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Understanding what influences the ability of some arthropods to harbor and transmit
pathogens may be key for controlling the spread of vector-borne diseases. Arthropod
immunity has a central role in dictating vector competence for pathogen acquisition and
transmission. Microbial infection elicits immune responses and imparts stress on the host
by causing physical damage and nutrient deprivation, which triggers evolutionarily
conserved stress response pathways aimed at restoring cellular homeostasis. Recent
studies increasingly recognize that eukaryotic stress responses and innate immunity are
closely intertwined. Herein, we describe two well-characterized and evolutionarily
conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated
Stress Response (ISR), and examine evidence that these stress responses impact
immune signaling. We then describe how multiple pathogens, including vector-borne
microbes, interface with stress responses in mammals. Owing to the well-conserved
nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in
arthropod vectors and ultimately impacting vector competence. We conclude this
Perspective by positing that novel insights into vector competence will emerge when
considering that stress-signaling pathways may be influencing the arthropod
immune network.

Keywords: vector-borne diseases, vector competence, vector-borne pathogens, arthropod immunity, eukaryotic
stress response, integrated stress response, unfolded protein response
INTRODUCTION

Among arthropods, the adaptation to blood-feeding is a life history trait that evolved independently
at least 20 times (1). From the arthropod’s perspective, a hematophageous lifestyle has both benefits
and drawbacks. Blood is a good source of proteins and lipids, which are necessary for development
and egg production (2–4). However, blood-feeding comes with a variety of risks and stressors (5)
including long periods between nutrient supplementation (6–13), thermal stress associated with the
influx of a hot blood meal (5, 14–16), heme toxicity (17–30) and excess amounts of ions and water
(31). Cells respond to acute environmental changes by activating stress responses that temporarily
increase tolerance limits in adverse conditions and/or eliminate stressful stimuli. Being able to
org February 2021 | Volume 11 | Article 6297771
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respond to stressful stimuli is an evolutionary advantage, which
explains the highly conserved nature of cellular stress responses
across eukaryotes (32–40).

For arthropods that transmit disease, another stressor is the
presence of pathogens with incoming blood meals (41–44).
Although vector-borne pathogens do not typically kill their
arthropod vectors (45), infection does impart stress on the host
by parasitizing nutrients, secreting toxic by-products and/or
causing physical damage (46). For this reason, arthropod
immune processes responding to infection are a key factor
influencing vector competence (47–53). From mammals, it is
now recognized that innate immunity is tightly intertwined with
cellular stress responses and may represent an ancient mode of
host defense against infection (32–34, 54–60). Whether stress-
responses also intersect with arthropod immunity and how this
may influence vector competence of blood-feeding arthropods is
not known. Herein we briefly outline current knowledge of two
well-characterized cellular stress response mechanisms, the
Unfolded Protein Response (UPR) and the Integrated Stress
Response (ISR) and discuss evidence that stress signaling impacts
immunity. We then cite examples of cellular stress responses
mediating outcomes at the host-pathogen interface in mammals
and conclude that, given the well-conserved nature of the UPR
and the ISR, similar crosstalk may be occurring in arthropods
that would fundamentally impact vector competence.
ARTHROPOD INNATE
IMMUNE SIGNALING

Arthropod innate immune pathways are best characterized in the
model organism Drosophila which are briefly summarized owing
to space constraints. The Toll pathway is generally characterized
as responding to Gram-positive bacteria and fungi, resulting in
activation of Rel-family transcription factors Dorsal and Dif
(Dorsal-related immunity factor) (61–64). The IMD (immune
deficiency) pathway is analogous to the tumor necrosis factor
receptor (TNFR) pathway in mammals (65) and is initiated by
Gram-negative bacteria, although exceptions outside of
Drosophila have been observed (66–71). The Janus Kinase
(JAK)-signal transducers and activators of transcription (STAT)
pathway, first described in mammals, is activated in the presence
of bacterial or protozoan pathogens as well as more than 35
ligands, including interferons (IFN) and interleukins (IL) (72, 73).
In arthropods, the JAK-STAT pathway is induced by the
endogenous cytokine Unpaired (Upd) (74). Owing to space
constraints, we refer readers to excellent reviews that
comprehensively cover arthropod Toll, IMD and JAK-STAT
signaling (65, 75, 76).
THE UNFOLDED PROTEIN RESPONSE

The UPR is a cellular stress response mechanism that is highly
conserved across species, from single-celled eukaryotes to mammals
(Figure 1). The UPR is triggered when the endoplasmic reticulum
Frontiers in Immunology | www.frontiersin.org 2
(ER) is under stress, which can result from a variety of stimuli
such as oxidative stress, changes in temperature or pH, lack of
nutrients or infection (32–34, 77–84). Such conditions can
impart stress when protein-folding requirements exceed the
processing capacity of the ER, causing an accumulation of
unfolded proteins in the ER lumen. The UPR is activated
through any combination of 3 transmembrane receptors:
PERK (PKR-like ER kinase), ATF6 (activating transcription
factor 6) or IRE1a (inositol-requiring enzyme 1a). In a
non-stressed state, the negative regulator, BiP (binding
immunoglobulin protein; also known as GRP78), keeps all
three receptors in an inactive state by binding to them. Upon
activation, BiP disassociates from the receptors, thereby
activating signaling. Disassociation allows IRE1a and PERK to
oligomerize and autophophorylate (85–87), whereas ATF6 is
released for migration to the Golgi (88, 89). If homeostasis
cannot be restored, the UPR will switch from pro-survival to
proapoptotic outcomes (90).

PERK is a type I transmembrane protein kinase that has dual
roles in the UPR as well as the ISR (91). When activated, PERK
dimerizes, autophosphorylates and then also phosphorylates the
regulatory molecule, eIF2a (eukaryotic translation initiation
factor 2a). Phosphorylated eIF2a promotes cell survival by
temporarily inhibiting protein translation, which decreases the
amount of proteins entering the ER and alleviates the demand for
protein folding. While inhibiting the translation of most mRNAs,
eIF2a selectively induces the expression of some proteins
including ATF4 (activating transcription factor 4). ATF4 can
activate transcription of the growth arrest and DNA damage-
inducible protein, GADD34, which negatively regulates eIF2a
phosphorylation, or CHOP (C/EBP homologous protein), which
is a proapoptotic factor (85, 92, 93).

ATF6 is a type II transmembrane protein that contains a bZIP
transcription factor within the cytosolic domain. Once BiP
disassociates from ATF6, it is transported to the Golgi
compartment by COPII-containing vesicles (33, 94, 95). ATF6
is proteolytically processed by the Golgi-resident proteases S1P
and S2P (site-1/2 proteases), which cleave the amino-terminal
portion and allow the bZIP transcription factor to translocate to
the nucleus (81, 94, 96). ATF6 upregulates the expression of
GRP94 (endoplasmin) to increase the ER’s folding capacity and
p58IPK to induce the ER associated degradation pathway
(ERAD). ATF6 also induces the expression of other UPR-
associated proteins including BiP and XBP1 (X-box binding
protein) (32, 60, 97, 98).

IRE1a is a type I transmembrane protein with a cytosolic
serine/threonine kinase domain and an RNase (ribonuclease)
domain. When the ER is stressed, IRE1a autophosphorylates
and splices the inactive mRNA xbp1U into xbp1S, which is then
translated into a protein (33, 81, 99, 100). XBP1 translocates to
the nucleus where it induces genes that are involved in lipid
biosynthesis, ERAD and chaperone production (100, 101).
IRE1a signaling also limits the amount of new proteins
entering the ER through regulated IRE1a-dependent decay
(RIDD), which degrades mRNA (102). With high levels of ER
stress, IRE1a recruits the adaptor protein TRAF2 (TNF receptor-
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associated factor 2) a component of the TNFR pathway. IRE1a-
TRAF2 association recruits the IKK complex, leading to NF-kB
activation and proinflammatory responses (33, 103, 104).
Alternatively, IRE1a-mediated signaling through TRAF2 can
also lead to ASK1 (apoptosis signal regulating kinase 1; also
known as mitogen-activated protein kinase 5, MAP3K5)
activation and downstream JNK (JUN N-terminal kinase)
signaling to induce apoptotic outcomes (33, 100, 104, 105).
Less is known about UPR mechanisms in arthropods, but
genome comparisons indicate that UPR-encoding genes are
well-conserved between species, which may suggest similar
mechanisms of action (Table 1).
THE INTEGRATED STRESS RESPONSE

The ISR is responsible for alleviating cellular stress and restoring
homeostasis in eukaryotes (93, 106–109) (Figure 1). In
mammalian cells, the ISR can be activated by one of four
stress-sensing kinases: PKR (protein kinase double-stranded
RNA-dependent), GCN2 (general control nonderepressible 2),
HRI (heme-regulated inhibitor) and PERK (110, 111). These
serine-threonine kinases are stimulated by pathological and
physiological changes in the cellular environment. GCN2, a
highly conserved cytoplasmic kinase, is stimulated by UV
Frontiers in Immunology | www.frontiersin.org 3
irradiation and nutrient deprivation (e.g. amino acid, glucose)
(107, 108, 112). PERK is stimulated when misfolded proteins
accumulate in the ER, causing ER stress (91, 113, 114). PKR is
activated primarily in response to viral infections, as well as
bacterial infections and oxidative stress (109, 115–117). Unlike
the other kinases, HRI is mostly expressed in erythrocytes and
acts as a heme sensor that is activated by iron deficiency (118).

All four stress-sensing kinases converge on a common
regulatory factor: the phosphorylation of eIF2a (106, 110).
Under non-stressed conditions, protein translation is initiated
when the eIF2 complex (consisting of eIF2a, eIF2b and eIF2g)
binds with GTP and Met-tRNA (initiator methionyl tRNA). The
ternary complex then associates with the 40S ribosome subunit
to form the 43S pre‐initiation complex that binds to the 5’ end of
mRNA and scans for start codons. Upon recognition, eIF2-GTP
(active state) is hydrolyzed to eIF2-GDP (inactive state) and
causes a conformational change to the pre-initiation complex,
halting the mRNA scanning process and allowing protein
translation to begin (119–123). eIF2B, a guanine nucleotide
exchange factor, is essential for recycling GDP to GTP for new
rounds of protein translation. Phosphorylated eIF2a attenuates
protein synthesis owing to its increased affinity for eIF2B that
prevents eIF2-GDP to eIF2-GTP exchange (110, 121–123).

As previously discussed in reference to PERK signaling, ATF4
is activated downstream of eIF2a phosphorylation and can act as
A B

FIGURE 1 | (A) The Unfolded Protein Response (UPR) is regulated by three transmembrane endoplasmic reticulum (ER) receptors: PERK, ATF6 and IRE1a. BiP
binds to and holds the receptors in an inactive state under non-stressed conditions. The accumulation of unfolded proteins in the ER leads to the disassociation of
BiP from the receptors and UPR activation. PERK phosphorylates eIF2a and induces ATF4, which controls transcription of chop and gadd34. ATF6 is cleaved and
translocated to the nucleus to regulate expression of GRP94, p58IPK, and UPR-associated proteins. IRE1a splices xbp1, which is translated into a protein that
controls genes involved in lipid biosynthesis, ER associated degradation pathway (ERAD) and chaperone production. IRE1a can also recruit TRAF2, which leads to
NF-KB, ASK1 and JNK signaling. (B) The Integrated Stress Response (ISR) is initiated by stress-specific stimuli that activate kinases GCN2, HRI, PKR and PERK,
which all converge on the regulatory molecule eIF2a. Phosphorylation of eIF2a halts global protein translation and upregulates the transcription factor ATF4, which
determines cell fate. To terminate the ISR, ATF4 induces GADD34 expression which dephosphorylates eIF2a and allows global protein translation to resume.
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both a transcriptional activator and repressor of genes important
for determining cell fate, including chop and gadd34 (124–126). In
response to prolonged ER-stress, ATF4 interacts with CHOP to
generate reactive oxygen species (ROS), a key signal for mediating
cell death (125). Once cellular stress is resolved, ATF4 induces
GADD34 which interacts with protein phosphatase 1 (PP1) to
dephosphorylate eIF2a and terminate the ISR (126).

The ISR has known roles in regulating host immunity. In
response to ISR activation, cells will form cytoplasmic aggregates
of untranslated mRNA and proteins termed “stress granules”
that influence immune signaling. Phosphorylated eIF2a induces
stress granules, which become cell signaling hubs that can
intercept molecules from other pathways to modulate
processes such as immunity (35, 127, 128). For example,
TRAF2 is sequestered into stress granules, which ultimately
suppresses NF‐kB-mediated inflammation (127). The ISR can
also act as an antiviral defense mechanism (129–131). A stress
granule-nucleating protein G3BP1 (Ras-GTPase-activating
protein SH3 domain binding protein 1) recruits and activates
PKR to suppress viral protein synthesis. It also activates innate
immune responses through NF-kB and JNK pathways and
promotes the expression of proinflammatory cytokines such as
IL-17 (117). The arthropod ISR is less-studied when compared to
mammals, but comparative genomic analyses demonstrate that
many ISR genes are well-conserved in arthropod vectors
(Table 1).
INTERSPECIES INTERACTIONS

UPR-Pathogen Interface
The UPR is increasingly implicated in host defense against
infection (132–137). For example, mammalian macrophages
limit methicillin resistant Staphylococcus aureus (MRSA) through
IRE1a with sustained ROS production and concentrated delivery
of ROS to bacteria-containing phagosomes (138). The foodborne
pathogen Camplyobacter jejuni activates eIF2a and CHOP, while
decreasing expression of perk, ire1a and atf6 in human intestinal
epithelial cells. Pharmacologically inducing the UPR prior to
Frontiers in Immunology | www.frontiersin.org 4
infection resulted in decreased C. jejuni invasion (139),
highlighting the UPR as a host defense strategy.

Some pathogens manipulate or selectively induce the UPR to
promote growth and survival. Legionella pneumophila, causative
agent of Legionnaires’ disease, inhibits UPR-induced apoptosis
with secreted effector proteins Lgt1 and Lgt2 that block IRE1a-
mediated xbp1U splicing (140, 141). The intracellular pathogen
Brucella manipulates the UPR in mammalian cells with secreted
effectors TcpB and VceC (142–144), which induce IRE1a
signaling and NF-кB to potentiate pro-inflammatory responses
(81, 144–147). This effector-mediated manipulation appears to
benefit the bacterium, with VceC providing an advantage for
long-term in vivo colonization (144).

Vector-borne pathogens are also reported to cause ER stress
and UPR activation in mammalian hosts. Francisella tularensis,
causative agent of Tularemia vectored by ticks (Dermacentor spp.
andAmblyomma americanum) and biting insects (148–151), alters
the expression of bip, increases IRE1a phosphorylation and ATF6
activation, but decreases PERK phosphorylation and CHOP (152).
IRE1a-XBP1 signaling is reported to limit F. tularensis in vivowith
increased pathogen burdens in the liver, spleen and lungs of xbp1-/-

mice (153). Orientia tsutsugamushi, the causative agent of Scrub
Typhus transmitted by trombiculid mites (chiggers), induces the
UPR and ERAD in HeLa cells to benefit bacterial growth, owing to
the increase in available amino acids (154). The Ixodes scapularis-
transmitted bacteriumAnaplasma phagocytophilum induces all the
three UPR branches in THP-1 cells (155).

Due to their very nature, viral replication requires host cells
for protein production, which often engages the UPR. For
example, herpesviruses activate one or more of the UPR
receptors, but limit downstream signaling to ensure global
protein translation, including viral proteins, is not halted (156–
158). Many arthropod-transmitted viruses activate one or more
UPR sensors in mammalian cells as well. Bluetongue virus,
transmitted by Culicoides spp. (biting midges), induces
autophagy to benefit viral replication by activating PERK-
eIF2a signaling of the UPR (159). Mosquito-transmitted
viruses Chikungunya (CHIKV), Dengue (DENV) and West
Nile (WNV) all activate one or more UPR sensors in
TABLE 1 | Distribution of Unfolded Protein Response (UPR) and Integrated Stress Response (ISR) genes across arthropod vectors.

Common Name Genus UPR and ISR genes

BiP ATF6 IRE1a XBP1 ATF4 eIF2a PERK GCN2 PKR HRI

Fruit Flies Drosophila + + + + + + + + − −

Mosquitoes Culex + + + + + + + + − +
Aedes + + + + + + + + − +
Anopheles + + + + + + + + − +

Fleas Xenopsylla* + + + + + + + + − −

Ctenocephalides + + + + + + + + − +
Lice Pediculus + + + + − + + + − +
Triatome bugs Triatoma* + + + + + + + + − +
Ticks Ixodes + + + + + + + + − +

Dermacentor* + + + + − + + + − +
Ornithodoros* + + + + + + + + − +

Mites Leptotrombidium + − + + − + + + − +
F
ebruary 2021
 | Volume 11
 | Article 629
NCBI’s Basic Local Alignment Search Tool (BLAST) was used with query sequences from Homo sapiens to identify putative homologs. (+) homologs identified (–), homologous gene
targets not found.
*homologs found in vector transcriptomes.
777

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rosche et al. Stress Responses in Arthropod Vectors
mammalian cells. CHIKV activates BiP and the ATF6 and IRE1a
branches of the UPR, but blocks PERK signaling by suppressing
eIF2a phosphorylation through the nonstructural viral protein
nsP4 (160, 161). The flaviviruses DENV andWNV induce xbp1U

splicing, ATF6 proteolysis, and eIF2a phosphorylation to benefit
viral propagation in mammalian cells and, in the case of WNV,
to inhibit type I IFN signaling (161–164). Tick-borne
encephalitis virus (TBEV) and Langat virus (LGTV) are
Ixodid-transmitted flaviviruses. TBEV infection activates the
IRE1a and ATF6 pathways to facilitate viral replication (165).
In contrast, while LGTV infection activates the UPR, PERK
signaling restricts viral load (166), highlighting the importance of
the UPR as a host defense mechanism.

Much less is known about the UPR-pathogen interface in
arthropod vectors. Recent work shows differential regulation of
ER-resident proteins involved in ERAD in Borrelia burgdorferi-
infected adult I. scapularis (167). There is also evidence that
arthropod-transmitted plant pathogens manipulate the UPR in
their arthropod vectors. Candidatus Liberibacter asiaticus
(CLas), causative agent of Asian citrus greening disease, is
vectored by the Asian citrus psyllid Diaphorina citri
Kuwayama (D. citri). Infection of D. citri with CLas
upregulates expression of ERAD and UPR components. A
related bacterium, Candidatus Liberibacter solanacerarum, also
upregulates ire1a and multiple genes involved in ERAD in its
arthropod vector, the potato psyllid (Bactericera cockerelli) (168).
Although more work is required to understand what role the
UPR and ERAD-mediated protein degradation have during
arthropod infection, these studies demonstrate that vector-
borne pathogens are interfacing with the UPR in arthropods.

ISR-Pathogen Interface
The ISR broadly responds to a variety of stress-inducing stimuli,
including invasion and damage caused by infection. Listeria
monocytogenes-infected mammalian cells activate PERK,
ATF4, eIF2a, PKR and induce the expression of CHOP. L.
monocytogenes secretes listeriolysin O (LLO), which is a pore-
forming hemolysin required for phagosomal escape and bacterial
survival. Cells treated with L. monocytogenes LLO resulted in a
similar ISR activation phenotype as infection, indicating that this
effector is partially responsible for inducing the ISR. Downstream
production of type I IFN activates the ISR kinase PKR, increasing
its expression and activation, and further stimulating eIF2a
signaling (169). Epithelial cell infection with Shigella flexneri
disrupts host cell membranes, causing GCN2-mediated eIF2a
phosphorylation. This halts global protein translation, leading to
stress granule formation and autophagy that eliminates
bacteria (170).

These examples reflect the role of the ISR as a host-defense
strategy against infection. In response, many pathogens have
evolved methods to counteract ISR-mediated defenses. For
example, the causative agent of Q fever, Coxiella burnetii,
increases eIF2a phosphorylation in a Type IV Secretion
System-dependent manner and induces ATF4 and CHOP in
human macrophages. However, nuclear translocation of CHOP
is blocked by C. burnetii to prevent ER stress-induced apoptosis
(171). Coronavirus protein AcP10 and picornavirus protein
Frontiers in Immunology | www.frontiersin.org 5
AiVL promote viral protein synthesis by acting as competitive
inhibitors for phosphorylated-eIF2 and eIF2B interactions (172).
Excellent reviews summarizing ISR-mediated antiviral
responses, including stress granules, and concurrent viral
evasion strategies have been published in the past several years
which readers are referred to (129, 173).

Interactions between vector-borne pathogens and ISR
mechanisms have been reported, with several focusing on
insect-borne viruses. In mammalian cells, the sandfly fever
Sicilian phlebovirus evades PKR defense mechanisms by
expressing a nonstructural protein that binds to eIF2B,
blocking translation inhibition and promoting viral replication
(174). Rift valley fever virus, transmitted by mosquitoes and
sandflies, degrades host PKR and inhibits IFN induction (175–
177). WNV inhibits PKR activation and downstream
phosphorylation of eIF2a and stress granule formation (178).
Zika virus likewise has evolved to evade stress granule formation
in host cells by repurposing host proteins, including G3BP1, to
facilitate viral replication and repress normal stress granule
assembly (179, 180). Other flaviviruses such as WNV, DENV
and Japanese encephalitis virus hijack or further inhibit stress
granule machinery to benefit replication (181–184). These
studies illustrate that vectored pathogens evade ISR signaling
to facilitate replication and survival.
CONCLUDING REMARKS

Vector-borne pathogens selectively interface with the UPR and
the ISR to promote survival and infection in mammals. Given the
well-conserved nature of both the UPR and the ISR between
evolutionarily distant species (Table 1), it is reasonable to
speculate that vectored microbes may also be modulating the
stress responses in their arthropod vectors. Moreover, this type
of manipulation may be a common survival strategy used by
vector-borne pathogens to suppress host defenses and create
replicative niches.

Cellular stress responses are increasingly recognized as being
closely intertwined with innate immunity (32–34, 54–60). For
example, there are multiple reports that mammalian Toll-like
receptors (TLRs) influence the UPR and the ISR. TLR2 and TLR4
in mammalian macrophages activate the IRE1a-XBP1 axis,
which leads to proinflammatory TNFa and IL-6 cytokine
production (153). MRSA induces xbp1U splicing in wildtype
bone marrow-derived macrophages, but not in TLR2/4/9-/- or
myd88-/- mutant cells, indicating that TLR signaling is required
for IRE1a activation (138). The ISR kinase PKR is activated
downstream from TLR3 and TLR4, which induces type I IFN
(185, 186). Whether a similar phenomenon occurs in arthropods
is not known, but considering the well-conserved nature of the
Toll pathway between arthropods and mammals (70, 187) it is
possible that this type of crosstalk is occurring across species.

Beyond TLR signaling, overlap between the UPR and ISR
with other innate immunity components has also been noted.
During infection, the mammalian UPR is capable of initiating an
immune response by crosstalking with the TNFR pathway (33,
56–58, 188–190). IRE1a can produce proinflammatory
February 2021 | Volume 11 | Article 629777
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responses by signaling through TRAF2, a component of the
TNFR pathway, recruiting the IKK complex for phosphorylation
and releasing NF-kB for nuclear translocation (32–34).
Arthropod immunity may similarly be influenced by the UPR,
as the arthropod IMD pathway is analogous to the mammalian
TNFR network. PERK was shown to interact with JAK-STAT
signaling in mammalian glial cells (191) and several examples of
IFN production being influenced by the ISR and UPR have been
reported, which could potentially influence JAK-STAT signaling
in an indirect manner (169, 175–177, 185, 186, 192). Similar
crosstalk between JAK-STAT and cellular stress responses may
also be occurring in arthropod vectors.

Since one of the major factors determining vector competence
is arthropod immunity (47–53), it is feasible that cellular stress
responses may be influencing vector competence. With this in
mind, understanding how stress responses may interface with
arthropod immunity and conversely how vector-borne
pathogens may be inducing or manipulating cellular stress
responses could be important for opening new avenues in
vector-borne disease control. This knowledge could be
leveraged for the future design of disease transmission-blocking
strategies to reduce the global burden of vector-borne diseases.
Frontiers in Immunology | www.frontiersin.org 6
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