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INTRODUCTION

Sepsis is an infection-related syndrome that encompasses distinct conditions in which organ
dysfunctions are the main features, resulting from imbalances of host immune responses that
can be lethal (Singer et al., 2016). Despite advances in supportive treatments, no specific drug has
been explicitly approved for treatment of sepsis. For this reason, sepsis remains a health concern
worldwide (Reinhart et al., 2017), accounting for the majority of nosocomial deaths, a statistic that is
especially worrisome in developing countries (Rudd et al., 2020). The absence of appropriate
treatments still remains a major obstacle.

The pathophysiology of sepsis usually begins with excessive and uncontrolled immune responses
to a pathogen with the overlapping secretion of both pro- and anti-inflammatory components,
culminating in organ failure (Hotchkiss et al., 2013a; Van Der Poll et al., 2017). Over time, this initial
hyperinflammatory state gives way to a dominant hypoinflammatory period (Wiersinga et al., 2014;
Van Der Poll et al., 2017). During this second stage, there is a depletion of cytokines, combined with
induction of inhibitory signaling molecules and apoptosis or reprogramming of inflammatory cells,
resulting in transition to an immunosuppressive state, most recently referred to as a state of
circulating leukocyte reprogramming (Boomer et al., 2011; Cavaillon et al., 2020). The host’s
mechanisms to dampen excessive inflammation may interfere with the clearance of infectious
organisms or may lead to increased host susceptibility to secondary infections, especially by
opportunistic pathogens. In addition, the cellular reprogramming may lead to the development
of late sequelae in survivors of sepsis (Otto et al., 2011; Hotchkiss et al., 2013b).

Danger-associated molecular patterns (DAMPs), including adenosine triphosphate (ATP), can be
released by activated or damaged cells in the extracellular milieu during infectious conditions
including sepsis (Cauwels et al., 2014; Idzko et al., 2014; Sumi et al., 2014). Extracellular ATP (eATP)
acts as a danger signal molecule (Coutinho-Silva and Ojcius, 2012; Ma et al., 2018), triggering
purinergic signaling, which affects immune cell function and influences the initial
hyperinflammatory phase of sepsis (Ledderose et al., 2016). Purinergic signaling is a well-
conserved system throughout evolution; the pathway includes purinergic receptors, nucleotides,
nucleosides, and ectoenzymes called ectonucleotidases that regulate the metabolism of these
molecules (Burnstock and Verkhratsky, 2009; Alves et al., 2020). Regarding its composition and
ligand affinity, the purinergic receptors are divided into the metabotropic P1 receptors (A1, A2A, A2B,

and A3) associated with adenosine (ADO), ionotropic P2X receptors (P2X1-7), and metabotropic
P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11–14) for tri- and diphosphonucleotides (Ralevic
and Burnstock, 1998; Fredholm et al., 2011; Jacobson et al., 2020). These receptors have distinct roles
in inflammatory environments; for example P1 receptors in general can mitigate inflammation and
tissue injury, while P2 receptors can stimulate pro-inflammatory responses and promote bacterial
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killing (Savio et al., 2018; Antonioli et al., 2019; Savio and
Coutinho-Silva, 2019). The cleavage of nucleotides occurs
mainly through the action of E-NTPDase1/CD39 and ecto-5′-
nucleotidase/CD73. The former enzyme catalyzes the hydrolysis
of adenosine triphosphate (ATP) and adenosine diphosphate
(ADP) into adenosine monophosphate (AMP), and the latter
catalyzes the hydrolysis of AMP to ADO (Robson et al., 2006).
The purinergic signaling has been studied in the sepsis context.
Here, we discuss advances in understanding this signaling in
sepsis pathophysiology as well as possible therapeutical
interventions based on purinergic components in the phases of
sepsis.

RECENT ADVANCES OF PURINERGIC
SIGNALING IN SEPSIS

In recent years, studies have demonstrated the involvement of
purinergic signaling in the pathophysiology of sepsis. ATP exerts
a pro-inflammatory response in macrophages, monocytes, and
dendritic cells, promoting pro-inflammatory cytokine release
(i.e., IL-1β and IL-18) (Grahames et al., 1999; Ferrari et al.,
2007), while adenosine stimulates the release of anti-
inflammatory cytokines (i.e., IL-10) (Németh et al., 2005). In
addition, eATP levels increase neutrophil migration and
activation, causing tissue damage and organ injury (Sumi
et al., 2014). The P2X7 receptor (P2X7R) has been described
as the most relevant purinergic receptor involved in
inflammatory processes (Di Virgilio and Pelegrín, 2019). This
receptor is widely expressed by immune cells and it mediates the
activation of several inflammatory and antimicrobial
mechanisms in infection diseases, including sepsis (reviewed in
Savio et al., 2018).

P2X7R gain-of-function single nucleotide polymorphisms
have been correlated to increase sepsis severity in humans
(Geistlinger et al., 2012). A recent study found P2X7R
expression is elevated in the surface of monocytes from
patients with sepsis. Moreover, cytokine levels (e.g., those of
IL-1β, IL-18), the alarmin HMGB1, and ASC aggregates are
increased in the serum of these patients (Martínez-García
et al., 2019). These findings suggest the involvement of the
P2X7-NLRP3 axis in sepsis (Martínez-García et al., 2019).
P2X7R pharmacological blockade with BBG decreased levels of
inflammatory cytokines (i.e., IL-1β, IL-6, and IL-10), NO
production, and neutrophil recruitment to the peritoneal
cavity in a mouse model of sepsis. This inhibition decreased
liver damage and attenuated activation of inflammatory signaling
pathways, demonstrating the protective effect of P2X7R
inhibition in the initial phase of sepsis (Savio et al., 2017b).
Similarly, genetic deletion of P2X7R or treatment with the
antagonist A438079 decreased the mortality rate in sepsis
induced by cecal ligation and puncture (CLP) (Santana et al.,
2015; Wang et al., 2015). Corroborating these data, P2X7R
activation by BzATP promoted excessive inflammation and
disruption of the intestinal barrier, while systemic blockade
using P2X7 antagonist A740003 protected mice against sepsis
(Wu et al., 2017). P2X7R is also directly connected to oxidative

stress and pro-inflammatory cytokines secretion in the liver
(Larrouyet-Sarto et al., 2020) and brain of septic mice (Savio
et al., 2017a). Interestingly, these effects are tightly restrained by
CD39 activity (Savio et al., 2017a).

Di Virgilio and Pelegrín reported that, even though the P2X7R
has been described as the purinergic receptor most involved in
inflammatory processes, recent findings suggest that P2X4
receptor (P2X4R) exhibits relevant contributions in this
context as well (Di Virgilio and Pelegrín, 2019). Csoka and
colleagues showed that ATP is responsible for Escherichia coli
and Staphylococcus aureus killing in wild-type macrophages, and
this effect is independent of P2X7Rs (Csóka et al., 2018). Using
CD39−/− mice, they demonstrated that adenosine was not
responsible for bacterial killing. In addition, they showed that
ATP failed to destroy these pathogens in macrophages isolated
from P2X4−/− mice. P2X4 expression levels were elevated in liver
and lung of septic mice. By contrast, in peritoneal monocytes/
macrophages and neutrophils, expression levels were decreased,
suggesting that, in the CLP model, P2X4R has a protective role
(Csóka et al., 2018).

Another purinergic receptor that may have a role in sepsis
pathogenesis is P2X1 (P2X1R). In a model of urosepsis using an
E. coli strain, the inhibition of this receptor with two different
antagonists (NF279 and NF449) showed that this receptor could
not protect the host against sepsis. P2X1R antagonism promoted
an increased pro-inflammatory cytokine release (i.e., IL-1β, TNF-
α, and IL-6) and higher bacterial load, decreasing survival in mice
(Skals et al., 2019).

Despite the importance of P2X receptors, P2Y receptors can
also be relevant in sepsis. Interestingly, a recent report
demonstrated that eATP increased in the peritoneal cavity and
systemic circulation of mice subjected to the CLP model. This
increase was confirmed using LPS-primed peritoneal
macrophages that showed a connexin-43-dependent pathway
for ATP release. This nucleotide acts through in autocrine
manner, activating P2Y1 receptor and then inducing the
release of pro-inflammatory cytokines (Dosch et al., 2019).
Accordingly, LPS-stimulated monocytes release ATP that can
suppress T cell responses. eATP can activate the P2Y11 receptor,
which impairs mitochondrial activity and blocks T cell migration
required for host defense in sepsis (Sueyoshi et al., 2019).
Furthermore, the P2Y12 antagonist (clopidogrel) reduced the
number of white blood cells (WBCs), including lymphocytes
and neutrophils in septic mice. Clopidogrel also significantly
reduced sepsis-induced lung injury. P2Y12 receptor-deficient
mice also showed diminished production of inflammatory
mediators (i.e., IL-6, TNF-α, IL-10, and MIP-1) and reduced
sepsis-induced lung injury (Liverani et al., 2016).

An important mechanism that can protect against sepsis are
the activities of the ectoenzymes E-NTPDase1/CD39 and ecto-5′-
nucleotidase/CD73, which are responsible for catalyzing the
degradation of ATP to adenosine. Ectonucleotidase activities
increased in lymphocytes and macrophages from septic mice
(Vuaden et al., 2011; Savio et al., 2017b). CD39 diminished the
inflammation and enhanced the survival of septic mice due to its
ability to scavenge eATP (Csóka et al., 2015). CD39 is essential to
limit P2X7R pro-inflammatory effects in sepsis (Csóka et al.,
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2015; Savio et al., 2017b). Moreover, CD39 overexpression
inhibited the NLRP3 inflammasome activation, which
decreased inflammation and mitigated sepsis-induced organ
injury (Yang et al., 2019). CD73 deficiency also decreased
survival, bacterial clearance, and increased cytokine and
chemokine production in CLP-induced sepsis (Haskó et al.,
2011). These reports demonstrate the crucial role of these
enzymes in protecting against inflammation and host organ
injury in the initial stages of sepsis, because they promote
adenosine formation in the extracellular milieu. However,
adenosine generated by these enzymes may contribute to
cellular reprogramming and development of
immunosuppression in the latter stages of sepsis.

Adenosine receptors have also been studied in sepsis,
especially A2A and A2B (Rehman et al., 2020). In a mouse
model of endotoxemia, pharmacological activation of A2A

receptor improved survival rates and reduced bacteremia
(Sullivan et al., 2004). A similar protective profile in septic
mice treated with A2A agonists was observed when mice were
infected with gram-positive and gram-negative bacteria,
including an increase of anti-inflammatory and decreased pro-
inflammatory cytokines (Moore et al., 2008). Nevertheless, A2A

stimulation can be ambiguous in a polymicrobial infection. In a
peritonitis model caused by the injection of a fecal solution,
survival was higher and bacterial load was lower in A2A-deficient
animals (Meriño et al., 2020). In CLP-induced sepsis, A2A

knockout or antagonism likewise enhanced survival, in
addition to attenuating anti-inflammatory cytokines levels and
bacterial burden in serum and peritoneal lavage fluid (Németh
et al., 2008). Conflicting results were obtained in studies regarding
the A2B receptor in sepsis. Genetic deletion or pharmacological
blockade decreased mortality rates by increasing active
macrophage phagocytosis and bacterial clearance (Belikoff
et al., 2011). By contrast, another study using the same
polymicrobial infection model and the same approaches,
including the antagonist used, resulted in a higher mortality
rate (Csóka et al., 2010).

Interestingly, combined approaches appear to be beneficial in
the initial stages of CLP-induced sepsis. Combined A2A activation
and P2X7 inhibition decreased hepatic cell death liver injury,
demonstrating the relevance of CD39 activity for restricting pro-
inflammatory mechanisms and providing substrates for CD73,
thereby providing adenosine in the extracellular milieu (Savio
et al., 2017b). Indeed, in a study regarding septic cardiomyopathy,
septic mice showed diminished ischemia and reperfusion injury,
presumably mediated by upregulation of both A2A and A2B

expression in ventricles, as their blockade essentially abolished
this cardioprotective effect (Busse et al., 2016). Finally, A1

receptor antagonism, genetic ablation, and desensitization were
all associated with lymphopenia, a clinical feature of sepsis that
correlates with more significant lethality (Riff et al., 2017).

CONCLUSION AND FUTURE DIRECTIONS

Sepsis is a complex and uncontrolled systemic inflammation caused
by pathogen infection. Usually, sepsis is caused by bacteria;

nevertheless, some viruses can also induce systemic
inflammatory responses, including the recently described severe
acute respiratory syndrome coronavirus 2 (SARS-Cov2) (Li et al.,
2020). Interestingly, purinergic signaling is also potentially involved
in the pathogenesis of SARS-Cov2, considering its role in IL-1β
secretion (Di Virgilio et al., 2020). Recently, Huet and colleagues
showed that a human IL-1 receptor antagonist (anakinra) improved
outcomes and decreased mortality among patients with severe
forms of SARS-Cov2 (Huet et al., 2020).

Sepsis is a dynamic syndrome that can be divided into two
phases. The first one is commonly known as an intense
inflammatory phase, and the second is associated with an
immunosuppressive state, which refers to lymphocyte
exhaustion and immune cell reprogramming. Considering the
high costs to the health systems, the difficulty of managing sepsis,
and the consequences for patients who survive and develop long-
term sequelae, it is imperative to identify new therapies to
improve these outcomes. Therefore, even though antibiotic
treatment is the primary approach in sepsis, new procedures
are necessary to prevent adjacent immune abnormalities caused
by this disease. Interventions targeting purinergic signaling
components could be interesting adjuvant therapies.

The severity and the phases of sepsis should be considered to
develop therapeutical strategies based on purinergic signaling.
According to the studies discussed here, P2 receptors, mainly
P2X4 and P2X7 receptors, were able to activate microbicidal
mechanisms and induce pro-inflammatory cytokines release,
which can be necessary for pathogen control, but at the same
time can be related to the initial hyperinflammatory phase of
sepsis, causing organ dysfunction and poor outcomes. On the
other hand, adenosine, acting mainly via A2A and A2B receptors,
may promote anti-inflammatory cytokines release and attenuate
tissue injury, suggesting a protective role in initial sepsis phases.
Nevertheless, adenosine-based interventions should be carefully
analyzed. This molecule can contribute to the reprogramming of
immune cells to an immunosuppressive phenotype, causing
secondary infections and long-term sequelae.

A limiting mechanism in this context is the functionality of
ectoenzymes CD39/CD73 that are essential for the degradation of
ATP into adenosine, contributing to the switch between pro-
inflammatory and anti-inflammatory responses in sepsis
(Figure 1). Therefore, the CD39/CD73 axis appears to be
protective in the initial phase of sepsis, reducing the excessive
inflammation. Nevertheless, the increased expression of these
enzymes by immune cells and the continuous adenosine
generation during the disease progression may also contribute
to immunosuppression and late sequelae.

Therefore, the use of P2 receptor antagonists and soluble
apyrases may be an attractive therapeutic approach in
association with antibiotics to dampen excessive inflammation
and control infection in the initial phase of sepsis. In addition,
natural polyphenolic compounds have shown anti-inflammatory
properties by inhibiting ATP-P2X7 signaling (Nuka et al., 2018).
In the second phase of sepsis, the administration of adenosine
antagonists and CD39/CD73 neutralizing antibodies could limit
the immunosuppression, reducing the susceptibility to secondary
infections and late metabolic and immune alterations (Figure 1).
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Future studies should consider these observations for the
development of adjuvant therapies based on purinergic
signaling to manage the immune environment in sepsis.
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