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Vascular and cardiac valvular calcification was once considered to be a degenerative and

end stage product in aging cardiovascular tissues. Over the past two decades, however,

a critical mass of data has shown that cardiovascular calcification can be an active and

highly regulated process. While the incidence of calcification in the coronary arteries and

cardiac valves is higher in men than in age-matched women, a high index of calcification

associates with increased morbidity, and mortality in both sexes. Despite the ubiquitous

portending of poor outcomes in both sexes, our understanding of mechanisms of

calcification under the dramatically different biological contexts of sex and hormonal

milieu remains rudimentary. Understanding how the critical context of these variables

inform our understanding of mechanisms of calcification—as well as innovative strategies

to target it therapeutically–is essential to advancing the fields of both cardiovascular

disease and fundamental mechanisms of aging. This review will explore potential sex

and sex-steroid differences in the basic biological pathways associated with vascular and

cardiac valvular tissue calcification, and potential strategies of pharmacological therapy

to reduce or slow these processes.

Keywords: age-related cardiovascular parameters, aging, aortic valve stenosis, cardiovascular calcification,

epidemiology, estrogen, hemodynamics, testosterone

BACKGROUND

Ectopic calcification in cardiovascular tissue was once considered to be a passive consequence of
cardiovascular disease processes with increasing age. The association-based clinical observations
driving this model painted a remarkably appealing picture, with vascular calcification being evident
in roughly 25% of patients at age of 50 years, and soaring to over 60% in patients over the age of
75 years (1). While the incidence of aortic valve calcification was slightly lower, the overall trend
for dramatic, age-associated increases was equally robust. From such population-based studies, risk
factors for vascular and valvular calcification quickly emerged, include aging, metabolic syndrome,
smoking, and male sex (2–5).

The site-specific mechanisms of ectopic calcification within the tissues of the cardiovascular
system are incompletely understood. At present, calcification in either the coronary arteries
or cardiac valves is often considered an organized, regulated, and active pathological process,
with evidence of many molecular pathways paralleling those observed in bone/orthotopic
ossification. Despite this apparent conservation of core osteoblastic signaling pathways, mature
bone matrix is rarely found in calcifying cardiovascular tissues (6–8). Critically, however, upstream
mechanisms regulating the induction and amplification of these signaling pathways are likely to be
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fundamentally different between cardiovascular and
orthotopic tissues, since exposure to oxidative stress
amplifies osteogenic signaling in calcifying cardiovascular
cells but markedly suppresses calcification in bone-derived
osteoblasts (9). Furthermore, the contribution of dystrophic
tissue calcification—where amorphous accumulation of
calcium occurs in the absence of bone matrix, functional
osteogenic signaling, or presence of osteoblast-like cells—
remains remarkably elusive in the pathogenesis of aortic
valve stenosis.

In recent years, tissue fibrosis emerged as a potential
and major contributor to aortic valve dysfunction in
experimental animals. In particular, genetically altered
mice with a propensity for both hypertension and
hyperlipidemia developed hemodynamically-significant
aortic valve stenosis associated with structural and molecular
changes consistent with activation of fibrogenic signaling,
and critically, in the absence of substantive changes in
valvular calcification. Consequently, investigation into
the role of fibrosis as a clinically-meaningful determinant
of the degree of valvular stenosis is an exciting and
emerging field.

THE CLINICAL JUSTIFICATION FOR
EXPLORING THE ROLE OF SEX IN CAVD

While a number of retrospective studies led many to conclude
that “women are protected against aortic valve stenosis by
estrogens” (10–12), recent work suggests that the pathobiology
underlying the disease process may be fundamentally different.
For instance, in aortic valve disease—where calcification was
once thought to be the primary and near exclusive driver of
valve dysfunction–men had more calcification than women at
any given level of valvular stenosis (even after normalizing
for body size or aortic root size) (13–15), suggesting that
valvular fibrosis may play a greater role in determining cusp
movement in women compared to men. Similarly, the site
of cardiovascular calcification seems to play an important
role in predicting mortality in a sex-dependent manner,
with thoracic aortic calcification being a strong predictor
of mortality secondary to coronary events predominantly in
women (16), whereas thoracic aortic and abdominal aortic
calcification are strong predictors of all-cause mortality in
men (17).

Collectively, the observation that men have higher prevalence
of calcification in atherosclerotic lesions and cardiac valves
compared to women at any given decade of life has been an
interesting clinical observation, and the biological underpinnings
and collective clinical implications of these observations are likely
to be of great value in developing sex-specific pharmacological
treatments to prevent clinically significant valvular and vascular
pathology and dysfunction (15, 18, 19). Herein, we aim to
highlight potential cellular mechanisms modulated by sex and
sex steroid hormones contributing to key sex differences in
cardiovascular calcification, with an overall aim of driving
dialogue around critical unanswered questions in the field.

MOLECULAR SIGNALING INVOLVED IN
CARDIOVASCULAR CALCIFICATION: AN
INITIAL SEX AND SEX HORMONE
AGNOSTIC PERSPECTIVE

While calcification in the cardiovascular system is often
considered an active, regulated process with activation of many
fundamental osteogenic signaling cascades being conserved
between ectopic cardiovascular calcification and orthotopic
bone ossification, upstream mechanisms contributing to the
induction, sustained activation, and amplification of these
pathways can differ markedly. Interestingly, even during
formation of micro-calcific deposits there is expression
of proteins which are usually absent (e.g., osteopontin)
and/or overexpression of proteins which are usually very
low in local tissue (e.g., matrix Gla protein), suggesting that
maladaptive processes may be initiated even in the earliest
stages of the disease (4, 5, 14, 20, 21). Several of the major
molecular signaling pathways involved in regulation of
ectopic calcification are ubiquitously active in both males and
females (Figure 1).

Transforming Growth Factor-β (TGF-β)
Signaling
One of the most extensively studied pathways in calcific
vascular and valvular disease is TGF-β pathway. While
the downstream effects are remarkably context dependent
(and in vitro are dependent on substrate stiffness), TGF-
β most often induces cell migration, proliferation, and
extracellular matrix protein elaboration. Critically, on stiff
substrates and matrices, TGFβ robustly induces apoptosis
and dystrophic calcific nodule formation in aortic valve
interstitial cells from a variety of species, suggesting that
the matrix accumulation and sclerosis occurring in early
stages of valvular heart disease may shift the phenotypic
consequences of increased TGF-β across the spectrum of
the disease and contribute to both fibrosis and dystrophic
calcification to different extents during the evolution of
disease (22, 23).

BMP Signaling
Bone morphogenetic proteins (BMPs), members of the TGF-β
superfamily, are significantly increased in ectopic calcification
lesions within the cardiovascular system including valvular and
vascular tissues (22, 24, 25). Initiated by seminal observations
from Demer et al., nearly two decades of work have generated
compelling data that BMP signaling plays an integral role in
the initiation and progression of cardiovascular calcification.
Most paradigms implicating BMP signaling suggest that these
morphogens serve as a paracrine signal from nearby resident
cells to drive osteogenesis via a BMP-Msx2-Wnt cascade (26–28).
Importantly, mechanical stimuli—including non-laminar blood
flow patterns exacerbated by multiple disease states–induce both
oxidative stress and BMP elaboration from vascular and valvular
endothelial cells (29, 30). Furthermore, BMP2- and BMP4-driven
osteogenic signaling can be further augmented in conditions
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FIGURE 1 | Effects of estrogens and androgen signaling on multiple cellular processes implicated in the regulation of cardiovascular calcification. Note that estrogen

can bind to estrogen receptors (ER, resulting in nuclear translation), G-protein coupled estrogen receptors (GPER, eliciting cytosolic signaling), and estrogen binding

proteins (EBPs, eliciting cytosolic signaling) to exert a variety of effects—both positive and negative—on molecules influencing ectopic calcification. In general,

androgens bind to androgen receptors (AR) and have a smaller number of signal transducing elements compared to estrogens. Abbreviations and impact on

calcification: RANKL, receptor activator of nuclear factor κB ligand (promotes calcification); PPAR γ, peroxisome proliferator-activated receptor-γ (prevents

calcification); NFκB, nuclear factor κ B (promotes inflammation/calcification); NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase (increases

oxidative stress/calcification); SOD, superoxide dismutase (reduces oxidative stress/calcification); O2•
−, superoxide anion (increases calcification); p53, tumor protein

53 (promotes inflammation/calcification).

where endogenous inhibitors (such as matrix Gla protein) are
reduced or absent in a variety of disease states (31).

It is noteworthy that not all bone morphogenetic proteins
drive ectopic tissue calcification. For example, BMP-7, which is
found in human vascular calcification, slows the progression of
arterial calcification in both human and mice with diabetes and
hyperlipidemia (32, 33). It is also important to note that while the
context dependence of TGF-β signaling has been well-defined by
numerous investigators, the role of cell-substrate interactions in
the phenotypic consequence of BMP signaling has received much
less attention in the literature.

Wnt/β-Catenin Signaling
While increased TGF-β superfamily signaling is a near
ubiquitous finding in calcifying cardiovascular tissues, numerous
investigators have reported upregulation of other signaling
pathways central in bone ossification in diseased vascular
and valvular tissues (34). One such pathway is Wnt/β-catenin
signaling, where multiple reports have documented increases in
Wnt ligand elaboration, low-density lipoprotein receptor-related
protein (LRP) receptor components, hyperactivation of canonical
β-catenin signaling components, and upregulation of β-catenin
transcriptional targets (35, 36).

The Role of Extracellular Vesicles in
Cardiovascular Calcification
Recently, numerous studies have implicated extracellular vesicles
in the initiation and progression of cardiovascular calcification
(37–39). While their precise role remains largely unclear, several
studies reported accumulation of nanoparticles that appear to
precede (or occur concomitantly) with induction of osteogenic
signals in cardiovascular tissue, and aggregation of such vesicles
can contribute to formation of larger calcific masses at multiple
cardiovascular sites (40–42). Unlike bone, however, where matrix
vesicles are derived largely from chondrocytes and osteoblasts,
extracellular vesicles accumulating in the cardiovascular system
appear to be derived from vascular smooth muscle cells and/or
immune cells/macrophages (43, 44). While the composition of
each vesicle subset has yet to be comprehensively characterized,
it is likely that the cell origin, mechanism/driver of release, vesicle
contents, and target tissue in which deposition occurs are all
likely determinants of phenotypic/biological outcomes (45, 46).

The Site-Specific Role of Inflammation in
Ectopic and Orthotopic Calcification
Tumor necrosis factor-α (TNF-α) is a major cytokine involved
in driving both local and systemic inflammation in a variety
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of cardiovascular pathologies. Thus, it is not surprising that
upregulation of TNFα has been shown to augment multiple
pathophysiological intracellular signaling cascades involved with
vascular and valvular calcification, including interactions with
BMP signaling, Msx2-dependent gene transcription, and both
canonical and non-canonical Wnt/β-catenin signaling) (35, 47–
49). For example, the presence of a TNF-α-Msx2–Wnt/β-catenin
cascade acts as a major driver of calcium deposition in aortic
valve interstitial cells in vitro (48, 49) and in atherosclerotic
lesions in hyperlipidemic mice in vivo (50). While additional
mechanistic studies have suggested that antibody-mediated
neutralization of TNFα may be effective at slowing initiation
or progression of plaque calcification through attenuation of
Wnt/β-catenin signaling (3, 50), systemic, long-term suppression
of TNFα also puts patients at risk of being immunocompromised,
and development of fatal infections.

IMPACT OF SEX HORMONES ON
PROCESSES OF CALCIFICATION

Although the overall lifetime incidence of atherosclerosis, aortic
stenosis, and cumulative death from cardiovascular diseases
are remarkably comparable between men and women (51, 52),
the primary contributor to the perception of reduced CVD
burden in women is the delay in prevalence of atherosclerosis
and/or aortic valve stenosis in women compared to men
at each decade of life (53, 54). Our understanding of the
impact of sex hormones on cardiovascular calcification is
compounded by several factors, including marked differences
in sex hormone levels over the lifespan of men and women,
the effect, type, and timing of hormone replacement on
cardiovascular biology in women, and the general paucity
of appropriately powered clinical trial data evaluating
differential efficacy and effectiveness of drug interventions
on men and women. This understanding is complicated
further by the fact that many pre-clinical studies have not
actively considered the role of sex in the biological pathways
being interrogated (via the exclusion of female animals)
or have not faithfully recaptured changes in hormones
similar to that observed over the lifespan of humans. Given
these caveats, we will address the potential roles of both
estrogens and androgens on cardiovascular calcification by first
providing limited insights from clinical observations, followed
by mechanistic insights gleaned largely from pre-clinical
animal models.

ROLE OF ESTROGENS IN THE
REGULATION OF CARDIOVASCULAR
CALCIFICATION

Clinical Observations
Several seminal studies reported that post-menopausal
estrogen treatments may reduce the risk of cardiovascular
calcification when administered within the first 5 years
of menopause (55, 56). While several recent studies
suggest that initiation of estrogen repletion outside of

this time period may not confer optimal protection
against a myriad of CV complications, the timing,
type, and dosing regimens of estrogen that confer
vasculo-/valvulo-protection remains a very active field of
investigation (57, 58).

Pre-clnical Observations
Given the increased prevalence of subclinical and clinical CVD
occurring within first decade following menopause (59, 60), a
large amount of effort has been put into understanding the
interplay between exposure to either endogenous or exogenous
estrogens and several of the abovementioned pathophysiological
signaling cascades.

in vitro, estrogen signals through its binding to cytosolic
estrogen receptors (such as estrogen receptor α or β), estrogen
binding proteins(EBPs), or membrane G-protein-coupled
estrogen receptors(Gpr30) (see Figure 2) (61–63). Through
a myriad of genomic and non-genomic effects, estrogens can
suppress a variety of molecular processes known to drive
cardiovascular calcification, including repression of receptor-
activator of nuclear factor κB ligand (RANKL) (47, 64) and NFκB
signaling, suppression of NADPH oxidase activity in resident
cells and inflammatory infiltrates (65, 66) and suppression
of p53 (67). Importantly, estrogens do not exert their effects
solely by negative regulatory mechanisms, and treatment of
cells or animals with exogenous estrogens can drive expression
of antioxidant enzymes (in cytosolic, mitochondrial, and
lysosomal compartments), and increase nitric oxide synthase
activity and expression, both of which have been implicated
as key protective mechanisms in cardiovascular calcification
(Figure 2) (68–70).

in vivo, endogenous estrogen levels are critical for protection
against cardiovascular calcification at multiple sites, as surgical
ovariectomy in young mice results in accelerated development
of advanced calcified lesions in both aortic and aortic valve
tissue (14). It is likely that a major mechanism whereby estrogen
exerts its protective effects is via the suppression of TGF-β-
dependent extracellular matrix production and accumulation
and downregulation of non-collagenous proteins (71) in
cardiovascular lesions, both of which likely serve to prevent
increases in micro-environmental stiffness that increase the
propensity for apoptosis in response to sustained elevations in
TGF-β (72). The interactions between sex hormones and TGF-
β signaling are remarkably complex and context dependent,
however, and entire reviews have focused on this topic and
unanswered questions in the field (73). Furthermore, given
previous work suggesting that TGF-β can reciprocally inhibit
estrogen receptor signaling via a canonical smad4 interaction
(74, 75), the extent to which systemic estrogens can be
increased to win over this interplay remains unclear. Given
clinical observations of disproportionately augmented TGF-β
signaling and fibrosis in women (which is not associated with
increases in deposition of dystrophic calcific deposits) (15),
it is evident that the net impact of sex hormones on the
molecular and phenotypic sequelae of TGF-β signaling will be
paramount to the advancement of pharmacotherapies targeting
valvular stenosis.
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FIGURE 2 | Interactions between estrogen signaling, androgen signaling, and osteogenic signaling in vascular smooth muscle or aortic valve interstitial cells exposed

to physiological levels of sex hormones. Note that—in general—both estrogens and androgens suppress osteogenic signaling via both genomic and non-genomic

mechanisms in both cell types at physiological levels in relatively early to mid-life stages. Importantly, the therapeutic harnessing of these mechanisms requires

substantial research into the context dependence of sex hormone signaling (e.g., timing relative to menopause, level to which hormones should be restored for

optimal therapeutic benefit, etc.). TGF-β, transforming growth factor β; BMP, bone morphogenetic protein; Wnt, wingless-related integration site; TGFβR1/2,

transforming growth factor beta receptor 1 or 2; BMPR1/2, bone morphogenetic protein receptor 1 or 2; Nox4, NADPH oxidase 4; SARA, smad anchor for receptor

activation; Smad, Suppressor of Mothers Against Decapentaplegic; LRP5/6, Low-density lipoprotein receptor-related protein 5 or 6; CK1, Casein kinase 1; DVL,

Disheveled protein; Axin, Axin 1 protein; APC, adenomatous polyposis coli protein; GSK3, Glycogen synthase kinase 3; CTTNβ, beta-catenin protein; TCF 4/7,

Transcription factor 4 or 7; LEF1, Lymphoid Enhancer Binding Factor 1; FZD, Frizzled receptor.

These estrogenic effects are independent of the Y
chromosome, as atherosclerosis, vascular calcification, and
bone growth were accelerated in a man with estrogen receptor
dysfunction (76). Since testosterone is converted to estrogen
by aromatase in both females and males, additional insights
related to the role of estrogenic signaling in men can be
gleaned from studies in which aromatase inhibition was
administered. Here, inhibition of aromatase reduced vascular
dilatation in men (77, 78), suggesting the net impact of
endogenous “testosterone-derived” estrogens is protective in
men. Furthermore, we are not aware of additional clinical
evidence that short term use of aromatase inhibitors bring
benefit for reducing cardiovascular disease incidence in
the elderly male patients with low levels of androgen (i.e.,
attempts to restore testosterone levels through prevention
of its degradation) (78, 79). Complementing these data
supporting a net protective effect of aromatase-derived estrogens,
administration of aromatase inhibitors for 5 years in women
(to reduce the recurrence of estrogen-receptor positive breast
cancer), also appears to increase incidence of cardiovascular
disease (80).

ROLE OF ANDROGENS IN THE
REGULATION OF CARDIOVASCULAR
CALCIFICATION

Clinical Observations
Numerous studies have shown that, in general, testosterone levels
decline relatively linearly after the third decade of life, and can
be reduced by more than 50% beyond the sixth decade of life.
While the decline in free testosterone is coarsely and inversely
related to cardiovascular event rates, causal relationships between
changes in testosterone levels and cardiovascular disease remains
complicated and highly context dependent (81, 82).

Currently, the vast majority of scientific literature would
suggest that supraphysiological levels of testosterone—such as
those observed in athletes aiming to improve performance—
results in significantly higher levels of coronary artery
atherosclerosis compared to non-users of the same age (83–85).
Reciprocally, hypogonadal men (testosterone levels <300 ng/dL)
have an increased risk of numerous cardiovascular events and
complications (86, 87). Of the handful of controlled clinical trials
completed to date, most suggest that restoring testosterone levels
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to mid-normal range does not increase cardiovascular event
rates during most follow-up periods (82, 88). Such interventions
may, however, increase the volume of non-calcified coronary
lesions (89), suggesting that normal levels of testosterone may be
pro-atherogenic but not pro-osteogenic/-calcific.

Pre-clinical Observations
Androgens

Numerous studies have probed the interactions between
androgen signaling and a variety of pathophysiological signaling
cascades in cardiovascular tissues, which have in part been
a significant contributor to the controversy surrounding their
net impact on cardiovascular diseases. In the context of
regulating valvular and vascular disease, several studies have
demonstrated a clear role for androgens in the promotion of
calcific nodule formation through increasing levels of reactive
oxygen species (66, 90–92), repressing PPARγ signaling (93–95),
and increasing osteogenic signaling (88, 96, 97) (Figure 2). In line
with the aforementioned clinical observations in hypogonadal
men, however, physiological levels of androgens may reduce
vascular calcification by sustaining eNOS activity (23, 98, 99),
reducing TGFβ signaling (100, 101), through the suppression
of p53-dependent cellular senescence (67, 102), prevention of
cellular apoptosis (91, 103, 104), reducing RANKL signaling
(105), suppression of local inflammatory signaling (106–110),
and attenuation of pro-thrombotic factor activity (111, 112)
(Figure 2).

PROTECTIVE ANDROGENS vs.
PROTECTIVE ANDROGEN-DERIVED
ESTROGENS

Similar to aging humans, lower serum testosterone is associated
with increased risk of cardiovascular calcification in experimental
animals and is attenuated by long-term androgen repletion (98,
113). The biological interpretation of this effect is complicated,
however, given the fact that both endogenous and exogenous
testosterone can be converted to estrogen by aromatase enzymes
(114, 115). Seminal studies showing that androgen receptor-
dependent signaling has a deleterious impact on CV calcification
(via genetic inactivation of the androgen receptor) combined
with reports of augmented vascular calcification in men with
spontaneous loss-of-function mutations in estrogen receptors
also suggests that testosterone-derived aromatases are an
underappreciated factor when considering the net impact of
androgen signaling on advanced vascular disease (79, 80, 96).

HORMONE-INDEPENDENT EFFECTS OF
ORGANISMAL SEX: THE ROLE OF THE
CHROMOSOMAL COMPLEMENT

Sex hormones aside, the sex chromosomes–the most
fundamental and intrinsic determinant of organismal sex–
is also likely to be a significant determinant of propensity for
cardiovascular calcification. Both X and Y chromosomes have
strong linkage associations with cardiovascular disease risk

factors such as hypertension, cardiovascular inflammation,
immune biology and macrophage function, and organismal
metabolism (116–120). Perhaps most critically, cells derived
from XX or XY organisms which are treated with identical
in vitro conditions show differences in proliferation, fibrosis,
and apoptosis in response to various agonists (121, 122). These
changes are not restricted solely to vascular tissues, as osteogenic
signaling and responses to various agonists also differ in aortic
valve interstitial cells from XX and XY animals (123). Thus, while
the Y chromosome may be referred to as a “non-recombining
desert” in some biological circles (124), its sustained phenotypic
impact is of undeniable importance in cardiovascular tissues.

CONCEPTUAL GAPS AND
CONTROVERSIES IN THE FIELD OF
CARDIOVASCULAR CALCIFICATION

While tremendous advances have been made in our
understanding of cardiovascular calcification over the past
several decades, several major gaps remain in our efforts to
translate and apply both biological and clinical discoveries to the
care of an individual patient.

As appropriate with the scope of this review, one could readily
argue that the field’s greatest gap relates to our understanding
of the impact of biological sex and the sex steroid hormonal
milieu on phenotypic and clinical outcomes in diseases where
vascular, valvular, or microvascular calcification are of clinical
importance. As the role of this critical context becomes clearer
with appropriately controlled and sex-balanced pre-clinical
and clinical investigation (125–127), we will undoubtedly gain
deeper insights into both the pathobiological underpinnings
and potential efficacious therapeutic interventions in men and
women suffering from calcific cardiovascular diseases.

Perhaps the greatest controversy in the field of cardiovascular
calcification—which is not necessarily exclusive from of our
understanding of biological sex—is the contexts in which
ectopic calcification is driven by non-osteogenic or osteogenic
mechanisms. More specifically, while an overwhelming body
of evidence suggests that the osteogenic signaling cascades
described in this review are present in calcifying tissues from the
vast majority of patients with cardiovascular calcification, clinical
observations at the time of surgery or autopsy suggest that bone
matrix is only evident in a relatively small fraction of this patient
population (e.g., 15–25%) (128). Thus, how the cellular decision
is made to initiate maladaptive, osteogenic “response to injury”
at the earliest stages of microcalcific nodule formation (129)
that propagates to true “ectopic bone” or alternatively expands
due to progressive and persistent cellular apoptosis to form an
amorphous, calcific deposit (130–133) with merely associative
increases in osteogenic signaling remains remarkably elusive.

Finally, the role of the biological context of organismal
age (and its fundamental biological determinants including
changes in sex steroid hormones) in dictating these decisions
is only beginning to be understood. While there has been a
longstanding association between cellular senescence and tissue
calcification [stemming from seminal work by Shanahan et al.
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(134–137)] more recent work suggests that the pharmacological
targeting and/or clearance of senescent cells may also be a
viable strategy for slowing progression of vascular calcification
and dysfunction (136). The postulate that targeting fundamental
biological mechanisms of aging may be a viable strategy to delay
onset or prevent progression of cardiovascular calcification is
supported by intriguing observation that biomarkers of biological
age (e.g., telomere length) are stronger predictors of incidence of
valvular heart disease than chronological age (138).

PERSPECTIVES ON THE FUTURE OF THE
FIELD OF CARDIOVASCULAR
CALCIFICATION AND STRATEGIES FOR
ADDRESSING THE EFFECTS OF SEX

While the field of cardiovascular calcification has made
tremendous strides in advancing our understanding of
osteogenic and non-osteogenic mechanisms contributing to
ectopic calcium accrual over the past two decades, it is our
opinion that the greatest advances—both scientifically and
clinically—will be made in the near future by exploring the
context of sex and sex hormones in these phenomena. While
many may consider this to be too bold of a statement, it stands
on a firm foundation of both clinical and biological reports
demonstrating clear sex- and sex hormone-driven differences in
the progression of calcific cardiovascular diseases and a glaring
lack of success in viable pharmacological strategies to mitigate
cardiovascular calcification in elderly persons.

While the National Institutes of Health now mandates
consideration of sex as a biological variable in all studies that
receive funding (e.g., from pre-clinical animal investigation
to human trials), there have not been consistent requirements
from publishers and journals requiring reporting of data by
sex. Consequently, we would make the following additional
suggestions to drive discussion of true “best practices” and
accelerate development of critical insights into mechanisms
underlying cardiovascular calcification in future studies. First,
we suggest that in vitro studies should include independent cell
lines derived from each sex of the species being studied, which
will allow for characterization of the impact of chromosomal
complement and differing epigenetic demarcations in the
absence of the sex-steroid and systemic hormonal millieu.
With the emergence of evidence that cell line immortalization
can drive X and Y chromosomal reconfiguration (139) and
the absence of data demonstrating whether such phenomena
eliminates sex-dependent molecular responses to exogenous
stressors, we also advocate for the use of primary cell lines
until comprehensive characterizations of cell phenotype
and response are available. Second, we suggest that all sex-
disaggregated data should be available within manuscripts
and/or online supplements, and that studies should be designed
to detect sex differences with appropriate statistical power
in an a priori manner. In clinical conditions in which a
disease occurs predominantly in one sex vs. the other, we
feel a minimum recommendation of having the experimental
sample composition be reflective of the sex distribution

within the patient population of interest is reasonable. Finally,
execution of appropriate hormonal depletion, repletion,
or crossover studies would represent a major advance in
the field. By appropriate, we refer not only to absolute
hormonal levels but also to timing of repletion/depletion
(i.e., initiation of the insult later in life, similar to what occurs
in humans).

While we believe few investigators would argue that the
abovementioned recommendations directly align with the
foundational principles of scientific rigor, we are acutely aware
that the logistics of implementing such recommendations must
be addressed. While doubling the scope and scale of ongoing
research projects is neither feasible nor sustainable, we would
argue that generation of pre-clinical and clinical datasets that do
not inform either the pathobiological underpinnings or clinical
care of half of the world’s population reduces the relevance
and impact of scientific investigation around the globe. At
present, we believe there are few viable arguments against
the intentional and appropriate inclusion (and subsequent
disaggregated presentation) of data from both sexes in
studies of cardiovascular calcification, as the number of
samples required for demonstrating sex differences should
not increase dramatically when truly qualitatively different
trends are uncovered. We acknowledge that discovery of
such dichotomous sex responses can often spur new lines
of investigation that are beyond the scope of the existing
project and subsequently require support through additional
funding mechanisms. Critically, we commend NIH and several
other funding entities for creation of supplemental research
awards devoted to supporting more detailed investigation
of mechanisms underlying unexpectedly discovered sex
differences, as well as creation of recent RFA’s that prioritize
identification of novel sex differences in cardiovascular
calcification and disease.

Ultimately, we feel that appropriately designed and executed
clinical studies—including both men and women potentially
with independent outcome measures in each sex (e.g., not only
valvular function as a primary outcome but predominantly
calcification in men and fibrosis in women as secondary
outcomes) is an essential step in ensuring that the utility
of sex in predicting therapeutic efficacy and effectiveness
across the translational spectrum. While beyond the scope
of this review [and covered recently in Sritharen et al.
(14)], emerging data strongly suggest that incoming risk
profiles, outcomes for surgical valve replacement, outcomes
for transcatheter valve replacement, and comorbid condition
frequency following disease diagnosis differ robustly amongst
men and women, and can serve as a critical catalyst for driving
impactful investigation in the biological mechanisms underlying
such observations.

SUMMARY

The clinical presentation, biological underpinnings, and
molecular interactions with sex hormones and biological sex,
and ultimate strategies to therapeutically prevent or slow
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progression of cardiovascular calcification differ dramatically
between men and women. While in the United States, the
National Institutes of Health (NIH) mandate for inclusion of
both sexes in research will undoubtedly serve to advance our
understanding of these differences, it is our hope that this review
will spur additional genuine interest in understanding critical
biological and clinical contexts—including, but not limited
to organismal sex—and drive transformative advances in the
strategies and tools needed to reduce the growing global burden
of calcific vascular and valvular diseases.
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