
Tocilizumab unmasks a stage-dependent interleukin-6
component in statin-induced apoptosis of metastatic
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The interleukin (IL)-6 inhibits the growth of early-stage
melanoma cells, but not metastatic cells. Metastatic
melanoma cells are susceptible to statin-induced
apoptosis, but this is not clear for early-stage melanoma
cells. This study aimed to investigate the IL-6 susceptibility
of melanoma cells from different stages in the presence of
simvastatin to overcome loss of growth arrest. ELISA was
used to detect secreted IL-6 in human melanoma cells. The
effects of IL-6 were measured by western blots for STAT3
and Bcl-2 family proteins. Apoptosis and proliferation were
measured by caspase 3 activity, Annexin V staining, cell
cycle analysis, and a wound-healing assay. Human
metastatic melanoma cells A375 and 518A2 secrete high
amounts of IL-6, in contrast to early-stage WM35 cells.
Canonical IL-6 signaling is intact in these cells, documented
by transient phosphorylation of STAT3. Although WM35 cells
are highly resistant to simvastatin-induced apoptosis,
coadministration with IL-6 enhanced the susceptibility to
undergo apoptosis. This proapoptotic effect of IL-6 might be
explained by a downregulation of Bcl-XL, observed only in
WM35 cells. Furthermore, the IL-6 receptor blocking
antibody tocilizumab was coadministered and unmasked an

IL-6-sensitive proportion in the simvastatin-induced
caspase 3 activity of metastatic melanoma cells. These
results confirm that simvastatin facilitates apoptosis in
combination with IL-6. Although endogenous IL-6 secretion
is sufficient in metastatic melanoma cells, exogenously
added IL-6 is needed for WM35 cells. This effect may explain
the failure of simvastatin to reduce melanoma incidence in
clinical trials and meta-analyses. Melanoma Res
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Introduction
The principle of wide local excision of the primary

melanoma as first described by William Norris in 1857

remains the gold standard of therapy for localized

melanoma to date [1]. In contrast, the metastatic disease

represents a therapeutic challenge with a poor prognosis,

although new therapeutic approaches have emerged [1,2].

Serum level of interleukin (IL)-6 is a prognostic factor in

melanoma [3–5]. High levels of IL-6 are predictive for

reduced overall survival inmetastatic melanoma patients and a

high tumor burden [3,4]. IL-6 is part of the IL-6-like cytokine

family, which includes IL-11, leukocyte inhibitory factor,

oncostatin M, ciliary neurotrophic factor, and cardiotrophin 1

[6]. The cytokine IL-6 represents a key player in inflamma-

tory processes. In melanoma, IL-6 acts like a double-edged

sword. Growth of untransformed melanocytes and early-stage

melanoma is inhibited, whereas metastatic melanoma cells are

mostly resistant to the antiproliferative effects of IL-6 [6]. It

has been shown that almost 50% of metastatic melanoma

express IL-6 mRNA and secrete IL-6, which enables pro-

liferation in the absence of growth factors [7,8].

Inhibitors of the 3-hydroxy-3-methylglutaryl-coenzym A

(HMG-CoA) reductase, usually referred to as statins,

inhibit the rate-limiting step of the mevalonate pathway

[9]. Mevalonate is a precursor of several major products

including ubiquinone, dolichol, geranylgeranylpyrophos-

phate, and farnesylpyrophosphate [10]. Although statins

are well tolerated, in micromolar concentrations, statins

have been found to exert multiple pleiotropic effects.

Thus, in-vitro application of a statin impacts the mito-

chondrial respiratory chain, protein glycosylation, and

post-transcriptional lipid modification of proteins, in

particular, small G proteins [11]. In various tumor cell

lines, statins induce apoptosis, in particular in melanoma

cells, which has led to a discussion to use statins in

anticancer regimens [12–16]. In-vitro studies on murine

and human melanoma cells have shown that lovastatin

used in combination with doxorubicin potentiates
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antitumor effects, which may be explained by compart-

mentalization of doxorubicin into the nucleus because of

the inhibition of the ATP-binding cassette transporter

P-glycoprotein (ABCB1) by statins [17,18]. The sensi-

tivity of melanoma cells toward statins was further cor-

roborated by enhanced apoptosis, reduced invasion, and

metastasis [16,19]. Interestingly, on comparison of var-

ious melanoma cell lines, different sensitivities for

lovastatin have emerged [20]. However, the reasons for

these different sensitivities are yet not fully understood.

We have therefore asked the question whether the different

susceptibilities toward statin-induced apoptosis are related to

the action of IL-6? By comparison of human early-stage

WM35 melanoma cells with metastatic 518A2 and A375

cells, the effects of IL-6 were investigated in the presence of

the statin simvastatin. The WM35 cells were sensitive to

IL-6-induced apoptosis in particular in the presence of

simvastatin. Metastatic melanoma cells were insensitive to

IL-6, but potently killed by simvastatin. The combination

with tocilizumab, an IL-6-neutralizing antibody, unmasked

an endogenous IL-6-dependent induction of apoptosis by

simvastatin. The clinical implications of these findings are

discussed.

Materials and methods
Cell culture and protein preparation

The human metastatic melanoma cell line A375 was

obtained from the American Type Culture Collection

(Rockville, Maryland, USA) and the 518A2 cells were

obtained from Dr Edgar Selzer (Department of Radiation

Oncology, Medical University of Vienna, Austria). The

human primary melanoma cell line WM35 was obtained

from Dr Meenhard Herlyn (Wistar Institute, Philadelphia,

Pennsylvania, USA). Human melanoma cell lines A375

and 518A2 were grown in Dulbecco’s modified Eagle

medium (DMEM)-high glucose (Invitrogen; Paisley,

Scotland, UK) complemented with 10% fetal calf serum

(FCS) and 1% penicillin/streptomycin. WM35 cells were

grown in DMEM/Ham’s F12 medium supplemented

with 20mmol/l HEPES (pH 7.4), 2% FCS, 20mmol/l

L-glutamine, and 1% penicillin/streptomycin. Cells were

kept at 37°C under a 5% CO2 humidified atmosphere.

The human melanoma cells were exposed to various com-

pounds as indicated in the figure legends, and thereafter lysed

as described previously [13]. For detection of phosphorylated

proteins, cells were lysed with IP-buffer (25mmol/l tris–HCl,

pH 7.5, 150mmol/l NaCl, 10mmol/l EDTA, 0.1%Tween-20,

0.5% NP-40, 10mmol/l β-glycerophosphate, 10 μg/ml aproti-

nin, 100 μmol/l phenylmethylsulfonyl fluoride, 10 μg/ml leu-

peptin, 1mmol/l NaF, and 1mmol/l Na3VO). The protein

fractions were rapidly frozen and stored at −80°C.

Western blot analyses

Protein samples from cell lysis (cytosolic fraction) were

used for western blot analysis and separated on a SDS-

polyacrylamide gel. The separated proteins were

transferred to nitrocellulose membranes (Whatman,

Dassel, Germany) and exposed to primary antibodies

against cyclin D1 (M-20), Bcl-XL (L-19), Bak (G-23), and

Bax (N-20) from Santa Cruz (Santa Cruz, California, USA)

and phospho-STAT3 (9131), STAT3 (9132) and Bcl-2

(2872) from Cell Signalling Technology (Danvers,

Massachusetts, USA). The α-tubulin was used as a loading

control (B 5-1-2; Sigma, St Louis, Missouri, USA).

Appropriate horseradish peroxidase-conjugated secondary

antibodies were used to detect the proteins of interest

using the ECL Plus detection system (GE Healthcare,

Bucks, UK). The intensity of the protein bands was

determined using ImageJ software (http://rsbweb.nih.gov/ij)
and expressed relative to the intensity of the α-
tubulin band.

Interleukin-6 detection by ELISA

Equal amounts of cells (15 000) were seeded and kept in

serum-free medium to prevent IL-6 contamination by

FCS. Human IL-6 ELISA Development Kit (Peprotech,

Rocky Hill, New Jersey, USA) and IL-6 (human) EIA kit

(Enzo Life Sciences, Farmingdale, New York, USA) were

used to detect IL-6 in the medium of melanoma cells.

Experiments were conducted according to the manu-

facturer’s protocol. Recombinant human IL-6 (Peprotech)

was used as a standard.

Apoptosis detection

Apoptosis was measured in melanoma cells using double

staining with Annexin V/propidium iodate using the

apoptosis kit from Bender MedSystems (Vienna, Austria)

according to the instruction manual. Double staining was

analyzed by FACS as described previously [13].

Alternatively, caspase assays were carried out as describ-

ed previously [15,21].

Cell cycle analysis

Melanoma cells were synchronized in serum-free medium

overnight and treated with drugs for 48 h as indicated in the

figure legends. Trypsinized cells were washed and fixed

with 70% ethanol at 4°C for 1 h, washed, and incubated with

60 μg/ml RNase A in PBS (30min, 37°C). Following stain-

ing with propidium iodide (5 μg/ml; 30min, 4°C), samples

were analyzed on a FACScan (Becton Dickinson, San Jose,

California, USA). The cell cycle phases were analyzed using

Cyflogic software (Version 1.2.1; Cyflogic, Turku, Finland).

Wound-healing assay

Melanoma cells were grown to 90% confluence as a

monolayer in six-well plates. Subsequently, a wound was

scratched with a 200 μl plastic pipette tip across the bot-

tom of each well. Thereafter, cells were washed twice

with PBS and treated for up to 32 h with the drugs indi-

cated in the figure legends. Four representative spots

were labeled and four pictures per scratch were taken at

these orientation points. Up to four wells per condition

were analyzed at the indicated time points. The
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percentage of cell-free surface was calculated using the

TScratch software tool (CSElab, ETH Zürich,

Switzerland).

Miscellaneous procedures

The protein concentration was determined by a Bradford

protein assay using bovine serum albumin as a standard [22].

Experiments were conducted at least three times in dupli-

cate. Data are expressed as mean±SD if not otherwise

stated. The concentration− response curves were subjected

to nonlinear least-squares regression with the Hill equation

using the Sigmaplot software (Jandl, Erkrath, Germany).

Statistical analysis was carried out using Student’s t-test or
for multiple comparisons with analysis of variance and post-

hoc Bonferroni correction. A value of P less than 0.05 was

considered statistically significant.

Results
Interleukin-6 is secreted by melanoma cells

Secretion of IL-6 has long been confirmed for murine

and human melanoma cells [7,8]. However, high levels of

IL-6 have been found in late-stage melanoma correlated

with a poor prognosis [23,24]. We have therefore com-

pared and characterized human early-stage WM35

melanoma cells with metastatic 518A2 and A375 cells.

The metastatic melanoma cell lines secrete high amounts

of IL-6 (121.4 ± 39.9 pg/ml A375 cells; 540 ± 169 pg/ml

518A2 cells) (Fig. 1). Conversely, WM35 cells secreted

significantly less IL-6 (27.9 ± 6.9 pg/ml). This latter con-

centration is very close to that published by Molnar et al.
[23] for these cells.

The activated IL-6 receptor is mirrored by STAT3

posphorylation at Tyr705, which results in dimerization,

nuclear translocation, and DNA binding [25,26]. The

IL-6-mediated activation of STAT3 in all three cell lines

is intact (Fig. 1b). However, the strongest increase in

STAT3 posphorylation is predominantely observed in

WM35 cells. Conversely, in metastatic melanoma cells

A375 and 518A2, the phosphorylation pattern was tran-

sient, with a clear peak after 60 min and a second peak in

A375 cells after 120 min.

These results were further corroborated by analyses of

the cell cycle, which showed a significant stimulation of

the G2 phase in A375 and 518A2 cells by IL-6 (Fig. 2).

Conversely, WM35 cells accumulate in the G0/G1 phase,

reflecting a reduction of cell cycle progression in the

presence of IL-6 (Fig. 2c).

WM35 melanoma cells are resistant to simvastatin-

induced apoptosis

Metastatic melanoma cells are sensitive to statin-induced

apoptosis [13]. We have therefore also investigated

WM35 cells from the radial growth phase of melanoma

for simvastatin-induced apoptosis by FACS analysis

using Annexin V and propidium iodide double staining

(Fig. 3). Only concentrations exceeding 10 μmol/l

simvastatin were capable of significantly inducing apop-

tosis in WM35 cells, whereas this effect has already been

observed at 1 μmol/l simvastatin in 518A2 and A375 cells.

However, in WM35 cells, coincubation with IL-6 shifted

the concentration–response curve significantly to the left

and no effect was observed in 518A2 and A375 cells

(Fig. 3b and d).

The executer caspase 3 mirrors the point of no return in

the apoptotic machinery. For comparison, simvastatin-

induced caspase 3 activation was evaluated in all three

melanoma cell lines to corroborate apoptosis by another

method (Fig. 4a).

The corresponding EC50 values for A375 and 518A2 cells

were 0.55 ± 0.09 and 0.47 ± 0.65 μmol/l (n= 3). Again,

WM35 cells were 25-fold less sensitive to simvastatin-

induced apoptosis, with an EC50 value of 14.2± 3.89 μmol/l

Fig. 1
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(n= 3), confirming the previous data (Fig. 3). Caspase 3

activity was not stimulated by IL-6 alone; however, in

WM35, an insignificant increase was observed (Fig. 4). The

combination of simvastatin with IL-6 exerted no effect in

metastatic melanoma cells in comparison with simvastatin

alone. In contrast, similar to the above-described positivity

for Annexin V and propidium iodide double staining, a

significant increase in caspase 3 activation was observed for

this drug combination in WM35 cells (Fig. 4d).

We have previously shown that the proapoptotic effects

of statins are triggered by translocation of the Bcl-2

homology (BH) domain member Bax into the mito-

chondrial membrane [15]. As the proapoptotic Bcl-2

members are counterbalanced by binding to anti-

apoptotic Bcl-2 members, we investigated these proteins

in the absence and presence of IL-6 (Fig. 5). In the

metastatic melanoma cells, the levels of proapoptotic Bak

and Bax and antiapoptotic Bcl-2 and Bcl-XL showed

different responses upon IL-6 treatment. Bcl-XL was

clearly decreased in WM35 cells in the presence of IL-6.

In addition, the amount of Bcl-2 was decreased, whereas

the level of proapototic proteins remained unchanged

(Fig. 5).

Effect of tocilizumab

To investigate the role of IL-6 in the proapoptotic effect

of simvastatin, we used the inhibitory IL-6 receptor

antibody, tocilizumab [27]. The addition of 50 μg/ml

tocilizumab per se exerted no significant effect on

melanoma cells in terms of cell cycle regulation

or viability. Under control conditions, 64.8 ± 3.2,
62.1 ± 8.1, and 55.4 ± 9.3% of 518A2, A374, and WM35

cells were in G0/G1 phase, whereas 16.7 ± 5.0, 17.1 ± 3.5,
and 18.1 ± 3.7% were in the S-phase, respectively. Under

tocilizumab incubation, 67.8 ± 6.6, 62.5 ± 17.8, and

55.5 ± 9.6% of 518A2, A374, and WM35 cells were in the

G0/G1 phase and 14.3 ± 4.2, 16.7 ± 5.4, and 18.7 ± 3.6%
were in the S-phase, respectively.

These findings are further supported by the observation

that tocilizumab exerted no effect on caspase 3 activation

in all three melanoma cell lines, which was also the case

for the corresponding human IgG1 isoform (Fig. 6).

Interestingly, a significant stimulation of caspase 3 was

detected for the combination of simvastatin and IgG1 in

WM35 cells versus control (Fig. 6c). Compared with

simvastatin treatment alone, the combination of simva-

statin plus IgG1 was insignificant. However, the

simvastatin-induced caspase 3 activation was significantly

reduced by tocilizumab in metastatic melanoma cells

A375 and 518A2 (Fig. 6a and b). These cells were

therefore used in scratch assays to elucidate a functional

effect of tocilizumab-induced abrogation of simvastatin-

induced apoptosis. Again, the human IgG1 conctrol

exerted no effect on wound closure or simvastatin-

induced inhibition (Fig. 7a and c). Obviously,
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proliferation in A375 and 518A2 cells was significantly

prevented by simvastatin (Fig. 7). Although tocilizumab

per se had no significant effect, coapplication with sim-

vastatin resulted in accelerated reduction of the cell-free

area, indicating accelerated proliferation. Hence, the latter

observation confirmed abrogation of simvastatin-induced

apoptosis by tocilizumab, which uncovered the involve-

ment of proapoptotic IL-6 action in metastatic

melanoma cells.

Taken together, these data show that simvastatin effect-

ively triggers apoptosis in metastatic melanoma cells

making use of the endogenous IL-6. The IL-6-neutralizing

antibody tocilizumab unmasks this IL-6 component of the

simvastatin-induced apoptosis, which is currently not

understood at the molecular level. Conversely, in early-

stage melanoma cells, exogenous IL-6 is needed to

enhance simvastatin-induced apoptosis.

Discussion
Interleukin-6 and melanoma

The cytokine IL-6 acts as a growth inhibitor in early-

stage melanoma, which is reflected in this study by

WM35 cells from the initial radial growth phase. In

human metastatic melanoma cells A375 and 518A2, IL-6

acts as a growth factor. This dualistic action of IL-6 has

long been known, but has not been fully understood at

the molecular level [28–30].

Early studies showed that in WM35 cells, IL-6 leads to

growth inhibition by upregulation of p21 and subsequent

cell cycle arrest [31]. This observation is confirmed in this

Fig. 3
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study by a significant accumulation of WM35 cells in the

G0/G1 phase and a reduction of the S-phase (Fig. 2).

Transformation of WM35 cells by retroviral insertional

mutagenesis was used to convert these cells into an

aggressive phenotype [32]. Interestingly, these tumori-

genic variants of the parental WM35 cells lost the

responsiveness to IL-6-induced cell cycle arrest.

The IL-6-induced growth inhibition was not observed in

late-stage melanoma cells, that is IL-6 shifted metastatic

A375 and 518A2 cells into the G2 phase (Fig. 2). These

data are further corroborated by the fact that the latter cells

also secrete high amounts of IL-6, which reflect roughly

5–15-fold higher levels compared withWM35 cells (Fig. 1). It

is noteworthy that the concentration of IL-6 in themedium of

WM35 cells is close to the upper limit for healthy individuals

(20 pg/ml, 95th percentile in healthy individuals) [33,34].

Similar to IL-6, the melanoma cell lines investigated also

showed a stage-dependent difference in sensitivity toward

simvastatin-induced apoptosis (Figs 3 and 4a). Interestingly,

WM35 cells were less sensitive to simvastatin-induced

apoptosis compared with metastatic melanoma cells. The

calculated EC50 values were 25-fold higher for WM35 cells.

However, the coadministration of IL-6 enhanced the apop-

totic effects of simvastatin, although IL-6 per se exerted no

direct apoptotic effect (Figs 3 and 4d). The antiapoptotic Bcl-

2 family members are often upregulated in melanoma cells,

whereas the protein levels of proapoptotic proteins (Bax, Bak)

were not changed [35]. We found a significant reduction of

Bcl-XL in IL-6-treated WM35 cells (Fig. 5). This observation

provides a possible explanation for the facilitation of apoptosis

triggered by coadministration with simvastatin (Figs 3 and

4d). An additional argument is provided by our recent

observation that simvastatin triggers the synthesis of the

Fig. 4
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prostaglandin, 15d-PGJ2, which is an endogenous ligand of

the peroxisome proliferator-activated receptors γ (PPARγ)
[36]. Moreover, the fatty acid-binding protein 5, the lipid

chaperon for 15d-PGJ2, is strongly upregulated in simvastatin-

treated A375 and 518A2 cells and activates the PPARγ ligand.
Further investigations have to clarify whether simvastatin-

induced activation of PPARγ downstream targets such as

NFκB might affect IL-6 signaling.

Statins and melanoma

The fact that statins are so well tolerated when taken

over long periods of time make it feasible now to analyze

a possible anticancer action of statins in melanoma.

In particular, the Breslow thickness has been found to be

reduced in a statin-treated group [37]. Clinical studies and

meta-analyses are available that confirmed a positive out-

come and reduced the incidence of melanoma for statin

Fig. 5
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takers, with an estimated risk for melanoma incidence of

0.79 (95% confidence interval= 0.66–0.96) [37–39].

Besides these protective effects of statins, there are also

reports and analyses that provide no significant evidence

for a statin action in melanoma, even after correction for

age, sex, or the individual statin used [40–42]. An expla-

nation for these heterogeneous data could be the trial

design per se. Statins are administered to patients with a

cardiovascular risk and studies aim to confirm improved

cardiovascular outcomes, but not the effect of statins on

melanoma. Second, the follow-up periods of 5 years might

be too short to evaluate or elucidate an anticancer effect. In

part, these considerations have been addressed by Jacobs

et al. [38] in their Cancer Prevention Study II Nutrition

Cohort, which was carried out from 1997 to 2007 in 133 255

participants. The incidence of the 10 most common can-

cers and the overall cancer incidence in statin takers were

investigated and no association nor increase in overall

cancer incidence was found. However, a decreased risk of

developing melanoma was observed (relative risk 0.70,

95% confidence interval 0.55–0.88, P= 0.02).

Interleukin-6 antagonism with tocilizumab

Tocilizumab is an approved specific humanized monoclonal

antibody against the IL-6 receptor, competing for the

binding site of IL-6 [43,44]. This therapeutic concept is

used in the treatment of chronic inflammatory diseases such

as rheumatoid arthritis and Castleman’s disease [44,45]. We

used tocilizumab to block IL-6 signaling of the endogen-

ously secreted IL-6 to unmask an effect of this cytokine.

Tocilizumab per se had neither an effect on the cell cycle

progression nor on pre-G0/G1 accumulation of fragmented

DNA independent of the cell line used (data not shown).

Importantly, the IL-6/phospho-STAT3 axis is intact in

WM35, A375, and 518A2 cells (Fig. 1b). Interestingly, in

combination with simvastatin, tocilizumab unmasked a

proapoptotic activity of IL-6 in metastatic A375 and 518A2

cells (Fig. 6), which is also reflected by improved wound

healing of such treated cells (Fig. 7). These effects are

considered to be specific as the control for the antibody

isoform (human IgG1) had no effect on basal or simvastatin-

induced caspase 3 activation (Fig. 6) or wound healing

(Fig. 7a and c).

In the absence of simvastatin, IL-6 alone significantly

enhanced cell cycle progression in metastatic melanoma

cells (Fig. 2). In WM35 cells, exogenous IL-6 augments

the G0/G1 phase and exerts a contrary effect (Fig. 2). This

observation might be of clinical relevance as case reports

have been published that tocilizumab, when administered

to patients with rheumatoid arthritis, led to a rapid pro-

gression of early melanoma in two cases [46,47]. It is worth

mentioning that, similar to melanoma, IL-6 plays a dualistic

role in stage-dependent growth regulation of breast cancer

[27]. Indeed, during a clinical trial with tocilizumab in

patients with rheumatoid arthritis, one case of breast cancer

emerged [48]. Thus, further clinical studies are needed to
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Fig. 7
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exclude safety concerns related to tocilizumab-triggered

melanoma development or progression.

In our study, we highlight an additional explanation for a

possible mechanism behind tocilizumab facilitation of

melanoma incidence. Exogenous IL-6 decreased the

amount of the antiapoptotic protein Bcl-XL in early-stage

WM35 cells. Thus, blocking the IL-6 axis with tocilizu-

mab could decrease the sensitivity of melanoma cells to

apoptotic stimuli and this may lead to enhanced tumor

progression. To prove such a hypothesis, further inves-

tigations are needed.

In metastatic melanoma cells A375 and 518A2, tocilizu-

mab had no effect on proliferation nor apoptosis.

One possible explanation for this is that advanced

melanoma cells produce high IL-6 levels to communicate

with the microenvironment [49]. For example, a recent

study showed that treatment of melanoma with the

specific BRAF inhibitor vemurafenib led to a decrease of

IL-6 in the tumor microenvironment, which enhanced

the infiltration with CD8+ cytotoxic T cells [50].

To our knowledge, this is the first investigation to show

stage-dependent effects of tocilizumab on human

melanoma cells, which implicates that tocilizumab-

related safety concerns might be considered and inves-

tigated in melanoma models. Such an approach might

also shed new light on the molecular switch, which

transforms IL-6 from a growth-inhibitory cytokine to a

driver of proliferation and growth of metastatic melanoma

cells [51,52].
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