schizophrenia.”

Below, we first describe the experimental setup and then present the results.

Experimental setup

Datasets  We performed experiments on three different datasets: TBGA, DTI, and 
BioRel. We used TBGA as a benchmark to evaluate RE models for GDA extraction under 
the MIL setting. On the other hand, we used DTI and BioRel only to validate the sound-
ness of our implementation of the baseline models.

Evaluation measures  We evaluated RE models using the Area Under the Precision-
Recall Curve (AUPRC). AUPRC is a popular measure to evaluate distantly-supervised RE 
models, which has been adopted by OpenNRE [35] and used in several works, such as [10, 
24]. For experiments on TBGA, we also computed Precision at k items (P@k) and plotted 
the precision-recall curves.

Aggregation strategies  We adopted two different sentence aggregation strategies to use 
RE models under the MIL setting: average-based (AVE) and attention-based (ATT) [38]. 
The average-based aggregation assumes that all sentences within the same bag contrib-
ute equally to the bag-level representation. In other words, the bag representation is the 
average of all its sentence representations. On the other hand, the attention-based aggre-
gation represents each bag as a weighted sum of its sentence representations, where the 
attention weights are dynamically adjusted for each sentence.

Baseline models  We considered the main state-of-the-art RE models to perform experi-
ments: CNN [39], PCNN [40], BiGRU [10, 24, 41], BiGRU-ATT [10, 42], and BERE [10]. 
A detailed description of these RE models, along with information on parameter settings 
and hyper-parameter tuning, can be found in Additional file 1.

Experimental results

We report the results for two different experiments. The first experiment aims to vali-
date the soundness of the implementation of the considered RE models. To this end, 
we trained and tested the RE models on DTI and BioRel datasets, and we compared the 
AUPRC scores we obtained against those reported in the original works [10, 24]. For 
this experiment, we only compared the RE models and aggregation strategies that were 
used in the original works. The results and discussion of the experiment can be found 
in Additional file 2. The second experiment uses TBGA as a benchmark to evaluate RE 
models for GDA extraction. In this case, we trained and tested all the considered RE 
models using both aggregation strategies. For each RE model, we reported the AUPRC 
and P@k scores, and we plotted the precision-recall curve.
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GDA benchmarking  Table 4 shows the AUPRC and P@k scores of RE models on TBGA, 
whereas Fig. 2 plots the corresponding precision-recall curves. Given the RE models per-
formance and precision-recall curves, we make the following observations. 

1	 The performances achieved by RE models on TBGA indicate a high complexity of 
the GDA extraction task. When recall is smaller than 0.1, all RE models have preci-
sion greater than 0.7. However, at higher recall values, models performance decrease 
sharply. In particular, when recall is greater than 0.4, no RE model achieves precision 
values greater than or equal to 0.5. The task complexity is further supported by the 
lower performances obtained by top-performing RE models on TBGA compared to 
DTI and BioRel (cf. Additional file 2: Table S2).

2	 CNN, PCNN, BiGRU, and BiGRU-ATT RE models behave similarly. Among them, 
BiGRU-ATT has the worst performance. This suggests that replacing BiGRU max 
pooling layer with an attention layer proves less effective. Overall, the best AUPRC 

Table 4  RE models performance on TBGA dataset

Columns represent, from left to right, the considered RE model, the aggregation strategy, the AUPRC score, as well as the 
P@50, P@100, P@250, P@500, and P@1000 scores. For each measure, bold values represent the best scores

Model Strategy AUPRC P@50 P@100 P@250 P@500 P@1000

CNN AVE 0.422 0.780 0.760 0.744 0.696 0.625

ATT​ 0.403 0.780 0.760 0.788 0.710 0.624

PCNN AVE 0.426 0.780 0.780 0.744 0.720 0.664

ATT​ 0.404 0.760 0.750 0.744 0.700 0.628

BiGRU​ AVE 0.437 0.620 0.720 0.724 0.730 0.678

ATT​ 0.423 0.760 0.750 0.748 0.726 0.666

BiGRU-ATT​ AVE 0.419 0.740 0.740 0.748 0.694 0.615

ATT​ 0.390 0.680 0.760 0.756 0.702 0.631

BERE AVE 0.419 0.700 0.710 0.720 0.704 0.620

ATT​ 0.445 0.780 0.780 0.800 0.764 0.709

Fig. 2  Precision-Recall curves for RE models on TBGA dataset. RE models are evaluated using both 
aggregation strategies—that is, average-based (AVE) and attention-based (ATT). Therefore, precision-recall 
curves are plot for each aggregation strategy
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and P@k scores are achieved by BERE when using the attention-based aggregation 
strategy. This highlights the effectiveness of fully exploiting sentence information 
from both semantic and syntactic aspects [10]. BERE top performance can also be 
observed by looking at its precision-recall curve, which remains constantly above the 
other curves up to recall 0.4, where it stabilizes with the others. Nevertheless, most 
of RE models—regardless of the considered aggregation strategy—show precision 
drops at early recall values, not greater than 0.4.

3	 In terms of AUPRC, the attention-based aggregation proves less effective than the 
average-based one. On the other hand, attention-based aggregation provides mixed 
results on P@k measures. Although in contrast with the results obtained in general-
domain RE [38], this trend is in line with the results found by Xing et  al. [24] on 
BioRel, where RE models using an average-based aggregation strategy achieve per-
formance comparable to or higher than those using an attention-based one. The only 
exception is BERE, whose performance using the attention-based aggregation out-
performs the one using the average-based strategy.

Thus, the obtained results suggest that TBGA is a challenging dataset for GDA extrac-
tion and, in general, for BioRE.

Re‑use potential
TBGA complies with the format required by OpenNRE [35] to train and test RE models. 
We chose to structure the dataset in this way to ease its re-use to future researchers. 
OpenNRE already provides several RE models that can be used directly on TBGA. In 
addition, we have also used OpenNRE to implement widely-used missing RE models.

We used TBGA as a benchmark to evaluate RE models under the MIL setting—
which is the typical setting for the RE task under distant supervision. In other words, 
we trained and tested RE models at bag-level. However, TBGA contains sentence-level 
expert-curated annotations in validation and test sets. Thus, researchers can also use 
TBGA to train RE models at bag-level and evaluate them on sentence-level expert-
curated data—which is an emerging setting for distantly-supervised, manually enhanced 
datasets [25, 26]. To this end, no format changes are required to make TBGA compliant 
with the alternative setting.

Conclusions
We have presented a large-scale, semi-automatically annotated dataset for Gene-Disease 
Association (GDA) extraction. Automatic GDA extraction is one of the most relevant 
tasks of BioRE. We have used TBGA as a benchmark to evaluate state-of-the-art BioRE 
models on GDA extraction. The results suggest that TBGA is a challenging dataset for 
this task. Besides, the large size of TBGA—along with the presence of expert-curated 
annotations in its validation and test sets—makes it more realistic than fully distantly-
supervised BioRE datasets.

Methods
The process to create TBGA consisted of four steps: data acquisition, data cleaning, dis-
tant supervision, and dataset generation. Figure 3 illustrates the overall procedure.
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Data acquisition
The data used to generate TBGA comes from DisGeNET [12]. DisGeNET collects 
data on genotype-phenotype relationships from several resources and covers most of 
human diseases, including Mendelian, complex, environmental and rare diseases, as 
well as disease-related traits. According to the type of resource, DisGeNET organizes 
gene-disease data into one of four categories: Curated, Animal Models, Inferred, and 
Literature. Curated data contains GDA provided by expert-curated resources; Ani-
mal Models data includes GDA from resources containing information about rat and 
mouse models of disease; Inferred data refers to GDAs inferred from the Human Phe-
notype Ontology (HPO) [43] and from Variant-Disease Associations (VDAs); and Lit-
erature data provides GDAs extracted from the scientific literature using text-mining 
techniques [27, 44, 45]. For a seamless integration of such GDAs, DisGeNET classifies 
them by different association types, which are defined in the DisGeNET association 
type ontology. A detailed description of each association type can be found on the 
DisGeNET platform [46]. Figure 4 depicts the DisGeNET association type ontology, 
where we also report the Semanticscience Integrated Ontology (SIO) [47] identifiers 
of the different association types.

Fig. 3  Overview of the TBGA creation process. The process consists of four steps: (1) data acquisition; (2) data 
cleaning; (3) distant supervision; and (4) dataset generation

Association

Gene Disease
Association

is-a
SIO_000897

Therapeutic

SIO_000983
is-a

Post-translational
Modification

SIO_001120 SIO_001121

Fusion Gene

SIO_001350 SIO_001123 SIO_001124

is-a

is-a

SIO_001349 SIO_001122 SIO_001348

Causal
 Mutation

Modifying
 Mutation

Susceptibility
Mutation

is-a

SIO_001343 SIO_001119 SIO_001342

Somatic Causal
Mutation

Germline Causal
Mutation

is-a

SIO_001345 SIO_001344

Somatic Modifying
Mutation

Germline Modifying
Mutation

is-a

SIO_001346 SIO_001347

Biomarker

Altered ExpressionGenomic Alterations

Genetic VariationChromosomal
Rearrangement

Fig. 4  DisGeNET association type ontology. For each association type, we also report its SIO identifier
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We acquired data from DisGeNET v7.0 to build TBGA. This version of DisGeNET 
contains 1,134,942 GDAs, involving 21,671 genes and 30,170 diseases, disorders, traits, 
and clinical or abnormal human phenotypes. We accessed DisGeNET data through the 
web interface [46], where we used the Browse functionality to retrieve GDAs along with 
supporting evidence. We gathered data from all four resource categories. Moreover, we 
filtered out data with no PubMed IDentifier (PMID) to avoid retrieving GDAs without a 
sentence supporting the association.

Data cleaning
The data acquired from DisGeNET underwent a data cleaning process. First, we filtered 
data based on the presence of tags surrounding the gene and disease mentions within 
sentences. In other words, we restricted to GDAs having representative sentences where 
the gene and the disease are highlighted. Then, we stripped gene and disease tags from 
text and we stored the exact location of gene and disease mentions within sentences. 
Since DisGeNET integrates data from various resources, there might be duplicate evi-
dence for the same GDA. In this case, we discarded duplicates and prioritized data com-
ing from expert-curated resources.

From each instance resulting from the data cleaning process, we considered the fol-
lowing attributes: the original source, the publication supporting the association, the 
representative sentence, the association type, as well as information on the gene and dis-
ease involved in the association. Regarding genes, we kept the NCBI Entrez [48] identi-
fiers, the NCBI official gene symbols, and the gene locations within sentences. As for 
diseases, we stored the UMLS [49] CUIs, the UMLS preferred terms, and the disease 
locations in text.

Distant supervision
To effectively train RE models, false GDAs are also required—i.e., instances where co-
occurring genes and diseases are not semantically associated. However, DisGeNET 
stores only true GDAs. To overcome this limitation, we used distant supervision [16] 
to obtain false GDAs from the sentences contained within the abstract or title of the 
PubMed articles that support the GDAs retrieved in the data acquisition process. To this 
end, we relied on the 3.6.2rc6 version of MetaMapLite [50], a near real-time NER tool 
that identifies UMLS concepts within biomedical text. MetaMapLite returns, among 
other information, the CUI, the preferred term, and the location in text of the identified 
UMLS concepts. Thus, we used MetaMapLite to identify gene and disease UMLS con-
cepts within sentences. For each identified concept, we stored its CUI, preferred term, 
and location in text. Then, we performed the following steps to generate false GDAs. 

1	 We restricted to sentences where the co-occurring genes and diseases come from 
DisGeNET. The search for false GDAs among the genes and diseases of DisGeNET 
aimed to reduce false negatives and to obtain gene-disease pairs that were more likely 
not to be semantically associated.

2	 We filtered out instances where gene mentions matched common words. For 
instance, when all letters are in uppercase, the words FOR and TYPE are, by conven-
tion [51], aliases for the WWOX and SGCG genes. Therefore, when the gene men-
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tions identified by MetaMapLite matched such (and other) common words, we kept 
the corresponding instances only if the matched words were in uppercase. As com-
mon words, we considered the set of most frequent words provided by Peter Norvig 
[52], which were derived from the Google Web Trillion Word Corpus [53].

3	 We used the 2020AA UMLS MRCONSO file [54] to build a disease dictionary that 
stored UMLS preferred terms, lexical variants, alternate forms, short forms, and syn-
onyms of the DisGeNET diseases. The MRCONSO file contains one row for each 
occurrence of each unique string or concept name within each source vocabulary 
of the UMLS Metathesaurus. Thus, we only kept instances where disease mentions 
exact-matched dictionary terms. In this way, we removed partial matches identified 
by MetaMapLite and, as a consequence, we reduced erroneous disease mentions.

4	 Of the remaining instances, we only took those whose gene-disease pairs did not 
belong to any GDA within DisGeNET and we labeled them as NA.

For each instance generated through distant supervision, we kept the following attrib-
utes: the publication and sentence from which the false GDA has been extracted, the NA 
association type, and information on the co-occurring gene and disease. For genes, we 
first mapped UMLS CUIs to NCBI Entrez IDs, and then we stored them together with 
NCBI official gene symbols and gene locations in text. On the other hand, for diseases, 
we stored UMLS CUIs, UMLS preferred terms, as well as disease locations in text.

Dataset generation
The sets of true and false instances obtained from the data cleaning and distant supervi-
sion processes were used to generate TBGA. We considered different associations from 
the DisGeNET association type ontology to build the dataset. Specifically, we adopted 
the Therapeutic, Biomarker, and Genomic Alterations associations types as relations. 
Instead, we did not consider the Altered Expression and Post-translational Modification 
association types—although at the same level of Genomic Alterations—as we lacked 
curated data for them. In addition to true associations, we also considered the false asso-
ciation NA.

The steps required to create TBGA were the following: 

1	 We performed a normalization process to convert DisGeNET association types to 
TBGA relations. In this regard, given the hierarchical structure of the DisGeNET 
association type ontology, we could normalize finer association types to their coarser 
ancestors. For instance, a Genetic Variation association is also a Genomic Alterations 
one, which, in turn, is a Biomarker association (cf. Fig. 4). Thus, we mapped asso-
ciation types finer than Genomic Alterations to Genomic Alterations itself. On the 
other hand, instances involving the same gene-disease pair from the same sentence 
can have Biomarker or Genomic Alterations association types depending on the 
considered resource. This situation occurs because instances are generated by differ-
ent biologists or using different text-mining techniques. In these cases, we removed 
the instances associated with Biomarker to keep gene-disease pairs associated with 
Genomic Alterations, which represents a finer—and thus more precise—association 
type than Biomarker.
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2	 We divided true instances among training, validation, and test sets based on the 
resource category. We used Curated data for validation and test, whereas Animal 
Models, Inferred, and Literature data for training. The only exception was Therapeu-
tic, where we lacked enough data for training. In this case, we also used Curated data 
for training, setting an 80/10/10 ratio among training, validation, and test sets.

3	 We balanced the number of true instances among the dataset relations. For Bio-
marker and Genomic Alterations, we split Curated data evenly between validation 
and test. Then, we kept the same ratio that exists among relations in validation and 
test sets also in training. Since we model the BioRE task as a MIL problem, we down-
sampled over-represented relations—i.e., Biomarker and Genomic Alterations—at 
the bag-level rather than at the sentence-level to obtain the desired ratio among rela-
tions.

4	 We want TBGA to reflect the sparseness of GDAs in biomedical literature. Assuming 
we randomly sample gene and disease mentions from a sentence of a given scientific 
article, it is very likely that no association occurs between them. Therefore, similar to 
previous works [10, 24], we included a large number of false instances into training, 
validation, and test sets to make TBGA sparse. For each set, we sampled a number of 
NA bags twice the number of bags associated with true relations.

5	 We removed from the training set the bags whose gene-disease pairs also belong to 
validation and test sets. This operation avoids to introduce bias at inference time, as 
RE models cannot exploit training knowledge on the gene-disease pair.

We provide statistics regarding the different steps of data cleaning and dataset genera-
tion for true instances in Table 5. As for NA statistics, we performed distant supervision 
on more than 700,000 publications, obtaining 152,963 instances and 70,688 bags—which 
are associated with 83,501 publications and involve 9167 different genes and 5151 differ-
ent diseases.

Table 5  Global and per-relation statistics for data cleaning and dataset generation

Columns represent, from left to right, the considered granularity level, the target item, the raw (initial) statistics, and the 
statistics after each Data Cleaning and Dataset Generation step. The steps are: TS, DR, RN, and DB

Granularity Target Raw Data cleaning Dataset generation

TS DR RN DB

Global Publications 707,390 572,981 572,607 447,280 57,675

Genes 21,118 17,658 17,658 17,658 8827

Diseases 23,433 17,032 17,023 17,023 6964

Therapeutic Instances 10,744 4132 3925 3925 3925

Bags 6872 2939 2857 2857 2,857

Biomarker Instances 1,530,072 1,080,089 1,075,327 580,053 24,739

Bags 605,826 460,334 460,276 383,358 17,459

Genomic Alterations Instances 849,472 531,601 516,630 516,630 37,346

Bags 289,693 202,548 202,045 202,045 15,028
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