

Driver Genes Associated With the Incidence of Venous Thromboembolism in Patients With Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis

Xiaohan Qian, Mengjiao Fu, Jing Zheng, Jianya Zhou and Jianying Zhou*

OPEN ACCESS

Edited by:

Umberto Malapelle, University of Naples Federico II, Italy

Reviewed by:

Chunxia Su, Shanghai Pulmonary Hospital, China Francesco Pepe, University of Naples Federico II, Italy

*Correspondence:

Jianying Zhou zjyhz@zju.edu.cn

Specialty section:

This article was submitted to Thoracic Oncology, a section of the journal Frontiers in Oncology

Received: 13 March 2021 Accepted: 06 April 2021 Published: 29 April 2021

Citation:

Qian X, Fu M, Zheng J, Zhou J and Zhou J (2021) Driver Genes Associated With the Incidence of Venous Thromboembolism in Patients With Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 11:680191. doi: 10.3389/fonc.2021.680191 Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

Background: The association between driver genes and the incidence of thromboembolic events (TEs) in patients diagnosed with non-small-cell lung cancer (NSCLC) needs to be quantified to guide clinical management.

Methods: We interrogated PubMed, Embase, Web of Science and Cochrane library databases for terms related to venous thromboembolism (VTE) and arterial thromboembolism (ATE) in patients diagnosed with non-small-cell lung cancer harboring driver genes. This search was conducted for studies published between 1 January, 2000 and 31 December, 2020. A random-effects meta-analysis was performed to analyze the pooled incidence and odds ratios of VTE in patients with different driver genes.

Results: Of the 2,742 citations identified, a total of 25 studies that included 21,156 patients met eligibility criteria. The overall pooled incidence of VTE in patients with driver genes was 23% (95% CI 18-29). Patients with *ROS1* rearrangements had the highest incidence of VTE (37%, 95%CI 23-52). *ALK* rearrangements were associated with increased VTE risks (OR=2.08,95% CI 1.69-2.55), with the second highest incidence of VTE (27%, 95%CI 20-35). Both groups of patients with *EGFR* and *KRAS* mutations did not show a significantly increased risk for VTE (OR=1.33, 95% CI 0.75-2.34; OR=1.31, 95% CI 0.40-4.28).

Conclusions: ALK rearrangements were shown to be associated with increased VTE risks in patients diagnosed with non-small lung cancer, while there was no significant

1

relation observed between VTE risks and *EGFR* or *KRAS* mutations in lung cancer patients.

Keywords: venous thromboembolism (VTE), arterial thromboembolism (ATE), non-small-cell lung cancer, ALK, ROS1, EGFR, KRAS

INTRODUCTION

Venous thromboembolisms (VTEs), which consist of deep vein thrombosis (DVT) and pulmonary embolisms (PEs), are a common complication associated with cancer, occurring in 5-10% of cancer patients. VTEs are also a major cause of morbidity and mortality (1, 2), increasing risks of death 3-5 times (3). Compared with other malignancies, lung cancer has been associated with an intermediate risk of VTE, especially during the first year following cancer diagnosis. The incidence of VTE in lung cancer patients is approximately 7-13% (1, 4). With prolonged survival, the aging of the cancer population and the introduction of thrombogenic anti-cancer treatments increase the incidence of VTE in cancer patients (2). In addition, patients diagnosed with lung cancer are at an increased risk for arterial thromboembolism (ATE), but the impact on the generation of ATE is less severe than that on the generation of VTE (5).

Molecular subtypes are highly relevant to the outcomes of patients with advanced or metastatic NSCLC, as targeted therapy has become a standard clinical management of patients with specific activating mutations in recent decades, and it can significantly improve the survival of patients. Guidelines recommend that all patients with advanced or metastatic NSCLC should be tested for targetable driver genes as a means to guide treatments (6, 7). Since different driver genes show heterogeneity in tumor biological behavior, treatment response and prognosis, driver genes may also manifest heterogeneity during thrombus generation. Many articles have suggested that ROS1 and ALK rearrangements cause a greater risk for VTE (8-10), but there are still some controversies for patients with EGFR, KRAS and other gene mutations (8, 11-15). Moreover, there is currently a lack of quantitative analysis determining the extent to which different driver genes affect VTE occurrence, as the incidence has been shown to vary between studies.

Since the primary prevention of VTE in cancer patients is not a validated management strategy, VTE risk assessment tools are necessary for efficient prevention (16). Although there are many clinical scoring systems incorporating known tumor-related VTE risk factors into the scoring system, these tools show poor performance in lung cancer patients (17, 18). Recently, two large random clinical trials investigating direct oral anticoagulants used the Khorana risk scoring system to screen patients in high risks of developing VTE. Results showed that every three VTE cases was prevented at the cost of a major bleeding event caused by

thromboprophylaxis (19, 20). Therefore, a VTE risk assessment tool applicable for lung cancer patients is urgently needed. Incorporating positive driver genes into a risk assessment model may improve performance, and thus clarification of the correlation between driver genes and VTE risk is of great significance for VTE risk assessments. Consequently, we generated this systematic review and meta-analysis to evaluate the estimated incidence and risk of VTE in NSCLC patients with different driver genes.

METHODS

Search Strategies and Selection Criteria

According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements, we identified relevant studies for meta-analysis and systematic review (Supplementary Table 1) (21). We performed a search of PubMed, Embase, Web of Science and Cochrane library databases for relevant articles written in English and published between 1 January, 2000 and 31 December, 2020. We used three groups of search terms including: (1) 'lung cancer', 'lung neoplasms' and 'non-small-cell lung cancer'; (2) 'EGFR', 'KRAS', 'ALK', 'ROS1', 'RET', 'MET', 'BRAF', 'MEK', 'PIK3CA', 'PTEN', 'FGFR1', 'HER2' and 'DDR2'; (3) 'venous thromboembolism', 'deep vein thrombosis', 'pulmonary embolism', 'arterial thromboembolism', 'cerebral vascular accident', 'stroke' and 'myocardial infarction' (specific search strategies are listed in Supplementary File 1). References of the included studies, published meta-analyses and systematic reviews were also assessed for further potential studies that could be included.

We included all full-text studies and abstracts with information on the incidence of VTE or ATE in lung cancer patients with confirmed driver genes. These studies included hospital-, population- and registry-based cohorts and case-control studies. The inclusion criteria were defined as follows: (1) patients diagnosed with pathologically confirmed NSCLC, (2) a confirmed gene status and (3) available data on VTEs or ATEs. Follow-up duration and treatment regimens were not restricted in any form. The exclusion criteria were defined as follows: (1) clinical trials and other studies on treatment safety (i.e., showing VTE or ATE as adverse events), were excluded due to their miscellaneous follow-up period which is usually not related to the time of cancer diagnosis, (2) case reports, case series, reviews, *in vitro* studies and animal studies. Three investigators independently assessed all trials for eligibility, and disagreements were resolved through consensus.

Data Extraction

Two independent investigators reviewed titles and abstracts of potentially relevant studies and independently extracted study

Abbreviation: AC, adenocarcinoma; ATE, arterial thromboembolism; DVT, deep vein thrombosis; HR, hazard ratio; ICI, immune checkpoint inhibitor; NSCLC, non-small-cell lung cancer; OR, odds ratio; PD-1, programmed cell death-1; PD-L1, programmed cell death ligand 1; PE, pulmonary embolism; TE, thromboembolic events; TF, tissue factor; VTE, venous thromboembolism.

details using a standardized pilot-tested form. A third investigator reviewed all data entries. The following information from each eligible study was extracted, including: first author, study location, study design, sample size, pathological type, gene status, treatment regimens and follow-up duration. We extracted data on the incidence of VTE and ATE in NSCLC patients. Possible related factors for the development of VTE in NSCLC patients were also extracted when available, including age, sex, ethnicity, pathological type, cancer stage, smoking status, comorbidities, gene subtypes and treatment regimens.

The methodological quality of studies was assessed by two authors using the Newcastle-Ottawa quality assessment scale (22), which assigns 4 points for selection, 2 points for comparability and 3 points for outcomes.

Outcomes

The primary outcome was the occurrence of VTE, including events during the peri-diagnosis and treatment periods. VTE consists of DVT (symptomatic or asymptomatic) and PE. Secondary outcome was the incidence of ATE. ATE was defined as arterial thromboembolism, including but not limited to cerebral vascular accident and acute myocardial infarction.

Statistical Analysis

Statistical analyses for overall risks of VTEs/ATEs were performed using Stata 14.0. Study heterogeneity was estimated using the χ^2 -based Q statistic and heterogeneity was considered statistically significant when $I^2 > 50\%$. Meta-analysis was performed using the Mantel-Haenszel random-effects model for estimates of the odds ratio (OR) and the inverse variance random-effects model for rate estimates. The association of potential risk factors with VTEs/ATEs was summarized as OR (95% confidence interval [CI]). Given that differences in follow-up periods, the inclusion of asymptomatic VTE, VTE composition, stage, pathological type, race, quality and publish year would affect the result, we performed subgroup analysis based on these factors. Publication bias was assessed through graphical visualization of funnel plots as well as using Begg's and Egger's tests. Sensitivity analysis of the primary outcome was conducted by sequential removal of each involved trial. A two-sided *P* value less than 0.05 was considered to be statistically significant.

RESULTS

We identified 2,742 reports and included 25 studies performed between January 1, 2000 and December 31, 2020 in the analysis. The process of identifying eligible studies for our systematic review and meta-analysis is shown in **Figure 1**. Characteristics of included studies are available in **Table 1**. 25 studies included 3 prospective cohorts, 20 retrospective cohorts and 2 retrospective case-control studies. Of the 25 studies, 22 studies reported VTEs, and 8 studies reported ATEs. 4 studies reported PEs or DVT

TABLE 1 Characteristics of studies included in the meta-analy	sis.
---	------

Study	Study design *	Country	No. of patients	Stage	Histology	Gene status	TE type	Median follow-up duration/ month (range)
Al-Samkari H 2020 (9)	Cohort R	USA	807	III IV	NSCLC	ALK	VTE, ATE, PE, DVT	31.5
Alexander M 2020 (23)	Cohort R	Australia	42	NR	NSCLC	ROS1	VTE, ATE, PE, DVT	10.9(0.1-180.4)
Azevedo S 2017 § (24)	Cohort R	Portugal	26	NR	NSCLC	ALK	VTE, PE	13.5
Berger N 2014 § (25)	Cohort R	USA	57	III IV	AC	EGFR	VTE	NR
Chiari R 2020 (10)	Cohort P	Italy	74	IIIB IV	NSCLC	MET, ROS1	VTE, ATE, PE, DVT	36.4
Corrales-Rodriguez L 2014 (11)	Case-control R	Canada	159	I-IV	NSCLC	EGFR, KRAS	VTE	NR
Davidsson E 2017 (26)	Cohort R	Swidden	310	I-IV	AC	ALK, EGFR	VTE	0.3-105.3†
Delmonte A 2015 § (27)	Cohort R	Italy	289	IIIB IV	AC	ALK, BRAF, EGFR, KRAS	VTE	NR
Dou F 2018 (13)	Cohort P	China	605	I-IV	NSCLC	EGFR, KRAS	VTE	NR
Dou F 2020 (28)	Cohort P	China	341	I-IV	NSCLC	ALK	VTE	7.5(3.1-15.4)
Leader A 2019 § (29)	Cohort R	Israeli	4752	NR	NSCLC	ALK	ATE	18(12.93-18)
Lee Y G 2014 (30)	Cohort R	Korea	1998	I-IV	NSCLC	ALK, EGFR	VTE	45.6
Muñoz-Unceta N 2020 (31)	Cohort R	Spain, Portugal	58	III IV	NSCLC	ROS1	VTE, ATE, PE, DVT	19 (1–78)
Ng T L 2019 (8)	Cohort R	China, USA	740	I-IV	NSCLC	ALK, EGFR, KRAS, ROS1	VTE, ATE	19.9
Roopkumar J 2020 (32)	Cohort R	USA	461	I-IV	NSCLC	ALK, EGFR	PE, DVT	33.1 (0.1-192.4)
Shahzad H 2017 § (33)	Cohort R	USA	62	I-IV	AC	EGFR	VTE	NR
Shen Q 2017 (34)	Case-control R	China	1560	III IV	NSCLC	ALK, EGFR, ROS1	VTE	NR
Verso M 2015 (12)	Cohort R	Italy	173	IIIB IV	AC	ALK, EGFR, KRAS	PE	16.9 ± 8.1 ‡
Wang J 2019 (14)	Cohort R	China	323	NR	AC	ALK, EGFR, KRAS	VTE	NR
Xiong W 2020 (35)	Cohort R	China	1187	I-IV	NSCLC	ALK, BRAF, EGFR, ROS1	PE	NR
Yamazaki S 2013 § (36)	Cohort R	Japan	1953	NR	NSCLC	EGFR	PE	NR
Yang S 2020 (37)	Cohort R	China	513	IIIB IV	AC	ALK, EGFR	VTE	30
Zer A 2017 (38)	Cohort R	Canada, Israeli	98	I-IV	AC	ALK	VTE, ATE, PE, DVT	22 (1–139)
Zer A 2019 § (39)	Cohort R	Israeli	4327	NR	NSCLC	ALK	VTE	NR
Zugazagoitia J 2018 (40)	Cohort R	Spain, Portugal	241	III IV	NSCLC	ALK	VTE, ATE, PE	19(0-59)

AC, adenocarcinoma; ATE, arterial thromboembolism; DVT, deep vein thrombosis; NR, not reported; NSCLC, non-small-cell lung cancer; PE, pulmonary embolism; TE, thromboembolic event: VTE, venous thromboembolism.

*R/P stands for Retrospective (R) or prospective (P).

† Follow-up range.

Mean follow-up duration (mean ± standard deviation).

§ Abstract only.

events independently. The size of the studies varied between 26 and 4,752 participants. All included studies contained patients diagnosed with NSCLC or lung adenocarcinoma harboring driver genes including *EGFR*, *ALK*, *ROS1*, *KRAS*, *MET* and *BRAF*. All included studies were of good quality, as assessed using the Newcastle-Ottawa quality assessment scale for cohort and case-control studies (**Supplementary Table 2**).

The Association Between VTE and Driver Genes

The study included 21,156 patients of which 4,342 patients were confirmed to harbor driver gene mutations (2,080 *EGFR* mutated, 1,575 *ALK* rearranged, 340 *KRAS* mutated, 290 *ROS1* rearranged, 31 *BRAF* mutated and 26 *MET* amplificated or exon 14 mutated; Clinical characteristics of each group with different driver genes were shown in **Supplementary Table 3**). Among the patients, 876 patients developed thromboembolic events,

including 630 VTE in 2,882 patients with driver genes and 105 ATE events in 1,821 patients harboring driver genes. Pooled VTE incidence was 23% (95% CI 18-29). Patients with *ROS1* rearrangements had the highest VTE incidence of 37% (95% CI 23-52), followed by *ALK* rearranged patients with an incidence of 27% (95%CI 20-35). VTE incidence in patients with *EGFR* mutations and *KRAS* mutations was 15% (95% CI 9-20) and 9% (95% CI 5-14), respectively (**Figure 2**). Furthermore, 10 studies were analyzed with negative controls as shown in **Figure 3**. Patients with *ALK* rearrangements showed significantly higher risks for VTE (OR=2.08,95% CI 1.69-2.55, P=0.000, I² = 0.0%), while patients harboring *EGFR* (OR=1.33, 95% CI 0.75-2.34, P=0.328, I² = 73.0%) and *KRAS* (OR=1.31, 95% CI 0.40-4.28, P=0.652, I² = 82.0%) mutations showed no significant relation with the risk of VTE.

Subgroup analysis of VTE incidence in *ALK* rearranged or *EGFR* mutant patients (Figures 4, 5) was performed. Great

ID	ES (95% CI)	Weight
ALK	_	
Al-Samkari H (2020)	• 0.43 (0.38, 0.47)	4.40
Azevedo S (2017)	0.31 (0.13, 0.49)	2.95
Davidsson E (2017)	0.33 (0.20, 0.45)	3.56
Delmonte A (2015)	0.33 (-0.04, 0.71)	1.31
Dou F (2020)	0.27 (0.10, 0.44)	3.04
Lee Y G (2014)	0.17 (0.02, 0.32)	3.30
Ng T L (2019)	0.12 (0.08, 0.17)	4.41
Wang J (2019)	0.20 (-0.05, 0.45)	2.21
Yang S (2020)	0.21 (0.06, 0.35)	3.32
Zer A (2017)	0.36 (0.26, 0.45)	3.95
Zer A (2019)	0.26 (0.19, 0.33)	4.22
Zugazagoitia J (2018)	• 0.29 (0.24, 0.35)	4.33
Subtotal (I-squared = 87.4%, p = 0.000)	0.27 (0.20, 0.35)	41.00
EGFR	0.20 (0.05, 0.62)	1 55
Devideson E (2017)		1.55
Daviusson E (2017)	0.22 (0.14, 0.30)	4.12
Demonie A (2015)	0.24 (0.12, 0.37)	3.05
Dou F (2018)	0.09 (0.05, 0.13)	4.47
Ng T L (2019)	0.08 (0.05, 0.11)	4.50
Shahzad H (2017)	0.64 (0.35, 0.92)	1.90
Wang J (2019)	0.17 (0.10, 0.24)	4.23
Yang S (2020)	0.05 (0.02, 0.08)	4.51
Subtotal (I-squared = 84.5%, p = 0.000)	0.15 (0.09, 0.20)	28.93
KRAS		
Delmonte A (2015)	0.06 (-0.01, 0.13)	4.25
Dou F (2018)	0.16 (0.07, 0.25)	3.99
Ng T L (2019)	0.07 (0.03, 0.11)	4.44
Wang J (2019)	0.17 (-0.01, 0.34)	3.02
Subtotal (I-squared = 32.4%, p = 0.218)	0.09 (0.05, 0.14)	15.71
. I BOS1		
Alexander M (2020)	0.45 (0.30, 0.60)	3 28
Chiari B (2020)		3.42
Muñoz-Linceta N (2020)	0.45 (0.32, 0.58)	3.56
No T L (2019)	0.20 (0.12, 0.28)	4 11
Subtotal (Leguared - 82.6% p = 0.001)		4.11
	0.37 (0.23, 0.52)	14.30
Overall (I-squared = 92.6%, p = 0.000)	• 0.23 (0.18, 0.29)	100.00
NOTE: Weights are from random effects analysis		
I I 921 0	l .921	

FIGURE 2 | Pooled estimates for incidence of VTE in patients with 4 driver gene types.

consistency was shown in patients with *ALK* rearrangement. As for the VTE incidence in *EGFR* mutant patients, publish year and insufficient data may explain the heterogeneity of results. There were 5 included studies published before 2018, and 3 of them were conference abstracts with limited information. Other factors including the setting of the follow-up period, the inclusion of asymptomatic VTE, the composition of VTE, histology, stage, race and quality of studies were not significantly associated with the outcomes.

Results of PEs in patients carrying driver genes showed similar trends. As shown in **Figure 6A**, Patients with *ROS1* rearrangements had the highest PE incidence of 26% (95% CI 15-36), followed by *ALK* rearranged patients with an incidence of 20% (95%CI 14-26). PE incidence in patients with *EGFR* mutations was 8% (95% CI 2-14). Furthermore, as shown in **Figure 6B**, patients with *ALK* rearrangements showed significantly higher risks for PE (OR=1.71, 95% CI 1.28-2.28, P=0.000, I² = 0.0%), while patients harboring *EGFR* mutations showed no association with the risk of PE (OR=1.19, 95% CI 0.60-2.36, P=0.614, I² = 69.4%). Sensitivity analysis and publication bias are presented in supplementary figures. No significant publication bias was observed in funnel plots as well as the Egger's and Begg's test results.

The Association Between ATE and Driver Genes

A total of 8 articles recorded ATE incidence in patients with different driver genes, as shown in **Figure 7**. Patients harboring *ROS1* rearrangements showed higher incidence of ATE (7%, 95%CI 2-12), compared with that of *ALK* rearranged patients (4%, 95%CI 1-6). The results were similar to the ATE incidence observed in general lung cancer populations (41). There were only two studies available for risk estimates of ATE in patients with *ALK* rearrangement (9, 29), with a total of 5,289 patients (594 *ALK* rearranged). The results showed that *ALK* rearrangement did not significantly increase the risk of ATE (OR=0.92, 95% CI 0.44-1.92, P=0.823, $I^2 = 19.4\%$).

DISCUSSION

Even though recent articles indicate that both *ROS1* and *ALK* rearrangements are associated with a higher risk for VTE, the incidence and relative risks reported vary between studies. In addition, there is controversy regarding the correlation between *EGFR* or *KRAS* mutations and VTE risks. In this systematic review and meta-analysis, we analyzed VTE incidence as well as

Study ID % OR (95% Cl) % ALK Al-Samkari H (2020) Davidsson E (2017) 1.86 (1.39, 2.49) 7.80 2.01 (1.00, 4.03) 6.00	eight
ALK Al-Samkari H (2020) Davidsson E (2017)	eight
ALK Al-Samkari H (2020) Davidsson E (2017) 1.86 (1.39, 2.49) 7.80 2.01 (1.00, 4.03) 6.00	
Al-Samkari H (2020) 1.86 (1.39, 2.49) 7.8 Davidsson E (2017) 2.01 (1.00, 4.03) 6.0	6
Davidsson E (2017) 2.01 (1.00, 4.03) 6.04	00
)4
Delmonte A (2015) 1.49 (7.24, 7.24) 2.54	50
Dou F (2020) 3.50 (1.40, 8.82) 4.93	3
Shen Q (2017) 💌 1 0.80 (5.81, 5.81) 1.7	0
Wang J (2019) 5.31 (26.37, 26.37) 2.54	55
Yang S (2020) 5.08 (1.83, 14.23) 4.44	6
Zer A (2019) 2.06 (1.41, 3.00) 7.5-	54
Subtotal (I-squared = 0.0%, p = 0.478) 2.08 (1.69, 2.55) 37.1	.58
EGFR	
Berger N (2014) 2.80 (0.38, 21.08) 1.73	'3
Corrales-Rodriguez L (2014) 1.55 (0.53, 4.54) 4.24	26
Davidsson E (2017) 1.17 (0.64, 2.15) 6.44	8
Delmonte A (2015) - 0.97 (0.47, 1.99) 5.89	89
Dou F (2018) 0.66 (0.38, 1.14) 6.7	7
Shahzad H (2017) 9.41 (2.34, 37.82) 3.11	8
Shen Q (2017) 0.32 (0.13, 0.81) 4.9	91
Wang J (2019) 4.38 (1.89, 10.11) 5.33	32
Yang S (2020) 1.03 (0.46, 2.31) 5.4	7
Subtotal (I-squared = 73.0%, p = 0.000) 1.33 (0.75, 2.34) 44.1	.02
KRAS	
Corrates-Rodriguez L (2014) 2.82 (1.26, 6.30) 5.5	2
Deimonie A (2015)	8
Dour (2018)	9
Wang J (2019) 4.25 (1.11, 16.59) 3.22	2
Subtotal (I-squared = 82.0% , p = 0.001)	.40
Overall (I-squared = 69.4%, p = 0.000)	0.00
NOTE: Weights are from random effects analysis	
.0264 1 37.8	
Forest plot demonstrating the association of driver genes with VTE events.	

the estimated risk for VTE in lung cancer patients with driver genes including *ROS1*, *ALK*, *EGFR* and *KRAS*. Patients with *ROS1* and *ALK* rearrangements showed the highest incidence for VTE, and the risk of VTE in *ALK* rearranged patients was double of that observed in *ALK* wild type patients. Patients with *KRAS* mutations showed the lowest incidence for VTE among the analyzed driver genes, and both *KRAS* and *EGFR* mutations were proved no significant relation with VTE risks in patients with lung cancer. These findings suggest that incorporating *ROS1* and *ALK* rearrangements into VTE risk assessment models may be beneficial for screening NSCLC patients with a high risk for VTE.

Among patients with driver gene mutations, the incidence of pooled VTE was 23% (95% CI 18-29), which was higher than the reported incidence of 7-13% in lung cancer patients (1, 4). This discrepancy may attribute to the difference of population compositions. In the general population, patients with *ALK* and *ROS1* rearrangements are observed in 5% and 2% of NSCLC patients, respectively (42, 43). In the population with driver gene mutations studied in this article, patients with *ALK* rearrangements accounted for 29.6% while patients with *ROS1* rearrangements accounted for 8.4%. Both of these proportions were much greater than what was observed in the general population. Given that patients with *ROS1* and *ALK* rearrangements show longer survival rates compared to patients with other driver genes, several studies performed survival analyses to prove that the increased risk of VTE was not due to prolonged survival (8, 9, 28, 40). Consistent with

previous studies, VTE that occurred in the peri-diagnostic period (one month prior to and after cancer diagnosis) accounted for 32% ~45% (10, 23) and 23%~35% (9, 38, 40) of all VTEs in the *ROS1* or *ALK* positive cohort, respectively.

There is no doubt that the major purpose of genetic testing is to guide treatment, and NSCLC with different driver genes has different optimal treatment options according to the guidelines (7). As the studies included in this meta-analysis provided limited treatment information (as shown in Supplementary Table 3), and preferred treatments for driven genes has been changing rapidly within years, it becomes quite difficult to diminish the treatment related bias through analysis. However, detailed information from several studies included confirmed the relatively higher risks of TE in NSCLC with ALK/ROS1 rearrangements regardless of the effects caused by treatments. When the timing of TE events was analyzed, 50%~59% of TE in ROS1 rearranged patients happened with naïve treatments (23, 31), while 37% of VTE in patients with ALK rearrangements occurred when patients received no treatments (38). In a study comparing the risk of TE between EGFR mutant and ALK rearranged patients, the incidence of TE before using TKI and the incidence of TE in patients who have never used TKI in patients with ALK rearrangements were significantly higher than those in patients with EGFR mutations (50% vs 17.2%; 90.9% vs 21.2%, respectively). The study also found that using TKI before thrombosis is a protective factor for TEs in ALK rearranged patients [HR=0.084 (95%CI 0.031-0.232)], which was not observed in EGFR mutant patients. This result suggests

ALK Subgroup	No. of patients		ES(95%CI)
Overall	1276		0.27(0.20–0.35)
Follow-up period			
Diagnosis to death/last follow–up *	892		0.31(0.24–0.38)
Peridiagnosis period	203		0.13(0.08–0.17)
NR	181		0.26(0.20-0.33)
Asymptomic VTE included			
Yes	1007	_	0.27(0.15–0.39)
No	26	-	0.27(0.10-0.44)
NR	243		0.27(0.22–0.33)
VTE composition			
PE and DVT	752		0.27(0.11–0.43)
Other sites included †	50		0.21(0.10-0.32)
NR	474		0.29(0.25–0.33)
Histology			
Adenocarcinoma	195		0.31(0.25–0.37)
NSCLC	1081		0.26(0.16–0.37)
Stage			
I–IV	393		0.25(0.13–0.36)
III–IV	698		0.32(0.21–0.43)
NR	185		0.26(0.20-0.32)
Race			
Multiracial	713		0.30(0.09–0.52)
Asian	89		0.21(0.12–0.29)
NR	474		0.29(0.25–0.33)
Quality			
>5	1129		0.25(0.18–0.32)
≤5	147		0.29(0.18–0.40)
Publish year			
2018–2020	1070		0.26(0.15–0.37)
Before 2018	206		0.31(0.24–0.38)

that the thrombotic predisposition of *ALK* rearrangement may be related to the gene alteration and derived kinase activity (32). In addition, a recent meta-analysis indicated that TKIs treating NSCLC with *ALK/ROS1* rearrangements did not significantly increase the VTE risk compared with platinum-based chemotherapy by analyzing 6 randomized control studies (44). All the evidence supports that *ALK/ROS1* rearrangements are associated with increased TE risks. None of the included studies mentioned immunotherapy in treatment modalities. With the advancement of treatments and the development of precise management for target genes in the future, the incidence of TE during clinical management in patients with different driver genes may change accordingly. However, putting aside the influence of

treatments on TE events, it is unquestionable that driver genes play an important role in the occurrence of TE events.

The incidence of ATE in patients with lung cancer is approximately 6.3%-10.9% (5, 41). Studies have suggested that the risk of ATE may be the greatest during the peri-diagnosis period, which is similar to results in VTE studies (5, 45, 46). A recent study retrospectively analyzed an *ALK* positive cohort in NSCLC patients. Although the incidence of ATE was similar in patients with and without *ALK* rearrangements (5.0% vs 4.4%), *ALK*-positive patients showed a 3-fold greater risk than wild type patients using time-to-event analysis with relevant variables adjusted (9). Therefore, even though the incidence and risk estimate of ATE in patients with *ALK* or *ROS1* rearrangement

EGFR Subgroup	No. of patients		ES(95%Cl)
Overall	1050		0.15(0.09–0.20)
Follow-up period			
Diagnosis to death/last follow-up *	566		0.11(0.04–0.18)
Peridiagnosis period	417		0.12(0.03-0.21)
NR	67		
Asymptomic VTE included			
Yes	518		0.06(0.04-0.09)
No	244		0.09(0.05-0.13)
NR	288		> 0.25(0.16-0.34)
VTE composition			
PE and DVT	890		0.11(0.06-0.16)
NR	160		0.23(0.17–0.30)
Histology			
Adenocarcinoma	506		
NSCLC	544		0.08(0.06-0.11)
Stage			
I–IV	659		0.16(0.08-0.24)
III–IV	274	< •	
NR	117		0.17(0.10-0.24)
Race			
Multiracial	300		0.08(0.05-0.11)
Asian	579	- _	0.07(0.03-0.11)
NR	171	· · · · · · · · · · · · · · · · · · ·	
Quality			
>5	739	_	0.14(0.07-0.21)
≤5	311	<	
Publish year			
2018–2020	879	_ -	0.09(0.05-0.12)
Before 2018	171		
		0 0.15	0.3

in our study were not significantly higher than that in the general lung cancer population, harboring driver genes such as *ALK*, may increase the risk of ATE generation in a short period after diagnosis with lung cancer. However, current research data for the relation between ATE and driver genes in cancer patients were not strong enough to support the hypothesis. More prospective studies with time-to-event information are expected.

Underlying molecular mechanisms of tumor genomic mutations affecting thrombosis are still unclear. Tissue factor (TF) is an important physiological trigger of coagulation. Upregulation in TF may contribute to the prethrombotic state linked to malignant tumors (47, 48). *ALK* rearrangements have been shown to be associated with high levels of TF (49). *KRAS* mutations have also been associated with increased TF expression levels in colorectal cancer and NSCLC (50–52). Moreover, it is known that inflammation plays an important role in thrombosis

induction (53). Some studies on ALK-mutated lymphomas have shown that ALK rearrangements lead to increased STAT3 signal transduction, which is involved in downstream signaling of inflammatory cytokines (54). It has also been shown that ALK is important in the activation of NLRP3 inflammasomes in macrophages (55). From a macroscopic perspective, the thrombosis risk assessment model, ONKOTEV study included vascular or lymphatic macroscopic compression as one of the assessment criteria, suggesting that vascular or lymphatic compression may be related to increased VTE risk (56). Studies have shown that higher N stage is associated with an increased VTE risk (57). ALK and ROS1 are common fusion genes in NSCLC, with similar histological findings (58) and a higher tendency to lymph node metastasis (59, 60). In this study, patients with ALK rearrangements showed a higher risk of VTE, while patients with ROS1 rearrangements showed the highest

ALK Al-Samkari H (2020) 0.24 (0.20, 0.28) 8.18 Azzvedo S (2017) 0.19 (0.04, 0.24) 6.17 0.16 (0.05, 0.28) 6.55 Storg V(2020) 0.24 (0.20, 0.28) 8.18 0.19 (0.04, 0.24) 6.17 Zer A (2017) 2.0920 (0.14, 0.28) 6.51 0.21 (0.16, 0.33) 7.10 Zugazgoiti J (2018) 0.21 (0.16, 0.33) 7.10 0.22 (0.14, 0.28) 6.51 Subtotal (I-squared = 72.9%, p = 0.001) 0.88 (0.04, 0.13) 8.15 0.21 (0.16, 0.33) 7.10 FGFR Roopkumar J (2020) 0.88 (0.02, 0.14) 0.28) 6.54 0.22 (0.14, 0.28) 6.57 Yamazaki S (2013) 0.18 (0.03, 0.24) 10.04) 8.51 0.16 (0.03, 0.29) 5.7 0.16 (0.03, 0.29) 5.7 Yamazaki S (2013) 0.31 (0.17, 0.45) 5.50 0.27 (0.15, 0.40) 5.90 0.34 (0.22, 0.47) 8.00 Norge V (2020) 0.31 (0.17, 0.45) 5.50 0.27 (0.15, 0.40) 5.90 0.34 (0.22, 0.47) 8.00 Norge V (2020) 3.16 (0.13, 0.24) 100.00 0.12 (0.02, 0.22) 6.72 0.26 (0.15, 0.36) 24.13 Overall (I-squared = 69.6%, p = 0.020) 0.18 (0.13, 0.24) 100.00 0.12 (0.02, 0.22) 6.72 0.26 (0.15, 0.36) 24.13 Norge V (2020) 3.00 Y 1.36 (0.14, 1.32) 1.32 1.36 (0.14, 1.32) 1.32 1.36 (0.14, 1.32) 1.32 Norge V (2020) 3.36 (0.16, 0.38) 1.30	Α	ID	ES (95% CI)	% Weight
ALX A-Samkari H (2020) Azervedo S (2017) Reopkumar J (2020) Verso M (2015) Xiong W (2020) Cell FI (Equared = 72.9%, p = 0.001) - CFI Roopkumar J (2020) Verso M (2015) Xiong W (2020) Chair R (2020) Verso M (2020) NOTE: Weights are from random effects analysis 708 0 Alx Mesondmar M (2020) Corr (1 (-squared = 92.8%, p = 0.000) NOTE: Weights are from random effects analysis 708 0 Alx Mesondmar M (2020) Corr (1 (-squared = 90.4%, p = 0.000) NOTE: Weights are from random effects analysis 708 0 Alx Mesondmar M (2020) Corr (1 (-squared = 90.4%, p = 0.000) NOTE: Weights are from random effects analysis 708 0 708 1 Alx Mesondmar (2020) Meror M (2015) Xiong W (2020) Alx Mesondmar M (
A-stantikal H (2020) 0.24 (0.20, 0.23 (0.71) 3.28 Roopkumar J (2020) 0.15 (0.04, 0.34) 5.17 Verso M (2015) 0.19 (0.04, 0.39) 5.14 Subtottal (I-squared = 72.9%, p = 0.001) 0.20 (0.14, 0.26) 45.09 I-GFR 0.20 (0.14, 0.26) 45.09 Roopkumar J (2020) 0.08 (0.04, 0.13) 8.15 Verso M (2015) 0.08 (0.04, 0.13) 8.15 Xiong W (2020) 0.08 (0.04, 0.13) 8.15 Verso M (2015) 0.08 (0.04, 0.13) 8.15 Verso M (2015) 0.08 (0.04, 0.13) 8.15 Verso M (2015) 0.08 (0.04, 0.13) 8.15 Verso M (2020) 0.08 (0.02, 0.14) 30.78 Ming V (2020) 0.08 (0.02, 0.14) 30.78 Ming V (2020) 0.08 (0.02, 0.14) 30.78 Ming V (2020) 0.31 (0.17, 0.45) 5.50 Subtotal (I-squared = 69.6%, p = 0.020) 0.12 (0.02, 0.22) 6.72 Norg W (2020) 0.18 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 1.02 (1.14, 2.89) 2.28 (0.71, 1.34) 30.82 Nero M (2015) 0.02 (0.01, 0.11) 3.28 (0.74, 11) 3.30 Nero M (2015) 0.020 (0.11, 0.28, 11) 1.21 (1.84, 2.89) 2.28 (0.71, 1.34) Nero M (2015) 0.020		ALK	0.04/0.00.0.00	0.10
B Shary (2020) Norrall (I-squared = 92.8%, p = 0.000) NOTE: Weights are from random effects analysis 708 Subtral (Loca) Norrall (Loca) Subtral (Loca) Norrall (Loca)		Al-Samkari H (2020)	0.24 (0.20, 0.28) 8.18
Werso M (2015) 0.19 (0.03, 0.29) 0.23 0.19 (0.09, 0.29) 0.23 Zer A (2017) 2.22 (0.11, 0.23, 0.71) 0.22 0.24 (0.16, 0.33) 7.10 Zugazagotila J (2018) 0.24 (0.16, 0.33) 7.10 0.22 (0.14, 0.26) 45.09 Usbotal (I-squared = 72.9%, p = 0.001) 0.20 (0.14, 0.26) 45.09 0.22 (0.14, 0.26) 45.09 Verso M (2015) 0.08 (0.04, 0.13) 8.15 0.20 (0.01, 0.04) 8.51 Subtotal (I-squared = 90.5%, p = 0.000) 0.08 (0.02, 0.14) 0.03, 0.29 5.79 Verso M (2020) 0.08 (0.02, 0.14) 0.078 Muñoz-Unceta N (2020) 0.31 (0.17, 0.45) 5.50 Muñoz-Unceta N (2020) 0.34 (0.22, 0.47) 6.00 Muñoz-Unceta N (2020) 0.34 (0.22, 0.47) 6.00 Norg W (2020) 0.31 (0.17, 0.45) 5.50 Subtotal (I-squared = 90.5%, p = 0.020) 0.34 (0.22, 0.47) 6.00 Norg W (2020) 0.31 (0.17, 0.45) 5.50 Norg W (2020) 0.34 (0.22, 0.47) 6.00 Norg W (2020) 0.34 (0.22, 0.47) 6.00 NOTE: Weights are from random effects analysis -708 -708 -708 -708 -708 -709 -708 -709 -708 -709 -708 -708 <td></td> <td>Azevedo S (2017)</td> <td>0.19 (0.04, 0.34</td> <td>0.17</td>		Azevedo S (2017)	0.19 (0.04, 0.34	0.17
Wins (V (2020) 0.19 (0.09, 0.29) 6.54 Zer A (2017) 0.12 (0.08, 0.17) 8.16 Subtotal (I-squared = 72.9%, p = 0.001) 0.12 (0.08, 0.17) 8.16 F Roopkumar J (2020) 0.08 (0.04, 0.13) 8.15 Verso M (2015) 0.16 (0.03, 0.29) 5.79 Xiong W (2020) 0.16 (0.03, 0.29) 5.79 Xiong W (2020) 0.16 (0.03, 0.29) 5.79 Xiong W (2020) 0.31 (0.17, 0.45) 5.50 Verso M (2015) 0.31 (0.17, 0.45) 5.50 Xiong W (2020) 0.34 (0.22, 0.47) 6.00 Noreall (I-squared = 69.6%, p = 0.020) 0.27 (0.15, 0.40) 5.90 Noreall (I-squared = 69.6%, p = 0.020) 0.18 (0.13, 0.24) 100.00 NOTE: Weights are from nandom effects analysis 0 -708 0 .708		Norpo M (2015)	0.15 (0.05, 0.26	0.00
Zich (2017) 2.2 (2017) Zugazagoritia J (2018) 0.1 (2018) Subbtall (I-squared = 72.9%, p = 0.001) 0.2 (0.14, 0.26) 45.09 I 0.2 (0.14, 0.26) 45.09 Verso M (2015) 0.06 (0.04, 0.13) 8.15 Vorso M (2015) 0.06 (0.04, 0.13) 8.15 Subtotal (I-squared = 90.5%, p = 0.000) 0.08 (0.02, 0.14) 8.33 I Ox (2020) Vamazaki S (2013) 0.22 (0.15, 0.40) 5.50 Subtotal (I-squared = 90.5%, p = 0.000) 0.31 (0.17, 0.45) 5.50 Ninoz-Unceta N (2020) 0.31 (0.17, 0.45) 5.50 Ninoz Vinceta N (2020) 0.34 (0.22, 0.47) 6.00 Ninoz Vinceta N (2020) 0.34 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 0 708 708 ALK 1.82 (1.14, 2.89) 2.81 (0.31, 0.21) Normy W (2020) 1.89 (0.70, 4.11) 9.33 Subtotal (I-squared = 0.0%, p = 0.840) 1.82 (1.14, 2.89) 2.0.82 Incertance A (0.15) 0.12 (0.20, 0.20) 1.89 (0.70, 4.11) 9.33 Subtotal (I-squared = 0.0%, p = 0.840) 1.82 (1.14, 2.89) 2.0.82 Incertance A (0.15) 0.12 (0.20) 0.12 (0.20, 0.20)<		Verso W (2015)) 3.20
B Study Study B Study B Stu		Zor A (2017)	0.19 (0.09, 0.29	7 10
B Subtotal (I-squared = 92.9%, p = 0.001) - EGFR Roopkumar J (2020) Verso M (2015) Xiong W (2020) Roopkumar J (2020) NOTE: Weights are from random effects analysis - -708 Subtotal (I-squared = 92.8%, p = 0.020) - Atx A Atx A Assamcer M (2020) NOTE: Weights are from random effects analysis - - Coverall (I-squared = 60.6%, p = 0.844) - - Coverall (I-squared = 60.6%, p = 0.844) - - Coverall (I-squared = 60.6%, p = 0.844) - - Coverall (I-squared = 60.6%, p = 0.020) - - - Coverall (I-squared = 60.6%, p = 0.844) - - Coverall (I-squared = 60.6%, p = 0.020) - - - Coverall (I-squared = 60.6%, p = 0.844) - - - Coverall (I-squared = 60.6%, p = 0.844) - - - - - Coverall (I-squared = 60.6%, p = 0.844) - - - - - - - - - - - - -			0.12 (0.08 0.17	8 16
B Study Study Study708 0.08 (0.04, 0.13) 8.15 0.16 (0.03, 0.29) 5.79 0.02 (0.01, 0.04) 8.51 0.02 (0.01, 0.04) 5.90 0.034 (0.22, 0.47) 6.00 0.034 (0.22, 0.47) 6.00 0.034 (0.22, 0.47) 6.00 0.02 (0.15, 0.36) 24.13 0.02 (0.16, 0.30, 0.4) 100.00 0.08 (0.03, 0.11, 0.24) 100.00 0.02 (0.15, 0.36) 24.13 0.02 (0.15, 0.36) 24.13 0.02 (0.15, 0.36) 24.13 0.02 (0.15, 0.36) 24.13 0.02 (0.16, 0.30, 1.13) 0.33 0.05 (0.13, 0.24) 100.00 0.08 (0.04, 1.27) 1.34 1.09 (0.03, 1.13) 0.33 0.05 (0.14, 1.27) 1.34 0.05 (0.03, 1.14) 1.32 0.05 (0.14, 1.20) 1.000 0.05 (0.02, 0.14) 1.32 0.05 (0.14, 1.20) 1.000		Subtotal (I-squared = 72.9%, p = 0.001)	0.20 (0.14, 0.26) 45.09
Boopkumar J (2020) 0.08 (0.04, 0.13) 8.15 Verso M (2015) 0.16 (0.03, 0.29) 5.79 Xiong W (2020) 0.11 (0.08, 0.14) 8.33 Yamazaki S (2013) 0.08 (0.02, 0.14) 8.33 Subtotal (I-squared = 90.5%, p = 0.000) 0.08 (0.02, 0.14) 30.78 ROS1 Alexander M (2020) Chini R (2020) 0.31 (0.17, 0.45) 5.50 Ninöz-Unceta N (2020) 0.32 (0.22, 0.27) (0.04) 5.90 Ninöz V(2020) 0.34 (0.22, 0.27) (0.5) 4.40 5.90 Norg W (2020) 0.34 (0.22, 0.27) (0.5) 4.40 5.90 Norg W (2020) 0.34 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 0 708 0 ALK 1.82 (1.14, 2.30) 20.82 Rospharmar J (2020) 1.89 (0.70, 4.11) 9.83 Verio M (2015) 1.99 (0.70, 4.11) 9.83 Verio M (2015) 1.99 (0.70, 4.11) 9.83 Verio M (2015) 0.87 (0.41, 1.72) 13.41 Verio M (2015) 0.87 (0.44, 1.72) 13.41 Verio M (2015) 0.97 (0.44, 1.72) 13.41 Verio M (2015) 0.97 (0.44, 1.72) 13.41 Verio M (2015) 0.97				
Noreson M (2015) 0.000 (0.03, 0.12) 0.178 Yerros M (2015) 0.11 (0.008, 0.14) 8.33 Yamazaki S (2013) 0.02 (0.01, 0.04) 8.51 Subtotal (Isquared = 90.5%, p = 0.000) 0.31 (0.17, 0.45) 5.50 Chiari R (2020) 0.34 (0.22, 0.47) 6.00 Xiong W (2020) 0.34 (0.22, 0.47) 6.00 Subtotal (I-squared = 69.6%, p = 0.020) 0.34 (0.22, 0.47) 6.00 Norerall (I-squared = 69.6%, p = 0.020) 0.18 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 0 708 0 ALK 1.82 (1.14, 2.30) 20.82 Roopkumar J (2020) 0.97 (0.41, 1.72) 13.41 Verso M (2015) 0 7.78 Xong W (2020) 0.97 (0.41, 1.72) 13.41 Verso M (2015) 0.97 (0.41, 1.72) 13.41		Boopkumar I (2020)	0.08 (0.04 .0.13	9 15
Xiong W (2020) 0.10 (0.06, 0.14) 8.33 Yamazaki S (2013) 0.02 (0.01, 0.04) 8.51 Subtotal (I-squared = 90.5%, p = 0.000) 0.08 (0.02, 0.14) 30.78 ROS1 Alexander M (2020) Chiari R (2020) 0.31 (0.17, 0.45) 5.50 Muñoz-Unceta N (2020) 0.32 (0.15, 0.40) 5.90 Nuñoz Vicozo) 0.34 (0.22, 0.47) 6.00 Norte W (2020) 0.12 (0.02, 0.22) 6.72 Subtotal (I-squared = 69.6%, p = 0.020) 0.18 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 0 ID 0 ALK 1.82 (1.14, 2.30) Alk -708 Auson M (2015) 2.81 (0.91, 8.73) Nong W (2020) 1.82 (1.14, 2.30) Subtotal (I-squared = 0.0%, p = 0.844) 1.82 (1.14, 2.30) ID 0 Auson M (2015) 1.82 (1.02, 0.23) Xiong W (2020) 1.84 (1.01, 2.09) Norg W (2020) 0.87 (0.44, 1.72) Norg W (2020) 0.87 (0.44, 1.72) Yamazaki S (2015) 0.83 (0.23) Yamazaki S (2015) 0.84 (0.01, 0.20) Yamazaki S (2015) 0.87 (0.44, 1.72) Yama		Verso M (2015)	0.08 (0.04, 0.13	579
Yamazaki S (2013) 0.11 (0.07, 0.45) 5.50 Subtotal (I-squared = 90.5%, p = 0.000) 0.31 (0.17, 0.45) 5.50 ROS1 Alexander M (2020) Chir (I (2020) 0.31 (0.17, 0.45) 5.50 Muñoz-Unceta N (2020) 0.31 (0.17, 0.45) 5.50 Xong W (2020) 0.34 (0.22, 0.47) 6.00 Norerall (I-squared = 69.6%, p = 0.020) 0.26 (0.15, 0.36) 24.13 Overall (I-squared = 92.8%, p = 0.000) 0.18 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 708 ID 0 .708 ALK 1.82 (1.14, 2.30) 20.82 Roopkumar J (2020) 1.89 (0.70, 4.11) 9.33 Verso M (2015) 2.81 (0.91, 8.73) 7.22 Xong W (2020) 1.7708 1.7708 Subtotal (I-squared = 69.4%, p = 0.020) 0.97 (0.44, 1.72) 13.41 Verso M (2015) .90 (0.24, 1.72) 13.41 Verso M (2015) .91 (0.20, 1.88) 7.18 Xong W (2020) .91 (0.20, 1.88) 7.18 Verso M (2015) .91 (0.20, 1.89) 1.30 Verso M (2015) .91 (0.20, 2.89) 4.33 Urorrall (I-squared = 56.4%, p = 0.020)		Verso W (2013)	0.11 (0.08, 0.14	833
Subtotal (I-squared = 90.5%, p = 0.000) OBS (0.02, 0.14) 30.78		Xiong W (2020) Yamazaki S (2013)	0.02 (0.01, 0.04	851
B Study ID Alkx Alexander M (2020) Chiari R (2020) Muñoz-Unceta N (2020) Subtotal (I-squared = 69.6%, p = 0.020) · Overall (I-squared = 92.8%, p = 0.000) NOTE: Weights are from random effects analysis 708 0 Study ID OR (95% CI) Weight Alk Alk Alkanaman H (2020) Subtotal (I-squared = 90.8%, p = 0.000) Alk Alk Alkanaman H (2020) Subtotal (I-squared = 69.6%, p = 0.000) NOTE: Weights are from random effects analysis 708 0 Study ID OR (95% CI) Weight Alk Alkanaman H (2020) Subtotal (I-squared = 69.6%, p = 0.844) EGFR Roopbumar J (2020) Subtotal (I-squared = 69.4%, p = 0.020) Crass Cra		Subtotal (I-squared - 90.5% p - 0.000)	0.08 (0.02, 0.14	30.78
ROS1 Alexander M (2020) Chiari R (2020) Xiong W (2020) Subtotal (I-squared = 69.6%, p = 0.020) 0.31 (0.17, 0.45) 5.50 0.27 (0.15, 0.40) 5.90 0.34 (0.22, 0.47) 6.00 0.12 (0.02, 0.22) 6.72 0.26 (0.15, 0.36) 24.13 Porerall (I-squared = 69.6%, p = 0.020) 0.18 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 708 708 0 708 0 ALK 708 ALK 1.82 (1.14, 2.30) Rospicure J (2020) 0.18 (0.02, 0.22) Verso M (2015) 0 Xong W (2020) 0.51 (0.01, 0.74) Sudver J (2020) 0 Verso M (2015) 0 Xong W (2020) 0.844) - 0 - 0 Subtotal (I-squared = 69.4%, p = 0.020) 0.87 (0.44, 1.72) Verso M (2015) 0.85 (0.64, 1.40) Xong W (2020) 0.85 (0.64, 1.40) Verso M (2015) 0.85 (0.64, 1.40) Xong W (2020) 0.85 (0.64, 1.40) Verso M (2015) 0.85 (0.64, 1.40) Xong W (2020) 0.85 (0.64, 1.40) Verso M (2015) 0.85 (0.64, 1.40) Xong W (2020) 0.85 (0.64, 1.40)			0.00 (0.02, 0.14	, 30.70
Alexander M (2020) Chiari R (2020) Muñoz-Unceta N (2020) Subtotal (I-squared = 69.6%, p = 0.020) Overall (I-squared = 92.8%, p = 0.000) NOTE: Weights are from random effects analysis 708 0 ALK A-Samkari H (2020) Verso M (2015) Xong W (2020) Subtotal (I-squared = 0.0%, p = 0.844) EGFR Roophumar J (2020) Subtotal (I-squared = 69.4%, p = 0.020) Corrall (I-squared = 69.4%, p = 0.020) NOTE: Weights are from random effects analysis 708 0 Chiari M (2020) NOTE: Weights are from random effects analysis 708 0 Chiari M (2020) Chiari M (2020) Ch		ROS1		
Chiran H (2020) Muños-Unceta N (2020) Xiong W (2020) Subtotal (I-squared = 69.6%, p = 0.020) Overall (I-squared = 69.6%, p = 0.000) NOTE: Weights are from random effects analysis 708 0 .18 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 708 0 .708 8 Study 5 Core (65%, C) 6 Core (65%, C) 7 Core (7 Core (65%, C) 7 Core (7 Core (7		Alexander M (2020)) 5.50
MUND2-Uncetta N (2020) Xiong W (2020) Subtotal (I-squared = 69.6%, p = 0.020) · Overall (I-squared = 92.8%, p = 0.000) NOTE: Weights are from random effects analysis 708 0		Chiari R (2020)	- 0.27 (0.15, 0.40) 5.90
Xiong W (2020) 0.12 (0.02, 0.22) 6.72 Subtotal (I-squared = 69.6%, p = 0.020) 0.26 (0.15, 0.36) 24.13 Overall (I-squared = 92.8%, p = 0.000) 0.18 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 708 ID 0 ALK 708 Roopkumar J (2020) 0.86 (0.15, 0.36) 24.13 Verso M (2015) 1.82 (1.14, 2.30) 20.82 Xiong W (2020) 1.89 (0.70, 4.11) 9.33 Verso M (2015) 2.81 (0.91, 8.73) 7.22 Xiong W (2020) 1.77 (0.89, 3.51) 13.30 Subtotal (I-squared = 0.0%, p = 0.844) 1.71 (1.28, 2.28) 51.27 . . CGFR . Roopkumar J (2020) Verso M (2015) Xiong W (2020) Verso M (2015) Xion		Munoz-Unceta N (2020)	0.34 (0.22, 0.47) 6.00
Subtoral (I-squared = 59.8%, p = 0.020) Overall (I-squared = 92.8%, p = 0.000) NOTE: Weights are from random effects analysis 708 0 .18 (0.13, 0.24) 100.00 NOTE: Weight are from random effects analysis 708 0 .708 B Study St			0.12 (0.02, 0.22) 6.72
Overall (I-squared = 92.8%, p = 0.000) 0.18 (0.13, 0.24) 100.00 NOTE: Weights are from random effects analysis 708 708 0 B Study ID OR (95% Cl) ALK 708 ALK 708 ALK 708 Note: U(201) 1.62 (1.14, 2.30) Roopkumar J (2020) 1.69 (0.70, 4.11) Verso M (2015) 2.81 (0.31, 8.73) Xiong W (2020) 0.87 (0.44, 1.72) Subtotal (I-squared = 0.0%, p = 0.844) 1.71 (1.28, 2.28) . EGFR Roopkumar J (2020) 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.81 (0.20, 1.88) 7.18 Xiong W (2020) 0.85 (0.64, 1.40) 19.79 Yamazaki S (2013) 0.83 (1.40, 13.28) 8.34 Subtotal (I-squared = 55.4%, p = 0.028) 1.19 (0.60, 2.38) 48.73 		Subtotal (I-squared = 69.6%, p = 0.020)	0.26 (0.15, 0.36) 24.13
NOTE: Weights are from random effects analysis 5 708 0 .708 B Study % ID OR (95% Cl) Weight ALK 708 0 .708 ALK 708 0 .708 ALK 708 0 .708 ALK 708 0 .087 (0.41, 12, 2.30) 20.82 Roopkumar J (2020) 1.89 (0.70, 4.11) 9.33 .221 Xong W (2020) 1.77 (0.89, 3.51) 13.30 Subtotal (I-squared = 0.0%, p = 0.844) 1.71 (1.28, 2.28) 51.27 . . EGFR Norg W (2020) Yamazaki S (2013) Subtotal (I-squared = 69.4%, p = 0.020) Overall (I-squared = 55.4%, p = 0.020)		Overall (I-squared = 92.8%, p = 0.000)	0.18 (0.13, 0.24) 100.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
B Study % ID OR (85% Cl) Weight ALK A-Samkari H (2020) Roopkumar J (2020) Verso M (2015) Xiong W (2020) Subtotal (I-squared = 0.0%, p = 0.844) EGFR Roopkumar J (2020) Verso M (2015) EGFR Roopkumar J (2020) Verso M (2015) Xiong W (2020) 0.87 (0.44, 1.72) 13.41 Verso M (2015) Xiong W (2020) 0.87 (0.44, 1.72) 13.41 Verso M (2015) Xiong W (2020) 0.87 (0.44, 1.72) 13.41 Verso M (2015) Xiong W (2020) Verso M (2015) Xi		NOTE: Weights are from random effects analysis		
ALK Al-Samkari H (2020) Roopkumar J (2020) Verso M (2015) Xiong W (2020) Subtotal (Lequared = 0.0%, p = 0.844) EGFR Roopkumar J (2020) EGFR Roopkumar J (2020) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.61 (0.20, 1.88) 7.18 Xiong W (2020) 0.95 (0.64, 1.40) 1.979 Yamazaki S (2013) Subtotal (Lequared = 55.4%, p = 0.028) Overall (Lequared = 55.4%, p = 0.028) 1.0753 1.33		NOTE: Weights are from random effects analysis	.708	
ALK Al-Samkari H (2020) Roopkumar J (2020) Verso M (2015) Xiong W (2020) Subtotal (I-squared = 0.0%, p = 0.844) EGFR Roopkumar J (2020) 0.87 (0.44, 1.72) 1.77 (0.89, 3.51) 1.30 Subtotal (I-squared = 0.0%, p = 0.844) EGFR Roopkumar J (2020) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 0.95 (0.64, 1.40) 1.979 Yamazaki S (2013) Subtotal (I-squared = 69.4%, p = 0.020) Doverall (I-squared = 55.4%, p = 0.028) NOTE: Weights are from random effects analysis 0753 1 1 1 1 1 1 1 1 1 1 1 1 1	в	NOTE: Weights are from random effects analysis	I .708 OR (95% Ci)	% Weight
Al-Saman H (2020) 1.82 (1.14, 2.30) 20.82 Roopkumar J (2020) 1.69 (0.70, 4.11) 9.93 Verso M (2015) 2.81 (0.91, 8.73) 7.22 Xiong W (2020) 1.77 (0.89, 3.51) 13.30 Subtotal (I-squared = 0.0%, p = 0.844) 1.71 (1.28, 2.28) 51.27 . EGFR 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.61 (0.20, 1.88) 7.18 Xiong W (2020) 0.95 (0.64, 1.40) 19.79 Yamazaki S (2013) 0.95 (0.64, 1.40) 19.79 Yamazaki S (2013) 1.49 (1.80, 13.28) 8.34 Subtotal (I-squared = 69.4%, p = 0.020) 1.19 (0.60, 2.36) 48.73 Overail (I-squared = 55.4%, p = 0.028) 1.45 (1.01, 2.09) 100.00 NOTE: Weights are from random effects analysis 1.3.3 1.3.4	в	NOTE: Weights are from random effects analysis	I .708 OR (95% CI)	% Weight
Roopkumar J (2020) 1.69 (0.70, 4.11) 9.93 Verso M (2015) 2.81 (0.91, 8.73) 7.22 Xiong W (2020) 1.77 (0.89, 3.51) 13.30 Subtotal (I-squared = 0.0%, p = 0.844) 1.71 (1.28, 2.28) 51.27 EGFR 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.61 (0.20, 1.88) 7.18 Xiong W (2020) 0.95 (0.64, 1.40) 19.79 Yamazaki S (2013) 4.89 (1.80, 13.28) 8.34 Subtotal (I-squared = 69.4%, p = 0.028) 1.45 (1.01, 2.09) 100.00 NOTE: Weights are from random effects analysis 13.3 13.3	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK	Г .708 Ог (95% Сі)	% Weight
Verso M (2015) Xiong W (2020) Subtotal (I-squared = 0.0%, p = 0.844) EGFR Roopkumar J (2020) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 0.87 (0.44, 1.72) 13.41 Verso M (2020) 0.95 (0.64, 1.40) 1.9.79 Yamazaki S (2013) Overall (I-squared = 56.4%, p = 0.020) 1.19 (0.60, 2.36) NOTE: Weights are from random effects analysis 1.3.3	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK AI-Samkari H (2020)	I .708 OR (95% CI) 1.62 (1.14, 2.30)	% Weight 20.82
Xiong W (2020) Subtotal (I-squared = 0.0%, p = 0.844) EGFR Roopkumar J (2020) Verso M (2015) Xiong W (2020) Yamazaki S (2013) Subtotal (I-squared = 69.4%, p = 0.020) Overall (I-squared = 55.4%, p = 0.028) NOTE: Weights are from random effects analysis 1,777 0.89, 3.51) 13.30 1,77 (0.89, 3.51) 13.30 1,7	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK Ai-Samkari H (2020) Roopkumar J (2020)	I .708 OR (95% Cl) I.82 (1.14, 2.30) I.69 (0.70, 4.11)	% Weight 20.82 9.93
Subtotal (I-squared = 0.0%, p = 0.844) EGFR Roopkumar J (2020) Verso M (2015) Yamazaki S (2013) Subtotal (I-squared = 56.4%, p = 0.020) Overall (I-squared = 55.4%, p = 0.028) NOTE: Weights are from random effects analysis 0753 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	В	NOTE: Weights are from random effects analysis 708 0 Study ID ALK Al-Samkari H (2020) Verso M (2015)	- 1.69 (0.70, 4.11) 2.81 (0.91, 8.73)	% Weight 20.82 9.93 7.22
Junuar (requared = 0.0%, p = 0.044) 1.71 (1.26, 2.28) 51.27 . . . EGFR 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.81 (0.20, 1.88) 7.18 Xiong W (2020) 0.95 (0.64, 1.40) 19.79 Yamazaki S (2013) 0.95 (0.64, 1.40) 19.79 Yamazaki S (2013) 1.19 (0.60, 2.36) 48.73 Overall (I-squared = 55.4%, p = 0.028) 1.45 (1.01, 2.09) 100.00 NOTE: Weights are from random effects analysis 1 13.3	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK AI-Samkari H (2020) Verso M (2015) Verso M (2020)	- 1.69 (0.70, 8.73) - 2.81 (0.91, 8.73) 1.77 (0.99, 3.51)	% Weight 20.82 9.93 7.22 13.30
EGFR Roopkumar J (2020) Verso M (2015) Varso M (2015) Varnazaki S (2013) Cubtotal (I-squared = 69.4%, p = 0.020) Overall (I-squared = 55.4%, p = 0.028) NOTE: Weights are from random effects analysis	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK Ai-Samkari H (2020) Verso M (2015) Xiong W (2020) Verso M (2015) Xiong W (2020)	- 1.69 (0.70, 4.11) - 2.81 (0.91, 8.73) 1.77 (0.89, 3.51) 1.77 (0.89, 3.51)	% Weight 20.82 9.93 7.22 13.30 51.27
Roopkumar J (2020) 0.87 (0.44, 1.72) 13.41 Verso M (2015) 0.61 (0.20, 1.88) 7.18 Xiong W (2020) 0.95 (0.64, 1.40) 19.79 Yamazaki S (2013) 4.89 (1.80, 13.28) 8.34 Subtotal (I-squared = 69.4%, p = 0.020) 1.19 (0.60, 2.36) 48.73 Overall (I-squared = 55.4%, p = 0.028) 1.45 (1.01, 2.09) 100.00 NOTE: Weights are from random effects analysis 1 13.3	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK Al-Samkari H (2020) Verso M (2015) Xiong W (2020) Subtotal (I-squared = 0.0%, p = 0.844)	OR (95% Cl) - 1.62 (1.14, 2.30) - 2.81 (0.91, 8.73) 1.77 (0.89, 3.51) 1.71 (1.28, 2.28)	% Weight 20.82 9.93 7.22 13.30 51.27
Verso M (2015) 0.61 (0.20, 1.88) 7.18 Xiong W (2020) 0.95 (0.84, 1.40) 19.79 Yamazaki S (2013) 4.89 (1.80, 13.28) 8.34 Subtotal (I-squared = 69.4%, p = 0.020) 1.19 (0.60, 2.36) 48.73 Overall (I-squared = 55.4%, p = 0.028) 1.45 (1.01, 2.09) 100.00 NOTE: Weights are from random effects analysis 13.3	в	NOTE: Weights are from random effects analysis Image: Comparison of the second secon	- 1.62 (1.14, 2.30) - 1.62 (1.14, 2.30) - 1.69 (0.70, 4.11) - 2.81 (0.91, 8.73) 1.77 (0.89, 3.51) 1.71 (1.28, 2.28)	% Weight 9.83 7.22 13.30 51.27
Verso M (2015) 0.61 (0.20, 1.88) 7.18 Xiong W (2020) 0.95 (0.64, 1.40) 19.79 Yamazaki S (2013) 4.89 (1.80, 13.28) 8.34 Subtotal (I-squared = 69.4%, p = 0.020) 1.19 (0.60, 2.36) 48.73 Overall (I-squared = 55.4%, p = 0.028) 1.45 (1.01, 2.09) 100.00 NOTE: Weights are from random effects analysis 1 13.3	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK Al-Samkari H (2020) Verso M (2015) Xiong W (2020) Subtotal (I-squared = 0.0%, p = 0.844) . EGFR Porplement J (2020)	- 1.69 (0.70, 4.11) - 2.81 (0.91, 8.73) 1.77 (0.89, 3.51) 1.77 (1.28, 2.28)	% Weight 20.82 9.93 7.22 13.30 51.27
Xiong W (2020) 0.95 (0.64, 1.40) 19.79 Yamazaki S (2013) 4.89 (1.80, 13.28) 8.34 Subtotal (I-squared = 69.4%, p = 0.020) 1.19 (0.60, 2.36) 48.73 Overall (I-squared = 55.4%, p = 0.028) 1.45 (1.01, 2.09) 100.00 NOTE: Weights are from random effects analysis 1 13.3	В	NOTE: Weights are from random effects analysis 708 O Study ID ALK AI-Samkari H (2020) Roopkumar J (2020) Subtotal (H-squared = 0.0%, p = 0.844) . EGFR Roopkumar J (2020)	.708 OR (95% C) - 1.82 (1.14, 2.30) - 1.69 (0.70, 4.11) 2.81 (0.91, 8.73) 1.77 (0.89, 3.51) 1.71 (1.28, 2.28) 0.87 (0.44, 1.72)	% Weight 20.82 9.93 7.22 13.30 51.27 13.41
Yamazaki S (2013) Subtotal (I-squared = 69.4%, p = 0.020) Overall (I-squared = 55.4%, p = 0.028) NOTE: Weights are from random offects analysis	В	NOTE: Weights are from random effects analysis I 708 0 Study 0 ID 0 ALK 4.5 amkarl H (zuzu) Roopkumar J (2020) 0 Verso M (2015) 0 Subtotal (I-squared = 0.0%, p = 0.844) 0 . EGFR Roopkumar J (2020) 0 Verso M (2015) 0	.708 OR (95% Cl) - 1.62 (1.14, 2.30) - 1.69 (0.70, 4.11) 2.81 (0.91, 8.73) 1.77 (0.89, 3.51) 1.71 (1.28, 2.28) 0.87 (0.44, 1.72) 0.61 (0.20, 1.88)	% Weight 20.82 9.93 7.22 13.30 51.27 13.41 7.18
Subtotal (I-squared = 69.4%, p = 0.020) Overall (I-squared = 55.4%, p = 0.028) NOTE: Weights are from random effects analysis	в	NOTE: Weights are from random effects analysis Image: Constraint of the second se	.708 OR (95% Cl) - 1.62 (1.14, 2.30) - 1.69 (0.70, 4.11) 2.81 (0.91, 8.73) 1.77 (0.89, 3.51) 1.71 (1.28, 2.28) 0.87 (0.44, 1.72) 0.61 (0.20, 1.88) 0.95 (0.64, 1.40)	% Weight 20.82 9.93 7.22 13.30 51.27 13.41 7.18 19.79
Overall (I-squared = 55.4%, p = 0.028) NOTE: Weights are from random effects analysis	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK Al-Samkari H (2020) Verso M (2015) Xiong W (2020) Subtotal (I-squared = 0.0%, p = 0.844) . EGFR Roopkumar J (2020) Verso M (2015) Xiong W (2020) Year M (2015)	.708 OR (95% C) 	% Weight 20.82 9.93 7.22 13.30 51.27 13.41 7.18 19.79 8.34
Overall (I-squared = 55.4%, p = 0.028) 1.45 (1.01, 2.09) 100.00 NOTE: Weights are from random effects analysis 1 1	в	NOTE: Weights are from random effects analysis 708 0 Study 0 ID 1 ALK 1 Al-Samkari H (2020) 1 Werso M (2015) 1 Study (2020) 1 Subtotal (I-squared = 0.0%, p = 0.844) 1 . EGFR Roopkumar J (2020) 1 Verso M (2015) 1 Xiong W (2020) 1 Yamazaki S (2013) 1 Subtotal (I-equared = 69.4%, p = 0.020) 1	.708 .701 .771 .7708 .788 .791 .771 .770 .689 .511 .771 .771 .689 .511 .771 .680 .518 .798 .798 .798 .797 .771 .771 .680 .519 .772 .661 .020 .188 .095 .641 .140 .128 .055 .171 .171 .061 .020 .188 .095 .1828 .199 .199 .1908 .199 .198 .199 .198 .199 .199 .199 .199 .199 .199 .199 .1908 .199	% Weight 20.82 9.93 7.22 13.30 51.27 13.41 7.18 19.79 8.34 48.73
NOTE: Weights are from random effects analysis 0.0753 1 13.3	в	NOTE: Weights are from random effects analysis 708 0 Study ID ALK Al-Samkari H (2020) Verso M (2015) Xiong W (2020) Subtotal (I-squared = 0.0%, p = 0.844) . EGFR Roopkumar J (2020) Verso M (2015) Xiong W (2020) Subtotal (I-squared = 69.4%, p = 0.020)	.708 .708 .708 .708 	% Weight 20.82 9.93 7.22 13.30 51.27 13.41 7.18 19.79 8.34 48.73
I I .0753 1 13.3	в	NOTE: Weights are from random effects analysis 708 0 Study 0 ID 0 ALK 4.5 amkarl H (2020) Roopkumar J (2020) 0 Studtal (I-squared = 0.0%, p = 0.844) 0 . EGFR Roopkumar J (2020) 0 Verso M (2015) 0 Xiong W (2020) 0 Yamazaki S (2013) 0 Subtotal (I-squared = 69.4%, p = 0.020) 0 . 0 Overall (I-squared = 55.4%, p = 0.028) 0	.708 .708 .708 .708 	% Weight 20.82 9.93 7.22 13.30 51.27 13.41 7.18 19.79 8.34 48.73 100.00
	в	NOTE: Weights are from random effects analysis 708 0 Study 0 ALK ALK Al-Samkari H (2020) 0 Roopkumar J (2020) 0 Subtotal (I-squared = 0.0%, p = 0.844) 0 . . EGFR . Roopkumar J (2020) 0 Verso M (2015) . Xiong W (2020) . Yamazaki S (2013) . Subtotal (I-squared = 69.4%, p = 0.020) . . . Overall (I-squared = 55.4%, p = 0.028) . NOTE: Weights are from random effects analysis .	.708 .708 .708 	% Weight 20.82 9.93 7.22 13.30 51.27 13.41 7.18 19.79 8.34 48.73 100.00

incidence of VTE. Although the mechanism is not clear yet, the tendency of fusion genes to lymph node metastases may be related to increased risk of VTE.

In addition to driver genes, one study included in our study investigated the correlation between programmed cell death ligand 1 (PD-L1) expression and the risk of PE in NSCLC patients. PD-L1 expression is one of the important biomarkers to predict the potential benefit from anti-PD-1/PD-L1 treatment. The study showed that patients with PD-L1 expression in \geq 1% tumor cells had a higher risk for PE [OR=1.798 (95%CI 1.137-2.201)], with an incidence of 15.4%, which indicated that PD-L1 expression may be a novel biomarker in prediction of TE in patients with NSCLC (35). Nichetti F et al. also found that high PD-L1 expression (\geq 50%) was one of the independent predisposing factors of TE during immune checkpoint inhibitor (ICI) treatments in patients with locally advanced or

metastatic NSCLC [HR=2.55 (95% CI 1.05-6.19)] (61). However, another study in patients with glioma showed that PD-L1 expression was not related with the risk of VTE (62). At present, both clinical and fundamental researches on the association between PD-1/PD-L1 and TE are limited. With regards to the generation of ATE, it has been shown that the blockade of PD-1 pathway promotes the activation of proatherogenic T cell, thereby aggravating hyperlipidemia and accelerating the formation of atherosclerosis, which suggests that ICI may potentially foster ATEs (63, 64). As for VTEs, it has been reported that activated T cell subsets in vitro express functional TF on their cellular membranes (65). In addition, activated lymphocytes can release a variety of pro-inflammatory cytokines that promote the formation of hypercoagulable states as well (66). It is known that PD-L1 plays an important role in regulating T cell-mediated immune response (67). Therefore, when PD-1/PD-L1 pathway is blocked, the activated immune response may promote the occurrence of TE. However, current studies have indicated that the incidence of TE in patients receiving ICI did not increase significantly, and TE events are not considered as an ICIs drug related toxicity commonly (61, 68). Based on current results, we hypothesize that the risk of TE caused by the activated immune response may be more prominent in patients with high PD-L1 expression. PD-L1, as a potential biomarker for the risk of TE, may cover more pathological types other than lung adenocarcinoma, since driver genes are more common in patients with adenocarcinoma.

Despite these findings, there were also some limitations faced in this study. First, included studies varied in histological type, tumor staging, diagnostic methodology, follow-up duration and treatment. The existence of confounding factors may lead to significant heterogeneity for some gene mutations (I^2 >50%). Subgroup analysis was performed to analyze potential confounding factors. Second, for some gene mutations, such as *ROS1, KRAS, MET* and *BRAF*, there were few published studies, so the results for these mutations may have weaker power. Third, when calculating the estimated risk, the population of wild type was shown to be heterogeneous. For example, patients with *EGFR* wild type may harbor *ROS1* and *ALK* rearrangements as well as other unknown gene mutations. Therefore, the calculated risk may show some deviation.

In conclusion, driver genes were associated with the risk of VTE in patients with NSCLC. Patients with *ROS1* rearrangements showed the highest incidence of VTE with 37% (95%CI 23-52). *ALK* rearrangements caused approximately twice the risk for VTE, compared with patients with *ALK* wild type, and patients with *ALK* arrangements had the second highest incidence of VTE with 27% (95%CI 20-35). Patients with *KRAS* and *EGFR* mutations did not show a significant association with VTE risk in patients with NSCLC.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JyiZ, MF, and XQ conceived of the study. MF obtained funding. The concept and design of this study were generated primarily by XQ. XQ, MF, and JyaZ collected data in the original studies. XQ and JyiZ performed the statistical analyses. XQ and MF interpreted the data and drafted the manuscript. MF and JyaZ revised the manuscript for important intellectual content. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants received from the Health Commission of Zhejiang Province, China (grant number:

REFERENCES

- Blom JW, Doggen CJM, Osanto S, Rosendaal FR. Malignancies, Prothrombotic Mutations, and the Risk of Venous Thrombosis. JAMA (2005) 293(6):715-22. doi: 10.1001/jama.293.6.715
- Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of Cancer-Associated Venous Thrombosis. *Blood* (2013) 122(10):1712–23. doi: 10.1182/blood-2013-04-460121
- Sørensen HT, Mellemkjaer L, Olsen JH, Baron JA. Prognosis of Cancers Associated With Venous Thromboembolism. N Engl J Med (2000) 343 (25):1846–50. doi: 10.1056/NEJM200012213432504
- Ay C, Ünal UK. Epidemiology and Risk Factors for Venous Thromboembolism in Lung Cancer. Curr Opin Oncol (2016) 28(2):145–9. doi: 10.1097/CCO.00000000000262
- Yu J, Li A, Laureano M, Crowther M. Frequency of Arterial Thromboembolism in Populations With Malignancies: A Systematic Review. *Thromb Res* (2019) 184:16–23. doi: 10.1016/j.thromres.2019.10.004
- König D, Savic Prince S, Rothschild SI. Targeted Therapy in Advanced and Metastatic Non-Small Cell Lung Cancer. an Update on Treatment of the Most Important Actionable Oncogenic Driver Alterations. *Cancers (Basel)* (2021) 13(4):804. doi: 10.3390/cancers13040804
- Ettinger DS, Wood DE. NCCN Clinical Practice Guidelines in Oncology, in: *Non-Small Cell Lung Cancer* (2021). Available at NCCN.org (Accessed on 27 March 2021).
- Ng TL, Smith DE, Mushtaq R, Patil T, Dimou A, Yang S, et al. ROS1 Gene Rearrangements are Associated With an Elevated Risk of Peridiagnosis Thromboembolic Events. J Thorac Oncol (2019) 14(4):596–605. doi: 10.1016/j.jtho.2018.12.001
- Al-Samkari H, Leiva O, Dagogo-Jack I, Shaw A, Lennerz J, Iafrate AJ, et al. Impact of ALK Rearrangement on Venous and Arterial Thrombotic Risk in NSCLC. J Thoracic Oncol (2020) 15(9):1497–506. doi: 10.1016/j.jtho.2020. 04.033
- Chiari R, Ricciuti B, Landi L, Morelli AM, Delmonte A, Spitaleri G, et al. ROS1-Rearranged Non-Small-Cell Lung Cancer is Associated With a High Rate of Venous Thromboembolism: Analysis From a Phase II, Prospective, Multicenter, Two-Arms Trial (METROS). *Clin Lung Cancer* (2020) 21(1):15– 20. doi: 10.1016/j.cllc.2019.06.012
- Corrales-Rodriguez L, Soulières D, Weng X, Tehfe M, Florescu M, Blais N. Mutations in NSCLC and Their Link With Lung Cancer-Associated Thrombosis: A Case-Control Study. *Thromb Res* (2014) 133(1):48–51. doi: 10.1016/j.thromres.2013.10.042
- Verso M, Chiari R, Mosca S, Franco L, Fischer M, Paglialunga L, et al. Incidence of Ct Scan-Detected Pulmonary Embolism in Patients With Oncogene-Addicted, Advanced Lung Adenocarcinoma. *Thromb Res* (2015) 136(5):924–7. doi: 10.1016/j.thromres.2015.09.006
- Dou F, Li H, Zhu M, Liang L, Zhang Y, Yi J, et al. Association Between Oncogenic Status and Risk of Venous Thromboembolism in Patients With Non-Small Cell Lung Cancer. *Respir Res* (2018) 19(1):88. doi: 10.1186/s12931-018-0791-2
- Wang J, Hu B, Li T, Miao J, Zhang W, Chen S, et al. The EGFR-Rearranged Adenocarcinoma is Associated With a High Rate of Venous Thromboembolism. *Ann Trans Med* (2019) 7(23):724. doi: 10.21037/atm.2019.12.24

2020392137). The funding agencies played no role in the study design, participant recruitment, data collection, data analysis, data interpretation, manuscript preparation and the decision to submit the paper for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.680191/full#supplementary-material

- Leiva O, Connors JM, Al-Samkari H. Impact of Tumor Genomic Mutations on Thrombotic Risk in Cancer Patients. *Cancers (Basel)* (2020) 12(7):1958. doi: 10.3390/cancers12071958
- Phan M, John S, Casanegra AI, Rathbun S, Mansfield A, Stoner JA, et al. Primary Venous Thromboembolism Prophylaxis in Patients With Solid Tumors: A Meta-Analysis. J Thromb Thrombolysis (2014) 38(2):241–9. doi: 10.1007/s11239-013-1014-9
- Mansfield AS, Tafur AJ, Wang CE, Kourelis TV, Wysokinska EM, Yang P. Predictors of Active Cancer Thromboembolic Outcomes: Validation of the Khorana Score Among Patients With Lung Cancer. J Thromb Haemostasis JTH (2016) 14(9):1773–8. doi: 10.1111/jth.13378
- van Es N, Di Nisio M, Cesarman G, Kleinjan A, Otten H-M, Mahé I, et al. Comparison of Risk Prediction Scores for Venous Thromboembolism in Cancer Patients: A Prospective Cohort Study. *Haematologica* (2017) 102 (9):1494–501. doi: 10.3324/haematol.2017.169060
- Carrier M, Abou-Nassar K, Mallick R, Tagalakis V, Shivakumar S, Schattner A, et al. Apixaban to Prevent Venous Thromboembolism in Patients With Cancer. N Engl J Med (2019) 380(8):711–9. doi: 10.1056/ NEJMoa1814468
- Khorana AA, Soff GA, Kakkar AK, Vadhan-Raj S, Riess H, Wun T, et al. Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients With Cancer. N Engl J Med (2019) 380(8):720–8. doi: 10.1056/NEJMoa 1814630
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PloS Med* (2009) 6(7):e1000097. doi: 10.1371/journal.pmed.1000097
- 22. Wells G, Shea B, O'Connell J. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. *Ottawa Health Res Institute Web Site* (2014) 7. doi: 10.2307/632432
- Alexander M, Pavlakis N, John T, O'Connell R, Kao S, Hughes BGM, et al. A Multicenter Study of Thromboembolic Events Among Patients Diagnosed With ROS1-Rearranged Non-Small Cell Lung Cancer. Lung Cancer (2020) 142:34–40. doi: 10.1016/j.lungcan.2020.01.017
- Azevedo S, Bei L, Cunha J, Oliveira C, Rodrigues A, Pousa I, et al. Anaplastic Lymphoma Kinase Fusion Oncogene Positive Non-Small Cell Lung Cancerthe Experience of an Institution. *J Thoracic Oncol* (2017) 12(1):S1179. doi: 10.1016/j.jtho.2016.11.1658
- Berger N, Datta D, Tannenbaum S. Venous Thromboembolism and EGFR Mutation Status in Advanced Adenocarcinoma of Lung. *Chest* (2014) 146 (4):1112–20. doi: 10.1378/chest.1977798
- Davidsson E, Murgia N, Ortiz-Villalón C, Wiklundh E, Sköld M, Kölbeck KG, et al. Mutational Status Predicts the Risk of Thromboembolic Events in Lung Adenocarcinoma. *Multidiscip Respir Med* (2017) 12(1):16. doi: 10.1186/ s40248-017-0097-0
- Delmonte A, Mariotti M, Scarpi E, Ulivi P, Gavelli G, Calistri D, et al. Adenocarcinoma of the Lung and Venous Thromboembolic Events: A Monoinstitutional, Retrospective Evaluation. J Clin Oncol (2015) 33 (15_suppl):e19149-e19149. doi: 10.1200/jco.2015.33.15_suppl.e19149
- Dou F, Zhang Y, Yi J, Zhu M, Zhang S, Zhang D, et al. Association of ALK Rearrangement and Risk of Venous Thromboembolism in Patients With Non-Small Cell Lung Cancer: A Prospective Cohort Study. *Thromb Res* (2020) 186:36–41. doi: 10.1016/j.thromres.2019.12.009

- Leader A, Icht O, Batat E, Rozovski U, Joseph L, Shochat T, et al. Incidence and Risk Factors of Arterial Thromboembolism in Non-Small Cell Lung Cancer. *Blood* (2019) 134(Supplement_1):3654. doi: 10.1182/blood-2019-128822
- Lee Y-G, Kim I, Lee E, Bang S-M, Kang CH, Kim YT, et al. Risk Factors and Prognostic Impact of Venous Thromboembolism in Asian Patients With Non-Small Cell Lung Cancer. *Thromb Haemostasis* (2014) 111(6):1112–20. doi: 10.1160/TH13-11-0956
- Muñoz-Unceta N, Zugazagoitia J, Manzano A, Jiménez-Aguilar E, Olmedo ME, Cacho JD, et al. High Risk of Thrombosis in Patients With Advanced Lung Cancer Harboring Rearrangements in ROS1. *Eur J Cancer* (2020) 141:193–8. doi: 10.1016/j.ejca.2020.10.002
- Roopkumar J, Poudel SK, Gervaso L, Reddy CA, Velcheti V, Pennell NA, et al. Risk of Thromboembolism in Patients With ALK and EGFR-Mutant Lung Cancer: A Cohort Study. J Thromb Haemostasis JTH (2020) 19(3):822–9. doi: 10.1111/jth.15215
- 33. Shahzad H, Datta D. Correlation of EGFR Mutation Status to Venous Thromboembolism in Patients With Lung Adenocarcinoma. Am J Respir Crit Care Med (2017) 195:A4607. doi: 10.1164/ajrccm-conference. 2017.B80-L
- Shen Q, Dong X, Tang X, Zhou J. Risk Factors and Prognosis Value of Venous Thromboembolism in Patients With Advanced Non-Small Cell Lung Cancer: A Casecontrol Study. J Thoracic Dis (2017) 9(12):5068–74. doi: 10.21037/ jtd.2017.11.116
- 35. Xiong W, Du H, Ding W, Sun J, Xu M, Guo X. The Association Between Pulmonary Embolism and the Cancer-Related Genomic Alterations in Patients With NSCLC. *Respir Res* (2020) 21(1):185. doi: 10.1186/s12931-020-01437-6
- 36. Yamazaki S, Okano T, Ishikawa R, Kobayashi K. Pulmonary Thromboembolism in Lung Cancer Patients and EGFR Mutations. *Respirology* (2013) 18:22. doi: 10.1111/resp.12183
- 37. Yang S, Yang L, Wu Y, Zhang C, Wang S, Ma N, et al. Anaplastic Lymphoma Kinase Rearrangement May Increase the Incidence of Venous Thromboembolism by Increasing Tissue Factor Expression in Advanced Lung Adenocarcinoma. Ann Trans Med (2020) 8(20):1307. doi: 10.21037/ atm-20-6619
- Zer A, Moskovitz M, Hwang DM, Hershko-Klement A, Fridel L, Korpanty GJ, et al. ALK-Rearranged Non–Small-Cell Lung Cancer is Associated With a High Rate of Venous Thromboembolism. *Clin Lung Cancer* (2017) 18(2):156– 61. doi: 10.1016/j.cllc.2016.10.007
- Zer A, Joseph L, Battat E, Shochat T, Leader A, Goldstein DA, et al. Venous Thromboembolism (VTE) in Patients With ALK-Rearranged Non-Small Cell Lung Cancer (ALK-LC): A Population-Based Cohort. J Clin Oncol (2019) 37:6608–6608. doi: 10.1200/JCO.2019.37.15_suppl.6608
- Zugazagoitia J, Biosca M, Oliveira J, Olmedo ME, Dómine M, Nadal E, et al. Incidence, Predictors and Prognostic Significance of Thromboembolic Disease in Patients With Advanced ALK-Rearranged Non-Small Cell Lung Cancer. *Eur Respir J* (2018) 51(5):1702431. doi: 10.1183/13993003. 02431-2017
- Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Elkind MSV, et al. Risk of Arterial Thromboembolism in Patients With Cancer. J Am Coll Cardiol (2017) 70(8):926–38. doi: 10.1016/j.jacc.2017.06.047
- Takeuchi K, Choi YL, Soda M, Inamura K, Togashi Y, Hatano S, et al. Multiplex Reverse Transcription-PCR Screening for EML4-ALK Fusion Transcripts. *Clin Cancer Res* (2008) 14(20):6618–24. doi: 10.1158/1078-0432.CCR-08-1018
- 43. Gainor JF, Shaw AT. Novel Targets in Non-Small Cell Lung Cancer: ROS1 and RET Fusions. Oncol (2013) 18(7):865-75. doi: 10.1634/ theoncologist.2013-0095
- 44. Nichetti F, Lo Russo G, Prelaj A, Provenzano L, de Braud F, Cabiddu M, et al. ALK/ROS1 Rearrangements: A Real Hallmark for Thromboembolic Events in Cancer Patients? *Thromb Res* (2020) 194:176–7. doi: 10.1016/ j.thromres.2020.06.041
- Duarte CW, Lindner V, Francis SA, Schoormans D. Visualization of Cancer and Cardiovascular Disease Co-Occurrence With Network Methods. JCO Clin Cancer Inform (2017) 1:1–12. doi: 10.1200/CCI.16.00071
- Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Tagawa ST, et al. Arterial Thromboembolic Events Preceding the Diagnosis of Cancer in Older Persons. *Blood* (2019) 133(8):781–9. doi: 10.1182/blood-2018-06-860874

- Rickles FR, Patierno S, Fernandez PM. Tissue Factor, Thrombin, and Cancer. Chest (2003) 124(3 Suppl):58S-68S. doi: 10.1378/chest.124.3 suppl.58S
- Rak J, Milsom C, Yu J. Tissue Factor in Cancer. Curr Opin Hematol (2008) 15 (5):522–8. doi: 10.1097/MOH.0b013e3283063a3e
- Sen Y, Tang H, Wang Q. ALK-Rearranged May Promote VTE by Increasing the Expression of TF in Advanced Lung Adenocarcinoma. J Thoracic Oncol (2017) 12(11):S1899–. doi: 10.1016/j.jtho.2017.09.671
- Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI, et al. Oncogenic Events Regulate Tissue Factor Expression in Colorectal Cancer Cells: Implications for Tumor Progression and Angiogenesis. *Blood* (2005) 105 (4):1734–41. doi: 10.1182/blood-2004-05-2042
- Regina S, Rollin J, Bléchet C, Iochmann S, Reverdiau P, Gruel Y. Tissue Factor Expression in Non-Small Cell Lung Cancer: Relationship With Vascular Endothelial Growth Factor Expression, Microvascular Density, and K-Ras Mutation. J Thoracic Oncol (2008) 3(7):689–97. doi: 10.1097/JTO.0b013e31817c1b21
- Rao B, Gao Y, Huang J, Gao X, Fu X, Huang M, et al. Mutations of P53 and K-Ras Correlate TF Expression in Human Colorectal Carcinomas: TF Downregulation as a Marker of Poor Prognosis. *Int J Colorectal Dis* (2011) 26(5):593–601. doi: 10.1007/s00384-011-1164-1
- De Caterina R, D'Ugo E, Libby P. Inflammation and Thrombosis Testing the Hypothesis With Anti-Inflammatory Drug Trials. *Thromb Haemostasis* (2016) 116(6):1012–21. doi: 10.1160/TH16-03-0246
- Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M, Chiesa N, et al. Convergent Mutations and Kinase Fusions Lead to Oncogenic STAT3 Activation in Anaplastic Large Cell Lymphoma. *Cancer Cell* (2015) 27 (4):516–32. doi: 10.1016/j.ccell.2015.03.006
- Zhang B, Wei W, Qiu J. ALK is Required for NLRP3 Inflammasome Activation in Macrophages. *Biochem Biophys Res Commun* (2018) 501 (1):246–52. doi: 10.1016/j.bbrc.2018.04.226
- Cella CA, Di Minno G, Carlomagno C, Arcopinto M, Cerbone AM, Matano E, et al. Preventing Venous Thromboembolism in Ambulatory Cancer Patients: The ONKOTEV Study. Oncol (2017) 22(5):601–8. doi: 10.1634/ theoncologist.2016-0246
- 57. Li R, Hermann G, Baldini E, Chen A, Jackman D, Kozono D, et al. Advanced Nodal Stage Predicts Venous Thromboembolism in Patients With Locally Advanced Non-Small Cell Lung Cancer. Lung Cancer (Amsterdam Netherlands) (2016) 96:41–7. doi: 10.1016/j.lungcan.2016.03.004
- Lee SE, Lee B, Hong M, Song J-Y, Jung K, Lira ME, et al. Comprehensive Analysis of RET and ROS1 Rearrangement in Lung Adenocarcinoma. *Modern Pathol* (2015) 28(4):468–79. doi: 10.1038/modpathol.2014.107
- Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, et al. RET Fusions Define a Unique Molecular and Clinicopathologic Subtype of Non-Small-Cell Lung Cancer. *J Clin Oncol* (2012) 30(35):4352–9. doi: 10.1200/JCO.2012.44.1477
- Liu Z, Liang H, Lin J, Cai X, Pan Z, Liu J, et al. The Incidence of Lymph Node Metastasis in Patients With Different Oncogenic Driver Mutations Among T1 Non-Small-Cell Lung Cancer. Lung Cancer (Amsterdam Netherlands) (2019) 134:218–24. doi: 10.1016/j.lungcan.2019.06.026
- Nichetti F, Ligorio F, Zattarin E, Signorelli D, Prelaj A, Proto C, et al. Is There an Interplay Between Immune Checkpoint Inhibitors, Thromboprophylactic Treatments and Thromboembolic Events? *Mech Impact Non-Small Cell Lung Cancer Patients Cancers (Basel)* (2019) 12(1):67. doi: 10.3390/cancers12010067
- 62. Mir Seyed Nazari P, Berghoff AS, Preusser M, Moik F, Posch F, Ricken G, et al. Association of Programmed Cell Death Ligand 1 and Circulating Lymphocytes With Risk of Venous Thromboembolism in Patients With Glioma. ESMO Open (2020) 5(3):e000647–e. doi: 10.1136/esmoopen-2019-000647
- 63. Bu D-x, Tarrio M, Maganto-Garcia E, Stavrakis G, Tajima G, Lederer J, et al. Impairment of the Programmed Cell Death-1 Pathway Increases Atherosclerotic Lesion Development and Inflammation. Arterioscler Thromb Vasc Biol (2011) 31(5):1100–7. doi: 10.1161/ATVBAHA.111.224709
- 64. Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein H-H, Zernecke A. Programmed Cell Death-1 Deficiency Exacerbates T Cell Activation and Atherogenesis Despite Expansion of Regulatory T Cells in Atherosclerosis-Prone Mice. *PLoS One* (2014) 9(4):e93280–e. doi: 10.1371/journal.pone.0093280
- 65. De Palma R, Cirillo P, Ciccarelli G, Barra G, Conte S, Pellegrino G, et al. Expression of Functional Tissue Factor in Activated T-Lymphocytes in Vitro and in Vivo: A Possible Contribution of Immunity to Thrombosis? *Int J Cardiol* (2016) 218:188–95. doi: 10.1016/j.ijcard.2016.04.177

- Joseph L, Fink LM, Hauer-Jensen M. Cytokines in Coagulation and Thrombosis: A Preclinical and Clinical Review. *Blood Coagul Fibrinolysis* (2002) 13(2):105–16. doi: 10.1097/00001721-200203000-00005
- 67. Kitano A, Ono M, Yoshida M, Noguchi E, Shimomura A, Shimoi T, et al. Tumour-Infiltrating Lymphocytes are Correlated With Higher Expression Levels of PD-1 and PD-L1 in Early Breast Cancer. *ESMO Open* (2017) 2(2): e000150–e. doi: 10.1136/esmoopen-2016-000150
- Gutierrez-Sainz L, Martinez-Marin V, Viñal D, Martinez-Perez D, Pedregosa J, Garcia-Cuesta JA, et al. Incidence of Venous Thromboembolic Events in Cancer Patients Receiving Immunotherapy: A Single-Institution Experience. *Clin Transl Oncol* (2020). doi: 10.1007/s12094-020-02515-3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Qian, Fu, Zheng, Zhou and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.