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Abstract 
Gene expression regulation is a sophisticated, multi-stage process, and its robustness is critical to normal cell function and the survival 
of an organism. Previous studies indicate that differential gene expression at the RNA level is typically attenuated at the protein level 
through translational regulation. However, how post-transcriptional regulation (PTR) influences expression change during the RNA 
maturation process remains unclear. In this study, we investigated this by quantifying the magnitude of expression change in precursor 
RNA and mature RNA across a vast range of different biological conditions. We analyzed bulk tissue RNA sequencing data from 4689 
samples, including healthy and diseased tissues from human, chimpanzee, rhesus macaque, and murine sources. We demonstrated that 
PTR tends to support homeostatic expression of mature RNA by amplifying normal tissue-specific expression of precursor RNA, while 
reducing expression change of precursor RNA in disease contexts. Our study provides insight into the general influence of PTR on gene 
expression homeostasis. Our analysis also suggests that intronic reads in RNA-seq studies may contain under-utilized information 
about disease associations. Additionally, our findings may assist in identifying new disease biomarkers and more effective ways of 
altering gene expression as a therapeutic strategy. 
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Introduction 
Regulation of gene expression is a complicated, multi-stage pro-
cess. DNA is initially transcribed into precursor RNA (pre-RNA, 
including subtypes such as precursor messenger RNA and pre-
cursor non–protein-coding RNA), subject to transcriptional regu-
lation [1–4]. Pre-RNA is subsequently processed into mature RNA. 
This process is subject to post-transcriptional regulation (PTR), 
which determines the stability, abundance, localization and even 
sequence of mature RNA isoforms. PTR mechanisms include alter-
native splicing, 5′ capping, alternative polyadenylation, binding 
of regulatory RNAs, RNA methylation and RNA editing, among 
others [5–9]. Subsequently, mature RNA is translated into protein, 
subject to translational and post-translational regulation. 

The complexity of PTR activities varies across species and is not 
constant during evolution. Interestingly, highly complex organ-
isms (comprised of multiple different cell types) tend to have more 
complex PTR processes than unicellular and simpler multicellular 
organisms [10–14]. While complicated, PTR should represent a 
significant energy burden to cells and may increase the chance of 
regulatory errors. Its evolutionary selection in complex organisms 
suggests that the benefits it provides may outweigh the associated 
energy costs and risks, or that it is not deleterious enough to be 

removed by selective pressure. As one process of PTR, alterna-
tive splicing is known to expand the repertoire of proteins and 
increase the diversity of cellular function [15]. However, many 
other PTR processes are not directly involved in pre-RNA splicing. 
The evolutionary implications of these processes have not been 
fully elucidated. 

Organisms have developed various mechanisms to maintain 
robustness against external disturbances and internal aberra-
tions [16–18]. One such mechanism is the attenuation of protein 
expression change; expression change across biological condi-
tions at the RNA level is reduced at the protein level [19–21]. A 
proposed explanation is that protein is under greater evolutionary 
pressure compared to RNA, and that this mechanism may have 
evolved to buffer fluctuations in gene expression at the RNA level, 
ensuring robustness of components closer to cellular function 
[19]. However, it remains unclear how gene expression differences 
change from pre-RNA to mature RNA, and what the role of PTR is 
in this process. 

One possibility is that gene expression change across condi-
tions is larger at the pre-RNA level compared to the mature RNA 
level. This may be because mature RNA is more closely related to 
cellular function and is therefore subjected to higher evolutionary
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pressures, compared to pre-RNA. Another possibility is that gene 
expression change is smaller at the pre-RNA level and becomes 
amplified in mature RNAs. There is also a third possibility: that 
there is no consistent pattern in the relative gene expression 
change between pre-RNA and mature RNA levels, and it varies 
from condition to condition. Finding out which of these three 
possibilities is true is important, as it will provide us insight 
into the general roles of pre-RNA and mature RNA, as well as 
the role evolution has played in shaping transcription regulation 
and PTR. To determine which of these three possibilities is most 
likely occurring in nature, we comprehensively examined the 
influence of PTR on gene expression in various conditions, includ-
ing normal and disease states, in human and other mammalian 
species. 

Materials and methods 
Sample selection and ethics statement 
Datasets used in the study were obtained from the GTEx [22] 
and SRA [23] databases. For the GTEx dataset, bulk RNA-seq 
data in Analysis V8 was used; samples were filtered to retain 
only those with RNA Integrity Number (RIN) > 7, and tissues with 
greater than 100 samples were down-sampled to 100 samples 
for downstream analyses (Table S1, available online at http:// 
bib.oxfordjournals.org/). BAM files were downloaded for GTEx 
samples. For the SRA datasets of the SRA human tissues (Table S2, 
available online at http://bib.oxfordjournals.org/), the non-human 
tissues (Table S3, available online at http://bib.oxfordjournals. 
org/) and the disease conditions (Table S4, available online at 
http://bib.oxfordjournals.org/) studies were manually selected 
from recount2 database [24] to include disease conditions with 
intermediate sample sizes. The meta data of SRA samples were 
extracted from annotation information in https://sra-explorer. 
info/, Expression Atlas [25] or from the corresponding literatures. 
FASTQ files were downloaded and used for the SRA dataset. 

The studies involving human samples were conducted in com-
pliance with ethical standards and procedures, with oversight and 
approval by the University of New South Wales (UNSW) Human 
Research Ethics Committee (Project No. HC230388). 

Data quality control 
The downloaded FASTQ files were first quality controlled by 
FastQC [26]; samples that were marked as failed in ‘Per sequence 
quality scores’ by the software were discarded. BAM files of 
human samples were then quality controlled by RNA-SeQC [27], a 
program that enables filtering based on key measures of RNA-seq 
data quality, using criteria of Mapping Rate > 0.7, Base Mismatch 
<0.02, High Quality Rate > 0.6, Exonic Rate > 0.3, Ambiguous 
Alignment Rate < 0.1, rRNA Rate < 0.4, Avg. Splits per Read < 
0.4 and 5000 < Genes Detected < 30,000. The thresholds were 
determined according to the distribution of the values of each 
metric in the studied samples. Samples that failed to meet any of 
the criteria were excluded from downstream analyses. 

Preparation of annotation files 
Gencode v38 gff annotation file [28] was used to extract human 
exon coordinates. To obtain the intron coordinates, the com-
mand ‘genometools gt gff3 -retainids -addintrons -tidy’ in toolkit 
genometools [29] was first used to add introns, then ‘bedtools 
subtract’ [30] was used to subtract exons from introns to ensure 
there was no overlapping exonic region in the final introns. For 
quantification of reads mapped to 5′ end of pre-RNAs and mature 
RNAs, two introns and two exons at the 5′ end of genes were 
selected, respectively, and were used to generate new gff files. 

Similarly, two introns and two exons at the 3′ end were selected 
to generate new gff files for 3′ end quantification. 

For non-human species, the relevant gff files were downloaded 
from Ensembl Release 105 [31]. The same method used for human 
genes was used to extract intron coordinates of genes for non-
human species. 

Quantification of pre-RNA and mature-RNA 
abundance 
STAR v2.7.5a was used to align reads in FASTQ files to GRCh38 
[32]. For human samples, the STAR index used by GTEx was 
downloaded from gs://gtex-resources/STAR_genomes/ via gsutil, 
and it was used in the analysis. For non-human species, STAR 
index was built using command STAR—runMode genomeGener-
ate with parameters of—genomeFastaFiles $genomeFastaFiles— 
sjdbGTFfile $sjdbGTFfile—sjdbOverhang 100—limitGenomeGene 
rateRAM = 45,000,000,000—genomeSAindexNbases, in which 
genomeSAindexNbases was set as 14. TOPMed RNAseq pipeline 
(https://github.com/broadinstitute/gtex-pipeline), which was 
used by GTEx, was used for read alignment and duplicates 
marking. 

Quantification of exonic and intronic reads at gene level was 
performed using featureCounts [33], using parameters of -a 
GFF_FILE -o OUTPUT -F GTF -t exon/intron—ignoreDup -p -J— 
minOverlap 10 INPUT.bam, where GFF_FILE was the previously 
prepared exon or intron annotation file. As most of the intronic 
reads are from pre-RNAs, while exonic reads can be from both 
pre-RNAs and mature RNAs, we used intronic read counts as pre-
RNA read counts. We then used the following formula to calculate 
the mature RNA read counts by assigning exonic reads to both 
pre-RNAs and mature RNAs: 

Cmature−RNA = Cexonic reads −
(

Cintronic reads 

Lintron 
× Lexon

)

Where Cmature-RNA is mature RNA read count for a gene, 
Cexonic reads and Cintronic reads were the counts of reads mapped to 
exonic and intronic regions of the genes respectively, and Lexon 

and Lintron were the total exon and intron length of the gene, 
respectively. The term Cintronic read / Lintron ∗ Lexon is the exonic reads 
assigned to pre-RNAs, with pre-RNA abundance being estimated 
from intronic reads, and normalized by intron and exon lengths. 

Extraction and quantification of boundary reads 
To extract the exon-exon boundary reads, a bed file was created, 
in which two lines were generated for each exon, with the first 
line recording the start position (same value for the second and 
third columns) while the second line recording the end posi-
tion of the exon. Then ‘bedtools intersect’ command was used 
to extract reads in bam files that mapped to the start or end 
position of the exon, and mapping information was extracted 
from CIGAR string to ensure the reads had at least 10 bp over-
hang at both ends. The extracted boundary reads were then 
counted by featureCounts using parameters -a EXON.gff3 -o OUT-
PUT -F GTF -t exon—ignoreDup -p -J—splitOnly—minOverlap 10 
EXTRACTED_READS.bam. 

Similarly, to extract exon-intron boundary reads, a bed file 
was created, in which two lines for each intron were generated, 
with the first line recording the start position minus 10 bp (the 
minimum overhang) while the second line recording the end 
position plus 10 bp of the intron. The ‘bedtools intersect’ com-
mand was used to extract reads in bam files that mapped to 
start or end position in the created bed file. Mapping information 
was extracted from CIGAR string to remove reads with any ‘N’
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(represents skipped bases on the reference). The extracted bound-
ary reads were then counted by featureCounts using parameters
-a INTRON.gff3 -o OUTPUT -F GTF -t intron—ignoreDup -p -J— 
nonSplitOnly—minOverlap 10 EXTRACTED_READS.bam. 

Preprocessing for differential expression analysis 
and subsampling of mature RNA reads 
The calculated pre-RNA and mature RNA reads were used for dif-
ferential expression analysis. First, genes with total exon length ≤ 
200 bp or total intron length ≤ 200 bp were excluded, only genes 
that had exon to intron length ratio between 0.001 and 10 were 
retained. 

The number of mature RNA reads was significantly higher 
than pre-RNA reads (Fig. S1a available online at http://bib. 
oxfordjournals.org/). Although there was no apparent correlation 
between read counts and delta fold change (Pearson r = −0.08, 
Fig. S1b available online at http://bib.oxfordjournals.org/), to 
avoid any unexpected influence of read count on the analysis, 
we performed random subsampling of mature mRNA reads for 
each sample to balance the number of pre-RNA and mature RNA 
reads, and used the subsampled reads for differential expression 
analysis and differential expression magnitude quantification. To 
subsample mature RNA reads, for each sample, we first calculated 
the trimmed mean pre-RNA count and trimmed mean mature 
RNA count. To calculate the trimmed mean pre-RNA count, we 
reordered genes based on pre-RNA counts from the smallest to 
the largest, and removed 10% genes at both ends, then calculated 
the mean counts of the remaining genes, by formula: 

Cpre−RNA = 1 
n − 2 [k] 

n−[k]∑
[k]+1 

Cpre−RNA•i. 

Where Cpre−RNA is the mean pre-RNA count for the sample, n 
is the number of genes, [k] is the integer closest to k = 0.1 ∗ n, and 
Cpre−RNA•i is the pre-RNA count for gene i, similarly, mean mature 
RNA count Cmature RNA was calculated as: 

Cmature RNA = 
1 

n − 2 [k] 

n−[k]∑
[k]+1 

Cmature RNA•i 

Then the number of subsampled reads Smature RNA•ifor the gene 
is one random sampling from binomial distribution if Cpre−RNA < 
Cmature−RNA. 

Smature RNA•i ∼ B
(
Cmature RNA•i, p

)
, where p = Cpre−RNA/Cmature−RNA. 

Differential expression analysis 
Differential expression analysis was performed using both 
DESeq2 [34] and edgeR [35], at pre-RNA and mature RNA levels, 
separately. In the analysis using DESeq2, low count genes with 
total read counts ≤ 15 were excluded, then differential expression 
analysis was performed using the ‘DESeq’ function, which 
performed Negative Binomial GLM fitting and Wald statistics. 
Shrunk log2FoldChanges were generated by the ‘lfcShrink’ 
function using estimator of ‘apeglm’ [36]. In the analysis using 
edgeR, only genes with 10 reads in 0.7 ∗ min.group.size samples 
were retained, where min.group.size was the size of the smaller 
group. Library size was normalized by method ‘TMM’, tagwise 
dispersions were estimated by function ‘estimateDisp’, then 
a quasi-likelihood negative binomial generalized log-linear 

model (function glmQLFit()) was used to fit the count data and 
quasi-likelihood F-test (function glmQLFTest()) was used to test 
for differentially expressed genes. 

The log2FoldChange values from differential expression anal-
ysis were used to calculate delta fold change using formula: 

Delta fold change = ∣∣log2FCmature RNA
∣∣ − ∣∣log2FCpre−RNA

∣∣

Where |log2FCmature RNA| was the absolute value of log2 fold 
change observed at mature RNA level, and |log2FCpre-RNA| was  the  
absolute value of log2 fold change observed at pre mRNA level. 

Only genes with |log2FC| > 0.5 and un-adjusted p-value <0.05 
at either pre-RNA or mature RNA level were used to calculate the 
mean or median delta fold change for each comparison. To ensure 
that there were sufficient genes in the calculation of the mean 
or median delta fold change, only comparisons with more than 
50 filtered genes were used in the analyses to generate Figs. 1, 2, 
and S2. 

Data download, quality control, alignment, quantification 
and differential expression analysis was performed using UNSW 
Australia’s Katana supercomputing facility [37]. 

Correlation with RNA integrity and gene length 
RNA integrity of the samples was measured by Transcript 
Integrity Number [38], which was calculated from the sequencing 
reads using RSeQC [39]. Median Transcript Integrity Numbers 
across all the transcripts were used to measure the RNA integrity 
at sample level. For each comparison of gene expression between 
tissues or conditions, the mean Transcript Integrity Number value 
across all samples was used to measure the RNA integrity of the 
comparison. To evaluate the contribution of RNA integrity on the 
mean delta fold change values, a linear model of 

Mean delta fold change = β0+β1database+β2condition+β3TIN+ε 

was fitted, where database was the source of data (SRA or 
GTEx), condition was either diseases or tissues and TIN was the 
mean Transcript Integrity Number of a comparison. Magnitude 
of contribution was measured by the absolute value of the 
coefficient β3. 

Correlation between mean delta fold change and total/mean 
length of exons/intron and total length of genes in GTEx tissues 
were explored using scatter plot and linear regression, and the 
strength of the correlation was measured by R-squared values. 

Gene set analysis, statistical analysis, and 
visualization 
The human housekeeping gene list was downloaded from HRT 
Atlas v1.0 database [40], genes in file ‘Housekeeping genes’, 
which were genes stably expressed across 52 tissues and cell 
types, were used. Orthologs of human housekeeping gene in 
non-human species were used as their housekeeping genes. 
Ortholog information was retrieved from Orthologous Matrix 
(OMA) database [41], specifically, orthologs between each non-
human species and human were queried at https://omabrowser. 
org/oma/genomePW/, only orthologs with 1:1 mapping relations 
were used. 

Pathway and gene ontology enrichment analysis was per-
formed using Enrichr [42] via their API, gene set library of 
‘KEGG_2021_Human’ [43] was used for pathway analysis, while 
libraries of ‘GO_Cellular_Component_2023’, ‘GO_Biological_ 
Process_2023’ and ‘GO_Molecular_Function_2023’ [44] were used
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Figure 1. Differential expression magnitude between tissues in pre-RNAs and mature RNAs. (a) An illustrative example showing amplified differential 
expression magnitude in mature RNAs between brain caudate basal ganglia and heart atrial appendage tissues in the GTEx dataset. Each dot represents 
a gene; the zero delta fold change reference line and the regression line are shown with dashed lines. (b) Distribution of mean delta fold changes across 
GTEx tissue comparisons, with the zero delta fold change and mean value lines represented by dashed lines. (c) Comparison of the distribution of 
mean delta fold changes across GTEx tissues, SRA tissues, and non-human mammal tissues. Each data point is a comparison between two tissues. (d) 
Heatmap showing mean delta fold changes for all GTEx tissue comparisons. (e) Boxplot depicting the distribution of mean delta fold changes in inter-
organ comparisons, ordered by their median values. (f) Correlation of the median values of mean delta fold changes between GTEx and SRA datasets, 
calculated using the tissues present in both datasets. (g) Distribution of mean delta fold changes in inter-organ and intra-organ comparisons in three 
datasets. 

for gene ontology analysis. In the analysis to determine whether 
the genes with amplified (or reduced) expression change are 
consistent across different tissues and disease states, for each 
tissue, we selected all 33 differential expression comparisons 
involved. Then we identified the top 1000 genes most frequently 
observed with amplified (or reduced) expression change in those 
33 comparisons. For each identified gene, we calculated the 
percentage of tissues in which the gene was observed with 
amplified (or reduced) expression change. For the diseases 
dataset, only the diseases with >30 genes observed amplified (or 
reduced) expression change were considered, to reduce the bias 
in the result caused by studies with small number of genes with 
amplified (or reduced) expression change. For disease enrichment 
analysis, geneset databases of Clinvar [ 45], OMIM [46] and GWAS 
Catalog [47] from Enrichr [42] were used for analysis. 

Statistical analysis was performed in R version 4.1.2, visualiza-
tion was done using packages ggplot2 [48], ggpubr [49], ggfortify 
[50], ggsci, ggstatsplot [51], grid, ggthemes, and RColorBrewer. 

Results 
Influence of PTR on tissue-specific gene 
expression 
To investigate how PTR influences tissue-specific expression in 
humans, we examined gene level expression of protein-coding 
and non-protein-coding genes across various human tissues. We 
randomly selected and downloaded bulk RNA-seq data of 3221 
samples representing 34 tissues from the GTEx database, with ∼ 
100 samples per tissue (Table S1, available online at http://bib. 
oxfordjournals.org/, Methods). Sequencing reads were aligned to
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Figure 2. Reduction of expression dysregulation magnitude in mature RNAs in disease conditions. (a) Illustrative example of reduced differential 
expression magnitude, in Mycobacterium smegmatis infection samples. Each dot represents one gene; the zero delta fold change reference line and the 
regression line are shown with dashed lines. (b) Distribution of mean delta fold changes across various disease conditions, with the zero delta fold 
change and mean value lines represented by dashed lines. (c) Comparative analysis of the distribution of mean delta fold changes across GTEx tissues, 
SRA tissues, non-human tissues, and disease conditions. Each data point is a comparison between two groups (e.g. two tissues or healthy group versus 
disease group). 

the human reference genome, and reads mapped to genic regions 
were quantified. We separated the mapped reads into intronic 
reads and exonic reads, and used them to infer pre-RNA and 
mature RNA abundance, which has been previously shown to 
be a robust approach [ 52]. This has taken the advantage of the 
finding that intronic reads in RNA-seq are not technical artifacts 
but reflect transcriptional activity and pre-RNA expression [52, 
53]. As most of the intronic reads are from pre-RNAs, while exonic 
reads can be from both pre-RNAs and mature RNAs, we assigned 
exonic reads to both pre-RNAs and mature RNAs according to the 
calculated pre-RNA abundance (Methods). 

We then identified genes that were differentially expressed 
between tissues, analyzing pre-RNA and mature RNA levels sep-
arately. We tested for differential expression between all possi-
ble tissue combinations; 561 pairwise comparisons in total. We 
measured the magnitudes of expression change for pre-RNA and 
mature RNA levels separately. To quantify the effect of PTR on 
these magnitudes, we derived a metric named delta fold change. 
It is the difference in expression fold changes (using absolute 
values to account for negative fold changes) between pre-RNAs 
and mature RNAs (Methods). For a specific gene, a delta-fold 
change value greater than zero indicates that the magnitude of 

expression change in mature RNAs is greater than in pre-RNAs, 
and vice versa. 

Interestingly, we found that the mean delta fold changes were 
greater than zero in most tissue comparisons, indicating that 
the magnitude of expression change in mature RNAs is generally 
larger than in pre-RNAs (Fig. 1a, b, P < 1e-16, one-sided one-
sample Wilcoxon signed-rank test). This observation suggests that 
PTR tends to amplify the expression differences between tissues. 

To ensure that this amplification was not an artifact arising 
from a peculiar characteristic of the GTEx dataset analyzed, we 
expanded our analysis to human tissue data from other studies. 
We analyzed another human tissue dataset (here referred to as 
the SRA tissue dataset) of 172 samples from two different studies, 
one with 18 tissues and another with five tissues (Table S2 avail-
able online at http://bib.oxfordjournals.org/). In this dataset, we 
observed a significant post-transcriptional differential expression 
amplification pattern similar to that observed in the GTEx dataset 
(Fig. 1c, P = 1.05e-14, one-sided one-sample Wilcoxon signed-rank 
test). Moreover, to determine whether the pattern is unique to 
human species, or is a general property existing in other mammal 
species, we analyzed RNA-seq data from five different tissues 
of three other mammal species, including Macaca mulatta, Mus
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musculus and Pan troglodytes (Table S3 available online at http:// 
bib.oxfordjournals.org/), and observed a similar significant differ-
ential expression amplification pattern (Fig. 1c, P = 1.34e-5, one-
sided one-sample Wilcoxon signed-rank test). We also investi-
gated whether our observations could arise from analytical biases, 
and the results are detailed in the following section. 

To further explore the possible correlation between differential 
expression amplification and the tissue of origin, we compared 
the mean delta fold changes between different tissues and organs 
in GTEx dataset. We observed a non-uniform distribution, with 
some specific tissues, such as the brain, muscle and heart tis-
sues, typically showing larger delta fold changes (Fig. 1d, e). This 
suggests that PTR amplifies the expression change in these tis-
sues to a greater extent. To determine if this observation can 
be replicated in independent datasets, we compared the results 
from GTEx tissues with those from the human SRA tissue dataset. 
We found that mean delta fold changes between tissues in both 
datasets were highly correlated (Fig. 1f, R = 0.82, P = 0.01, Pearson 
correlation). 

In our earlier tissue comparisons, we noted that some RNA-
seq data was generated from different regions from within the 
same organ, including brain, skin, heart, esophagus, colon, artery 
and adipose tissue. Tissues from within the same organ are gen-
erally expected to have higher biological similarity compared to 
tissues from different organs. To explore a possible association 
between expression change and biological similarity, we divided 
these comparisons into inter-organ and intra-organ groups, and 
analyzed whether they had similar delta fold change distribu-
tions. Our analysis revealed that inter-organ delta fold changes 
were significantly greater than intra-organ delta fold changes in 
GTEx tissues, SRA tissues and non-human tissue datasets (Fig. 1g, 
P = 5.12e-11, P = 0.013 and P = 6.99e-08, respectively, one-sided 
Wilcox rank sum test). This finding suggests a possible association 
between biological differences and the magnitude of expression 
change by PTR. 

Influence of PTR on disease gene expression 
dysregulation 
After observing amplification of expression change by PTR in 
normal tissues, we sought to ascertain if PTR had the same effect 
in disease states. To answer this question, we investigated gene 
expression across a wide range of disease (or abnormal) condi-
tions. To systematically investigate the behavior of PTR in these 
conditions and broaden the biological relevance of the study, we 
collected the bulk tissue RNA-seq data from 1118 tissue and cell 
culture samples from 28 previous disease studies (Table S4, avail-
able online at http://bib.oxfordjournals.org/). The samples were 
from 48 different non-homeostatic disease conditions, including 
various types of cancers, genetic diseases, infections, immune 
diseases, or from gene manipulation studies. We found that, in 
contrast to amplification of expression change observed in nor-
mal tissues, most disease conditions showed a reduction in the 
magnitude of expression change (Fig. 2, P = 3.05e-9, one-sample t-
test). This suggests that PTR tends to reduce disease associated 
expression dysregulation in pre-RNAs. 

Investigating analytical robustness 
To substantiate the observation that PTR amplifies tissue-specific 
expression but reduces disease expression change, and to rule 
out the likelihood of artifacts arising from defects or bias in the 
analysis methods, we performed comprehensive experiments to 
determine the impact of different factors on the analysis results. 

First, to demonstrate that our findings were robust to the 
selection of differential expression analysis tools or algorithms, 
we used the tool edgeR, in addition to DESeq2, which was used to 
generate our previous results, for analysis. EdgeR uses a different 
algorithm and estimates fold change without shrinkage. This 
analysis yielded a result consistent with our original findings 
(Fig. Sa). 

Second, considering that the fold change calculation for 
lowly expressed genes may be inaccurate and may lead to 
a disproportionately large magnitude change that bias the 
analyses, we applied different gene filtering criteria (log2CPM > 0 
and log2CPM > 5) to include or exclude lowly expressed genes. 
Both datasets produced similar results (Fig. Sb), suggesting that 
lowly expressed genes did not significantly impact the overall 
observation. 

Third, since our previous results were based on analysis using 
subsampled exonic reads for mature RNA abundance calculation, 
to investigate potential bias in the subsampling process, we also 
re-performed the analysis using all exonic reads, and found that 
it led to similar results (Fig. S3 available online at http://bib. 
oxfordjournals.org/, Fig. Sc). 

Fourth, considering we used all reads mapped to any region of 
introns or exons for RNA abundance calculations, reads mapped 
to internal regions of exons could arise from pre-RNAs or mature 
RNAs and this may cause errors in read assignment. To mitigate 
the possible bias arising from these errors, we re-performed the 
analysis using only boundary reads. Those reads can be more 
unambiguously assigned to either pre-RNAs or mature RNAs. In 
this analysis, we used only intron-exon boundary reads to repre-
sent pre-RNAs, and only exon-exon boundary reads to represent 
mature RNAs. The analysis yielded results similar to our original 
results (Fig. S3, available online at http://bib.oxfordjournals.org/, 
Fig. Sd). We also compared the mean delta fold change values 
derived from subsampled data with those calculated from exon-
intron and exon-exon boundary reads, and found they have strong 
correlation (Pearson r = 0.94, Fig. Sg). 

Fifth, we investigated the possible impact of three prime bias 
in the sequencing data on the analysis results. This form of bias 
is characterized by greater sequencing coverage at the 3’ end 
of genes compared to 5′ end, caused by the poly-A selection 
method used for mRNA fragment enrichment in some studies. 
We performed the investigation by using only reads that mapped 
to either the 5′ end or 3′ end of the genes to estimate RNA 
abundance. This analysis produced similar results (Fig. S3, avail-
able online at http://bib.oxfordjournals.org/, Fig. Sd), indicating 
minimum impact of three prime bias on the results. 

Sixth, considering the possible confounding factor of relatively 
larger sample sizes in each group for tissue comparisons, com-
pared to disease condition comparisons, we repeated the GTEx 
tissue analysis by randomly selecting only five samples for each 
tissue. This analysis yielded a result consistent with our original 
observations, suggesting that sample size did not bias the general 
observation (Fig. Se). 

Seventh, to address the potential bias introduced by mean 
values, which can be more easily influenced by outliers, we cal-
culated the median delta fold changes for the differential expres-
sion magnitudes in each comparison. We found that median 
fold changes recapitulated the same phenomenon as mean fold 
changes (Fig. Sf). 

Furthermore, to assess the potential impact of RNA integrity 
on the observed result, we checked the correlation between the 
mean delta fold changes and mean Transcript Integrity Number, a 
score measuring RNA integrity calculated from sequencing reads.
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We found that the contribution of Transcript Integrity Number to 
mean delta fold changes was minor compared to the differences 
between tissues or diseases (coefficient of −0.0070 versus 0.38 
in linear regression model) (Fig. S4 available online at http://bib. 
oxfordjournals.org/). 

Lastly, considering that the length of exons and introns may 
influence the physical accessibility of the PTR regulatory machin-
ery, it may influence the effectiveness of PTR. To explore this 
possible association, we examined the correlation between mean 
delta fold change and mean/total length of exons/introns of 
genes, as well as total length of the gene, and found that there 
was only a minor correlation (Fig. S5, available online at http:// 
bib.oxfordjournals.org/). 

In summary, our findings remained consistent across various 
checks against potential analytical biases, underscoring that our 
conclusions were robust with respect to the applied analytical 
approach. 

Geneset and pathway analysis 
Our observation that PTR amplifies expression differences 
between normal tissues but reduces expression change in disease 
states suggests an interesting dynamic. In homeostatic states, PTR 
may boost tissue-specific functions, while in non-homeostatic 
states (such as disease), it may help restore a homeostatic state. 
To further investigate which genes contribute to the observed 
differences in PTR consequences, we split the gene set into 2233 
housekeeping genes, with the remaining 31,625 genes designated 
non-housekeeping genes (Methods). As housekeeping genes 
maintain the basal functions of the cells, their expression might 
be less influenced by PTR. 

We first examined data from GTEx tissues and found that 
housekeeping genes had smaller delta fold changes compared 
to non-housekeeping genes (Fig. 3a). However, we also noticed 
that housekeeping and non-housekeeping genes had different 
abundance and fold change distributions (Fig. 3b, c), which may 
have interfered with the delta fold change results. Therefore, we 
subsampled non-housekeeping gene sequencing reads, such that 
they were of equivalent abundance and fold change distribution 
to non-housekeeping genes (Fig. 3e, f). After subsampling, house-
keeping genes only had slightly smaller delta fold changes com-
pared to non-housekeeping genes (Fig. 3d). The same analysis was 
performed on the SRA tissues, non-human tissues, and disease 
condition datasets. It was found that housekeeping genes and 
non-housekeeping genes have similar delta fold change distribu-
tions (Fig. 3g–i), suggesting PTR has similar effect on housekeeping 
and non-housekeeping genes. 

Finally, we examined the enriched pathways and gene 
ontology for gene sets categorized by differential expression 
and delta fold change directions. They included categories of 
up-regulation and down-regulation, as well as categories of 
amplified or reduced expression change in normal tissues or 
disease conditions. We did not observe a clear indication that the 
enrichment was limited to specific pathways or gene ontology 
(Supplementary spreadsheet Table S5, available online at http:// 
bib.oxfordjournals.org/). We also performed enrichment analysis 
on the affected genes categorized by tissue or disease and 
observed that some of them showed enrichment in tissue-specific 
or disease-specific functions (Tables S6–S10, available online 
at http://bib.oxfordjournals.org/). For instance, in brain tissues, 
the affected genes were enriched in tissue-specific pathways 
like Glutamatergic synapse, GABAergic synapse, Dopaminergic 
synapse, and Synaptic vesicle cycle. However, this observation 
was not consistent across tissues and diseases, suggesting that 

PTR tends to maintain the homeostatic states of a wide range of 
cellular processes, and that more evidence may help to illustrate 
their implications in biological functions. To determine whether 
the genes with amplified or reduced expression change are 
consistent across different tissues and disease states, we analyzed 
the percentage of tissues or diseases in which each gene exhibited 
the expression change. We found that most of these genes 
appeared in less than 20% of tissues or diseases, indicating they 
are generally not consistent across different conditions. However, 
some genes, such as SLC7A2, JAG1, LGALS3, TPM2, VIM, and 
XBP1, consistently showed the expression change across multiple 
tissues (Fig. S6, available online at http://bib.oxfordjournals.org/, 
Tables S11–S14). 

Discussion 
In this study, we examined the expression of pre-RNA and mature 
RNA across tissues in human and other mammalian species. 
We discovered that PTR tends to amplify normal (non-disease 
state) tissue-specific expression. We also explored the impact of 
PTR in a variety of diseases and found that it tends to reduce 
expression change in diseases. The attenuation effect of PTR on 
expression change in diseases aligns with the stabilization effect 
observed in protein translation regulation in previous studies [16– 
18]. Recent work by Sánchez-Escabias et al. [54] demonstrated that 
co-transcriptional splicing efficiency is a gene-specific feature 
influencing mature mRNA levels, and that it can be regulated 
by the TGFβ signaling pathway. While their study focuses on 
splicing kinetics within individual genes, our research examines 
the broader impact of PTR across different tissues and disease 
states. Together, these findings highlight the significant role of 
RNA processing in gene expression regulation at both the gene-
specific and systemic levels. 

Our thorough examination of analytical factors confirmed the 
robustness of these results against different analysis parameters 
and algorithms. Moreover, this phenomenon was consistently 
observed across different datasets and species, suggesting that 
the findings are unlikely to have arisen from analysis method-
ology bias, differences in RNA integrity or possible batch effect 
in the datasets. Opposing effects were observed in normal tis-
sues compared to diseases. This suggests the observations were 
unlikely to have resulted from differences in sequencing read 
mappability between introns and exons, as those differences 
should affect both diseased and normal tissue analyses equally. 
Taken together, our study suggests that PTR tends to support 
the homeostatic expression of mature RNAs in normal tissues 
and in disease states. In our gene set enrichment analysis, we 
observed that genes affected by PTR showed some enrichment 
in tissue-specific or disease-specific pathways or gene ontologies; 
however, this pattern was not consistent across different tissues 
or diseases. Additional data from future studies may help to 
elucidate their role in biological functions. 

The magnitude of expression differences of pre-RNA in disease 
states is larger compared to mature RNA. It might therefore be 
possible to identify new disease-associated dysregulated genes 
by examining intronic sequences in RNA-seq datasets. This find-
ing also suggests that post-transcriptional regulators, such as 
non-coding RNAs and polyadenylation, may play roles different 
to those previously assumed in disease studies. It is possible 
that the increased expression of post-transcriptional regulators 
in disease states reduces abnormal gene expression, offering 
a protective rather than a pathogenic effect, contrary to what 
traditional association analysis suggests. This might account for
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Figure 3. Distribution of delta fold changes in housekeeping and non-housekeeping genes. (a–c) Distribution of delta fold changes, log2CPM and absolute 
fold changes in housekeeping genes and all non-housekeeping genes in GTEx tissues. (d–f) Distribution of delta fold changes, log2CPM and absolute fold 
changes in housekeeping genes and subsampled non-housekeeping genes in GTEx tissues. (g–i) Distribution of delta fold changes in housekeeping genes 
and subsampled non-housekeeping genes in SRA tissues, non-human tissues and disease conditions. Dashed vertical lines represent mean values for 
each distribution. 

the challenges in targeting these genes for therapeutic purposes 
and their limited effectiveness as disease diagnostic or prognostic 
biomarkers [ 55–58]. Our study also suggests the value of analyzing 
both pre-RNA and mature RNA levels. The fact that PTR seems 
to mitigate expression dysregulation in disease states implies 
that disease-associated gene expression dysregulation might be 
primarily caused by transcriptional regulation. Thus, targeting 
transcriptional regulation processes might be an effective strat-
egy for restoring gene expression balance. 

The opposing effects of PTR observed in diseases compared to 
normal tissues suggest that mature RNA abundance may be more 
flexible and can be more easily shaped by regulation. This effect 
could be due to the greater separation of PTR from cellular func-
tions and thus being under less evolutionary pressure, compared 
to protein translation regulation. The differences in magnitudes 

of expression change across tissues may be associated with the 
intensity and uniqueness of PTR amongst tissues. This is consis-
tent with the observation that the brain shows seemingly outlying 
post-transcriptional characteristics compared to other tissues, 
as indicated by its highly complex lncRNA, miRNA expression 
profiles and splicing patterns [59–61]. 

Although in the study a variety of methods have been employed 
to minimize the impact of possible confounding factors, some 
may still have influenced the results. For instance, transcription 
and processing of pre-RNAs is a continuous process, so some 
RNAs are in intermediate states between pre-RNAs and mature 
RNAs. Moreover, intron retention events may also confound the 
analysis. Nevertheless, as the fraction of intermediate and intron 
retention-impacted RNAs is likely to be relatively small [62, 63], 
and both groups in each comparison are evenly affected by such
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confounding factors, the general observations and conclusions of 
the study are unlikely to have been significantly affected by these 
issues. Moreover, intron retention could theoretically reduce the 
magnitude of the delta fold change by decreasing the observed 
expression difference between pre-RNA and mature RNA levels, 
potentially biasing the delta fold change towards zero. How-
ever, intron retention should not alter the direction of the delta 
fold change. Therefore, our key conclusions—that PTR amplifies 
expression changes (delta fold change >0) in normal tissues and 
reduces expression changes (delta fold change <0) in disease 
contexts, should remain valid despite the potential influence of 
intron retention. Additionally, although we characterized dozens 
of disease conditions, in the future, examination of more disease 
samples might provide deeper insight into PTR in different disease 
states, perhaps revealing that the magnitude of expression change 
attenuation varies in different types of disease states and in 
different disease-affected tissues. 

Furthermore, another limitation of our study is that it focuses 
on humans and three other mammalian species. Future studies 
can explore whether the observed patterns of PTR influence are 
applicable to non-mammalian species or more diverse mam-
malian lineages. The impact of PTR may correlate with the evo-
lutionary divergence time of species. Expanding the analysis to 
include species across a broader evolutionary spectrum could 
provide more insights into the relationship between PTR and 
evolution. Additionally, our study is limited by analyzing data 
at the gene level instead of the transcript level. Quantifying 
pre-RNA abundance at the transcript level is challenging with 
standard short-read RNA-seq data because few reads map to 
intronic regions, and assigning these reads to specific transcripts 
is difficult due to shared introns among transcripts. Future studies 
using long-read sequencing or higher coverage datasets could pro-
vide insights into transcript-level PTR and tissue-specific mRNA 
isoforms. 

Key Points 
• Demonstrates how post-transcriptional regulation (PTR) 

maintains mature RNA homeostasis. 
• PTR amplifies normal tissue-specific gene expression 

but attenuates expression change in diseases. 
• Intronic reads in RNA-seq may reveal novel disease-

associated genes missed by mature RNA analysis. 

Supplementary Data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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