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Abstract: In recent years, the use of Artificial Intelligence for emotion recognition has attracted much
attention. The industrial applicability of emotion recognition is quite comprehensive and has good
development potential. This research uses voice emotion recognition technology to apply it to Chinese
speech emotion recognition. The main purpose of this research is to transform gradually popularized
smart home voice assistants or AI system service robots from a touch-sensitive interface to a voice
operation. This research proposed a specifically designed Deep Neural Network (DNN) model to
develop a Chinese speech emotion recognition system. In this research, 29 acoustic characteristics in
acoustic theory are used as the training attributes of the proposed model. This research also proposes
a variety of audio adjustment methods to amplify datasets and enhance training accuracy, including
waveform adjustment, pitch adjustment, and pre-emphasize. This study achieved an average emotion
recognition accuracy of 88.9% in the CASIA Chinese sentiment corpus. The results show that the
deep learning model and audio adjustment method proposed in this study can effectively identify
the emotions of Chinese short sentences and can be applied to Chinese voice assistants or integrated
with other dialogue applications.

Keywords: emotion recognition; deep neural network; acoustic features

1. Introduction

Language is the main way for people to communicate. In addition to the message
meaning contained in language, it also contains the transmission of emotions. Through
emotions, tone, and other messages; even if the other party does not understand the mean-
ing of the message in the language, one can still feel the speaker’s emotions in words. In
recent years, the use of artificial intelligence and deep learning for emotion recognition
has attracted much attention. The industrial applicability of emotion recognition is quite
comprehensive and has good development potential. In various applications in daily life,
human–computer interaction has gradually been replaced by voice operations and dia-
logues from touch-sensitive interfaces. Speech recognition is widely used in transportation,
catering, customer service systems, personal health care, and leisure entertainment [1–5].
In recent years, Automatic Speech Recognition (ASR) technology has matured and has been
able to accurately recognize speech and convert it into text [6–8]. However, in addition to
the meaning of language itself that can convey information between dialogues, the emo-
tions accompanying the dialogue are also important information. Since emotions are full
of information, Automatic Emotional Speech Recognition (AESR) technology will be the
focus of the next generation of speech technology. In recent years, the use of deep-learning-
related technologies to recognize speech emotions has increased rapidly. Li et al. [9] used
a hybrid deep neural network combined with a Hidden Markov Chain to construct a
speech recognition model, achieving significant effects in the EMO-DB dataset. In the
research of Mao et al. [10] and Zhang et al. [11], it was verified that a convolutional neural
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network can effectively learn the emotional features in speech. In Umamaheswari, J., and
Akila, A. [12], a Pattern Recognition Neural Network (PRNN) combined with a KNN
algorithm was first tried, and the results were better than the traditional HMM and GMM
algorithms. Mustaqeem and Soonil Kwon [13] proposed a deep stride strategy to construct
spectrogram feature maps and achieved good identification performance in the well-known
IEMOCAP and RAVDESS datasets. In 2021, Li et al. [14] proposed a bi-directional LSTM
model combined with a self-attention mechanism to recognize speech emotions, which
achieved remarkable performance in well-known and corpora IEMOCAP and EMO-DB.
The proposed model achieved the highest recognition accuracy in the recent period in the
recognition of ‘Happiness’ and ‘Anger’ emotions. Until now, most of AESR’s research has
mainly focused on English or European languages [15,16], and research on the recognition
of Chinese speech emotions by deep neural networks is relatively rare. This research
proposes a Chinese speech emotion recognition model based on deep networks and com-
bines audio and elevation adjustments to explore the effectiveness of audio features in
deep networks.

The remainder of this paper is as follows: Section 2 discusses system-related technolo-
gies and studies; Section 3 proposes research frameworks and methods; Section 4 is the
experimental design and results analysis; and the final section provides the conclusions.

2. Related Techniques and Literature Review
2.1. Acoustic Features

The extraction and selection of acoustic features is an important part of speech recog-
nition. In sound analysis, short-term analysis is usually the main method. The sound is cut
into several frames and then analyzed according to the signal in each frame. Three main
sound characteristics can be observed, as follows:

Volume: in terms of the amplitude of the sound, the greater the amplitude, the greater
the volume of the sound waveform.

Pitch: this expresses the sound level by frequency; the higher the basic frequency of
the sound, the higher the pitch.

Timbre: Timbre represents the content of the sound, which can be represented by
the change in each waveform in a basic cycle. Different timbres represent different audio
content.

Recently, there has been extensive research on specific features related to emotions in
speech and audio. In Schuller et al. [17], short-term analysis was used to define 6373 feature
sets. In addition, Eyben et al. [18] proposed a set of minimalistic features in the Geneva
Minimalistic Acoustic Parameter Set (GeMAPS), consisting of 62 features. The following
describes the sound characteristics used in this study.

2.1.1. Spectral Centroid

The spectral centroid [19] is an important parameter describing the characteristics of
timbre. It is used to describe the frequency centroid of a sound signal in a spectrogram
and can express the frequency distribution trend of each frame. The spectral centroid of
each frame is drawn into a waveform graph. Figure 1 is a representation of the spectral
energy distribution. Through the distribution of the overall average energy within a
certain frequency range, it can be explained that the average value of the signal component
frequency is biased towards high or low frequencies. In the physical sense, the spectral
centroid can describe the brightness of a sound. When the sound is dark and deep, the
frequency is more low frequency, and the spectral centroid is relatively low; when the
sound is bright and brisk, usually concentrating on high frequencies, the spectral centroid
is relatively high. The formula is shown in Equation (1), dividing the frequency spectrum
into N frequency bands, where x(n) is the nth energy intensity (Magnitude) corresponding
to the frequency f (n).

SC =
∑N

n=1 f (n)x(n)

∑N
n=1 x(n)

(1)
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Figure 1. Spectral Centroid Waveform.

2.1.2. Spectral Flatness

Spectral flatness [20] indicates the average degree of energy distribution among audio
frequency bands. Divide the spectrum into N frequency bands, where x(n) represents the
total energy intensity of the nth frequency band, and then calculate the geometric average
and arithmetic average of x(n), respectively, and express the rate of change as the ratio,
as in Equation (2). Since the arithmetic average is greater than the geometric average, the
calculation result is between 0~1. When the energy distribution of each frequency band is
average, the ratio will approach 1; otherwise, it will approach 0.

SF =

N
√

∏N
n=1 x(n)

∑N
n=1 x(n)

N

(2)

2.1.3. Spectral Contrast

The concept of spectral contrast is that each frame in the spectrogram is divided into
sub-bands. Energy contrast is obtained by calculating the average energy in the spectral
peaks and spectral valleys in the sub-bands (i.e., Peak Energy and Valley Energy) [21].
High contrast represents clear sound signals and narrow-band signals, while low contrast
represents noise.

2.1.4. Spectral Roll-Off

Spectral roll-off refers to the center frequency of the amplitude distribution below a
specified percentage [22]. This feature is usually used to distinguish between voiced speech
and clear speech. The energy of clear speech is mostly concentrated in the high-frequency
range.

2.1.5. Chroma Feature

Chroma features describe, as a collective term, Chroma Vectors and Chromagrams.
The chromaticity vector contains 12 elements, which are C, C#, D, D#, E, F, F#, G, G#, A, A#,
and B. These elements represent the energy of the 12 sound levels in a period (such as one
frame). The energy of the same sound level for different octaves is accumulated, and the
chromaticity map is the chromaticity vector sequence. The twelve equal temperament is a
method of using equations for musical rhythm [23]. The chroma vector is composed of a
vector of 12 element features, used to represent the energy in each scale in the signal. The
visualized Chromagram is shown below Figure 2:
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Figure 2. Chromagram obtained from a voice recording.

2.1.6. Zero-Crossing Rate (ZCR)

ZCR is the number of times the audio passes through the zero point in each frame [24].
The equation is as (3), where s is a signal with length T, the function π{A} is 1 while
parameter A is true; otherwise, it is 0. This feature can show frequency characteristics and
has been widely used in the field of speech recognition and music information retrieval.
Usually, the ZCR of noise and air noise is larger than that of normal sound.

ZCR =
1

T − 1

T−1

∑
t=1

π{stst−1 < 0} (3)

2.1.7. Root Mean Square Energy (RMSE)

RMSE calculates the root mean square value of each frame. The equation is as (4), N is
the total number of frames and y(n) is the audio information of the n-th frame.

RMSE =

√√√√ 1
N

N

∑
n=1
|y(n)|2 (4)

2.1.8. Mel Frequency Cepstral Coefficient (MFCC)

In speech recognition, Mel Frequency Cepstral Coefficient (MFCC) is one of the most
commonly used voice features. Fletcher and Munson [25] pointed out that the human ear
has different sensitivity to sound waves of different frequencies and different loudness.
When two sound waves with different loudness and the same frequency act on the human
ear, the high-loudness audio will affect the human ear’s perception of the lower loudness
audio, making the low-loudness signal difficult to notice. This phenomenon is called the
masking effect. The sound with lower frequency has a greater distance of wave transmission
than the sound with higher frequency, so the bass can easily cover the treble. The process
of MFCC feature extraction in this study is as follows:

(1) Pre-emphasis: The signal is pre-emphasized, and the voice signal is passed through a
high-pass filter, as in Equation (5), where y(n) is the output signal, x(t) is the original
signal, and the value of α is usually between 0.9 and 1.0; in this study, the default was
0.97. Pre-emphasis will boost the high-frequency part and flatten the spectrum of the
audio, maintaining it in the entire frequency band from low to high frequencies, using
the same signal-to-noise ratio to obtain the spectrum.

y(n) = x(t)− αx(t− 1) (5)
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(2) Frame blocking and Hamming: Frame blocking collects N sampling points into a
frame and the value of N is set to 512. Subsequently, each frame is multiplied by a
Hamming window to increase the continuity at the left and right ends of the frame.
Assuming that the framed signal is S(n), n = 0, 1 . . . , N − 1, N is the frame size and
the windowed signal is as in Equation (6), and the Hamming window is calculated
as in Equation (7), where a is set as 0.46 by default. After using the Hamming
window, each frame is fast Fourier transformed to obtain the energy distribution in
the spectrum, and the logarithmic energy and signal characteristics are obtained by
20 triangular bandpass filters.

S′(n) = S(n)−W(n) (6)

W(n, a) = (1− a)− a× cos
[

2πn
N − 1

]
, 0 ≤ n ≤ N − 1 (7)

2.2. Speech Representation and Emotion Recognition

After the recent rapid development of artificial intelligence technologies, such as
machine learning and deep learning, affective computing began to appear in various
applications, such as robot dialogue and medical care. Affective computing infers the
user’s emotions and responds by sensing and understanding the differences in human
faces, gestures, and speech in different states. In this field, emotion recognition with pure
speech is the most challenging and the most widely used technology, and the development
of this field is highly dependent on the construction of emotional speech datasets. The
construction of the emotional speech corpus can be roughly divided into two categories.

The first type is guided recording, which is mostly recorded in a laboratory or a
recording studio. It is recorded through high-quality microphones and guided by linguistic
experts. These types of data can generate an emotional corpus with high emotional expres-
sion and diversity. Representative sentiment corpora include: Emo-DB [26], recorded by the
Technical University of Berlin, Germany, with 10 actors (5 males and 5 females), performing
10 German voices, containing a total of 800 sentences. IEMOCAP [27], recorded by the Uni-
versity of Southern California, including 10 actors performing a session, a total of 5 sessions,
and each utterance is assessed by at least three experts. CASIA [28], a Chinese sentiment
corpus, recorded by the Institute of Automation of the Chinese Academy of Sciences, where
the voice data were recorded by two men and two women with 500 different texts.

Another corpus type is non-lab recording. The difference between this type of corpus
and guided recording is that it is made up of spontaneous emotional expression sentences
of natural scenes, for example, living environment, theatrical performance paragraphs,
etc. This type of corpus is a relatively new corpus, such as: NNIME [29], the NTHU-
NTUA Chinese Interactive Emotion Corpus, is a performing-arts-type corpus. It combines
speech, drama, body language, and scene design. CHEAVD [30], CASIA Chinese Natural
Emotional Audio–Visual Database. The corpus extracts 140 min emotional clips from
movies, TV dramas, and talk shows. The actors include a total of 238 people, from children
to the elderly, and they are annotated by 4 native Chinese speakers.

This study adopts the public version of the CASIA Chinese sentiment corpus. The
emotional sounds are divided into six categories: ‘Happiness’, ‘Sadness’, ‘Angry’, ‘Fright’,
‘Calm’, and ‘Fear’. Compared to the underlying emotion–cognitive dimensions, such as
James Russell Arousal-Valence four-quadrant model [31], the six emotions belonging to
quadrants I, III, II, I, IV, and II, respectively.

In recent years, deep learning has made great progress in speech representation.
Baevski and Schneider et al. [32,33] proposed a wav2vec model, which is an unsupervised
speech recognition system. The framework uses only 10 min of transcribed speech data
to support automatic speech recognition models. In 2021, Hsu et al. proposed a speech
pre-training model [34] that surpasses wav2vec 2.0. The authors in [34] pointed out that
there are several problems in the unsupervised learning of speech, including that there
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are many pronunciation units in speech, the lengths of pronunciation units are different,
and the units of speech have no fixed segmentation, etc. For these problems, the idea
of [34] is to label the predicted values in a clustering manner, and then mask the labels
as unsupervised learning targets. Meanwhile, researchers at Microsoft Research Asia
proposed a method called UniSpeech [35]. UniSpeech is able to leverage both supervised
and unsupervised data to learn a unified contextual representation. The model includes
a feature extraction network based on a convolutional neural network, and a context
network of a Transformer model and a feature quantization module for learning discrete
vectors. In a specific setting, UniSpeech is significantly better than supervised transfer
learning. Further, in 2021, researchers from Microsoft Research Asia and Microsoft Azure
Speech Group proposed a general speech pre-training model, WavLM [36], which achieved
state-of-the-art performance on multiple speech datasets.

Although voice representation approaches can effectively provide text or vector rep-
resentation at the coding level, they cannot judge the user’s emotions at the application
level. Speech emotion recognition requires a speech emotion database for training. The
public emotion corpora commonly used in recent studies are the German Berlin Database of
Speech Emotion [26], FAU Aibo [37], and the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) [38]. A typical machine learning speech emotion recognition
system includes speech input, feature extraction, classification models, and emotional
output recognition. Commonly used classification models include SVM [39], HMM [40],
and Gaussian Mixture Model (GMM) [41].

Lin and Wei [28] used SVM and HMM classification methods to identify different
categories of emotions, such as angry, happy, sad, surprised, and calm. In total, 39 candidate
features were extracted and Sequential Forward Selection (SFS) was used. The method
finds the best feature subset and the final average recognition accuracy of the HMM
classifier is 99.5%; the SVM classifier is 88.9%. Lim et al. [42] first performed Short-Time
Fourier Transform (STFT) on the voice data into a spectrogram, putting it in series with
a Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) model
for speech emotion recognition, with emotions including: ‘Angry’, ‘Happy’, ‘Sad’, ‘Calm’,
‘Fearful’, ‘Disgust’, and ‘Bored’. Its model is to combine four-layer CNN with a long short-
term memory network (long short-term memory, LSTM), and the final emotion recognition
accuracy rate is 88%.

3. System Architecture and Research Method
3.1. System Architecture

The main concept of this research is to extract the acoustic features of Chinese speech
for sentiment analysis and classification. Using the method of sound rotation and sound
frequency modulation, amplify the training samples and extract 29 acoustic features from
the sound signal, and input the DNN model proposed in this research for training. The
system architecture is shown in Figure 3. Due to the shortcomings of the Chinese language
and corpus, this study designed two algorithms for augmenting data. This research first
divides the collected voice emotion dataset into training data and test data and increases
the amount of voice emotion data through two voice data extension methods. As such,
29 voice features are extracted, respectively: “Chroma Feature”, “Spectral Centroid”, “Spectral
Bandwidth”, “Spectral Flatness”, “Spectral Roll-off ”, “Spectral Contrast”, “Polynomial Features”,
“RMSE”, “ZCR”, and “MFCC 1-20”. Finally, the classification result is obtained through the
proposed DNN model.
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3.2. The Proposed DNN Model

The following figure is the DNN model proposed in this research. This DNN model
uses ReLU function and Dropout in the hidden layer, and the output layer uses the Softmax
function. As shown in Figure 4, 29 dimensional features are used as input, and the model
contains 5 hidden layers with 512, 512, 256, 128, 64, and 8 neurons, respectively. In this
model, a decreasing network architecture can effectively generalize acoustic features to
a single emotional label. The final Softmax layer can produce the probability output of a
single sentiment label. In the prediction phase, this study will use the category with the
highest probability value as the prediction output. The emotion training dataset in this
study uses CASIA Chinese Emotion Corpus, which is recorded by 4 professional speakers
(2 males and 2 females) in Chinese accents with various emotions. The CASIA sentiment
corpus has a total of 9600 speeches, including 6 emotions and 300 sentences from the same
text and 100 sentences from different texts.
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3.3. Data Augmentation

Because of the scarcity of Chinese speech emotion data, this study proposes a voice
augmentation approach to obtain more sufficient data. There are four main data expansion
methods in the audio field, namely: sound rotating, pitch adjustment (tuning), clipping,
and noising. The conversions will not change the label of the original data but increase the
variability of the data in the original category.

3.3.1. Waveform Adjustment

In this study, different degrees of sound rotation and two pitch adjustments were
tested. In order to avoid the difference between the new data and the original data being
too small, the sound rotation was taken as a unit of 10% and 10~90% was performed,
respectively. Figure 5a is the waveform of the original data and Figure 5b is the waveform
after 60% rotation. In sound frequency modulation adjustment, this research uses 5% as a
unit to adjust the frequency amplitude. To maintain the natural intelligibility of the adjusted
data, after the actual listening test, the maximum value can be adjusted to 30%. Therefore,
frequency modulation processing of plus or minus 30% is carried out, respectively. Figure 6
is a waveform diagram of the comparison of the 10% frequency reduction in the original
data. In Figure 6, the orange sound wave represents the original data and the blue is the
data processed by frequency modulation.
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3.3.2. Pitch Adjustment

In this study, the pitch is adjusted in a semitone unit. To maintain the natural in-
telligibility of the adjusted data, after the actual listening test, the maximum value can
be adjusted to 6 semitones. Therefore, pitch processing of plus and minus 6 semitones
is performed, respectively. Figure 7 shows the 4 semitones for the voice data waveform
comparison diagram with original data. The orange sound wave is the original data and
the blue is the pitch-adjusted data. The overall time and frequency remain unchanged and
the purpose of changing the pitch can also be achieved.
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3.3.3. Pre-Emphasize

This study uses Mel Scale to pre-emphasize the original speech signal. The Mel Scale
is the non-linear characteristic of the human ear frequency, which can be approximated
by a mathematical conversion of Hz. This study uses a set of twenty triangular bandpass
filters to obtain log energy and obtains representative coefficients of different frequency
bands through cosine conversion. Figure 8 is a comparison between the pre-emphasis and
the original data. It can be found that the sound characteristics are more obvious after
processing.
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4. Experimental Results and Discussion
4.1. Experimental Environment

The emotional sounds are divided into six categories: ‘Happiness’, ‘Sadness’, ‘Angry’,
‘Fright’, ‘Calm’, and ‘Fear’. The experimental voice was recorded in a pure environment
without background noise. The signal-to-noise ratio is about 35 dB. The voice files are stored
in WAV format with a sampling rate of 16,000 and a sampling resolution of 16 bit. This
study adopts the public version of the CASIA Chinese sentiment corpus. Each sentiment is
200 samples containing 50 sentences. The OS of the experimental environment is Windows
10; DNN is built using TensorFlow, with NVIDIA GeForce GTX 1050 Ti GPU, and memory
of 4 Gbytes. DNN parameter settings: 300 epochs, 100 batch size, 25% of the verification
data, and 20% testing data from the original data.

4.2. Experimental Results of the Original Method

In this experiment, 29 sound features were extracted from the training data and input
into the DNN for training without any sound data extension. The 29 acoustic features
include spectral centroid, spectral bandwidth, equivalent sound level, spectral roll-off,
ZCR summarized by GeMAPS [18], plus four common sound features: spectral flatness,
chroma feature, spectral contrast, polynomial features, and the first 20 numerical outputs
of MFCC, which were mentioned in Section 2.1. Figure 9 shows the average recognition
accuracy of the emotion recognition results. In the original method, ‘Angry’ and ‘Happy’
can be distinguished more clearly, while the recognition accuracy of ‘Calm’ and ‘Sad’ is
relatively low. These two emotions are relatively smooth and not obvious. The overall
average recognition rate is 66.2%.
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4.3. Experimental Results of the Pre-Emphasize

Subsequently, this study used the pre-emphasis method to expand the data size to 2400;
the results are shown in Figure 10. The results show that the pre-emphasis method has a
significant increase in the recognition accuracy of each emotion and the average recognition
accuracy is increased to 83.6%. Table 1 shows the test results of pre-emphasized data,
especially the recognition accuracy of ‘Calm’ and ‘Sad’, which rose to 80%. The recognition
errors caused by unobvious features were improved by the pre-emphasis procedure.

Table 1. Comparison of original method and pre-emphasized results.

Model Angry Fearful Happy Calm Sad Average

Original 76.3% 68.9% 73.3% 55.6% 57.0% 66.2%

Pre-emphasize 86.7% 78.5% 83.0% 90.4% 79.3% 83.6%
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4.4. Rotating

In this experiment, we rotated the original data according to different degrees, and the
data size after extension was 2400. Table 2 shows the testing results with different rotation
degrees. The experimental results show that due to the increase in the amount of data, the
accuracy of emotion recognition has increased significantly. The improvement in accuracy
is most obvious with an average recognition rate of 84.7% at the 40% level. The difference
between the new data generated by sound rotation and the original data will increase the
diversity of the overall training data. Among them, the recognition rates of ‘Happy’ and
‘Calm’ are obvious, rising to about 88%. The average recognition accuracy of ‘Angry’ is
1.2-times that of the original data, while ‘Sad’ maintains the original accuracy.

Table 2. Comparison of original method and rotating results.

Model Angry Fearful Happy Calm Sad Average

Original 76.3% 68.9% 73.3% 55.6% 57.0% 66.2%

10% 83.7% 74.8% 91.9% 86.7% 80.7% 83.6%

20% 83.7% 77.8% 88.9% 87.4% 83.0% 84.1%

30% 83.0% 68.9% 88.1% 87.4% 84.4% 82.4%

40% 87.4% 80.0% 91.1% 88.9% 76.3% 84.7%

50% 80.7% 73.3% 89.6% 85.9% 78.5% 81.6%

60% 83.7% 75.6% 91.1% 87.4% 80.0% 83.6%

70% 82.2% 69.6% 88.1% 85.2% 86.7% 82.4%

80% 83.0% 73.3% 89.6% 85.2% 83.7% 83.0%

90% 82.2% 72.6% 91.1% 87.4% 79.3% 82.5%

4.5. Pitch Adjustment Analysis
4.5.1. Sound Frequency Adjustment

In the sound frequency adjustment, we adjusted the frequency amplitude in units
of 5%. To maintain the natural intelligibility of the adjusted data, the maximum value
can be adjusted to 30% after the actual listening test. Table 3 is the result of training the
DNN model and then testing after adding different frequency modulation data. From the
overall observation, it can be found that the method of reducing the frequency has a more
significant improvement in the recognition accuracy compared to the method of increasing
the frequency. The reason for this result is that increasing the frequency will promote the
compression of the sound signal, resulting in distortion of the voice data. Therefore, the
higher the frequency increases, the more the recognition accuracy decreases. This method
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has the most significant effect at the −10% level. Its average recognition accuracy rate is
86.5%, which is the same as voice rotation. The recognition rates of ‘Happy’ and ‘Calm’ were
significantly improved, and the recognition accuracy of ‘Sad’ was also improved, which is
generally better than that of voice rotation.

Table 3. Comparison of original method and sound frequency adjustment.

Model Angry Fearful Happy Calm Sad Average

Original 76.3% 68.9% 73.3% 55.6% 57.0% 66.2%

−30% 84.4% 77.8% 89.6% 93.3% 78.5% 84.7%

−25% 89.6% 77.0% 91.9% 93.3% 79.3% 86.2%

−20% 83.7% 76.3% 94.1% 91.9% 82.2% 85.6%

−15% 88.1% 77.0% 92.6% 90.4% 82.2% 86.1%

−10% 85.9% 78.5% 93.3% 91.1% 83.7% 86.5%

−5% 85.2% 72.6% 94.8% 88.9% 81.5% 84.6%

5% 85.2% 71.9% 85.9% 90.4% 82.2% 83.1%

10% 85.9% 77.0% 89.6% 92.6% 80.7% 85.2%

15% 86.7% 80.7% 88.9% 87.4% 77.8% 84.3%

20% 80.7% 74.8% 90.4% 86.7% 79.3% 82.4%

25% 82.2% 76.3% 88.9% 85.2% 84.4% 83.4%

30% 77.2% 71.1% 90.0% 83.3% 83.9% 81.1%

4.5.2. Pitch Adjustment

This experiment is adjusted based on rising or falling one semitone. The results are
shown in Table 4. In terms of results, the average recognition accuracy of the sound fre-
quency modulation method has better results than the pitch adjustment method. Therefore,
the sound adjustment method will be used for the pitch adjustment. The next experiment
will use the −10% extension in the sound frequency modulation method.

Table 4. Comparison of original method and sound pitch adjustment.

Model Angry Fearful Happy Calm Sad Average

Original 76.3% 68.9% 73.3% 55.6% 57.0% 66.2%

6 79.7% 73.7% 89.4% 84.3% 84.2% 82.3%

5 77.0% 76.3% 91.1% 88.1% 72.6% 81.0%

4 77.0% 77.8% 86.7% 86.7% 75.6% 80.7%

3 82.2% 75.6% 85.2% 80.7% 79.3% 80.6%

2 83.7% 74.1% 86.7% 86.7% 78.5% 81.9%

1 83.7% 75.6% 90.4% 86.7% 80.7% 83.4%

−1 82.2% 68.9% 85.9% 85.9% 84.4% 81.5%

−2 80.0% 77.0% 82.2% 85.9% 79.3% 80.9%

−3 77.0% 72.6% 85.2% 89.6% 78.5% 80.6%

−4 75.6% 74.8% 89.6% 85.9% 78.5% 80.9%

−5 85.2% 80.0% 87.4% 87.4% 74.8% 83.0%

−6 81.5% 76.3% 88.1% 88.9% 79.3% 82.8%
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4.6. Comprehensive Adjustment

As mentioned earlier, the experiment found that the best choice of sound rotation
level is 40%, with FM-10% and pre-emphasis for different combinations. The data volume
after extension is also 2400 for the experiment. Table 5 shows the experimental results
after adjusting the data. The best model is rotating 40% with FM-10%. Compared with the
original data, the recognition rate of ‘Angry’ was greatly increased to 93.3%; the recognition
accuracy of ‘Happy’ also increased by 24.5% and it rose to 97.8%. Among them, ‘Calm’ has
the largest growth rate. The accuracy of significant recognition increased by 37.7%; ‘Sad’
increased by 20.8% compared to the original data. The average recognition rate increased
by 22.7% and the average recognition rate of the best model with 40% rotation and FM-10%
was 88.9%.

Table 5. Mixed adjustment data test results.

Model Angry Fearful Happy Calm Sad Average

Original 76.3% 68.9% 73.3% 55.6% 57.0% 66.2%

R40%&Pre 85.2% 79.3% 96.3% 91.1% 79.3% 86.2%

R40%&T—
10%&Pre 83.7% 77.8% 93.3% 93.3% 83.0% 86.2%

T—10%&Pre 90.3% 79.4% 95.3% 92.2% 77.8% 87.0%

R40%&T—10% 93.3% 82.2% 97.8% 93.3% 77.8% 88.9%

Table 6 is a confusion matrix with an average recognition rate of 40% rotation and
FM-10% model test. The ‘Happy’, ‘Angry’, and ‘Calm’ results are all excellent, and the
recognition accuracy can reach more than 90%, but ‘Fearful’ and ‘Sad’ are found to be less
recognized. The reason is that these two primitive emotions have a higher chance of being
confused, but they were originally identified as ‘Fearful’, and vice versa.

Table 6. The confusion matrix of the best sound adjustment model.

Predicted

Happy Sad Angry Calm Fearful

Happy 93.3% 0.0% 4.4% 2.2% 0.0%

Sad 0.0% 82.2% 0.0% 0.0% 17.8%

Angry 2.2% 0.0% 97.8% 0.0% 0.0%

Calm 0.0% 0.0% 0.0% 93.3% 6.7%

Actual

Fearful 0.0% 20.0% 0.0% 2.2% 77.8%

This study also compares the training time, training recognition, verification recog-
nition, and test recognition accuracy with K-nearest-neighbors and GoogLeNet [43]. The
results are shown in Tables 7–10. In this experiment, audio spectrograms are generated
by fast Fourier transform via original audios and as input to the GoogLeNet model. The
results show that GoogLeNet has the longest training time, and the proposed DNN has the
highest emotion recognition accuracy on average.
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Table 7. Comparison of accuracy between KNN, GoogLeNet, and the original method of this research.

Method Training Time Accuracy
(Training)

Accuracy
(Validation)

Accuracy
(Testing)

KNN 1.5 (sec) 81.1% - 71.2%

GoogLeNet 13.8 (min) - 65.1% 51.2%

DNN 25.4 (sec) 93.3% 72.8% 66.2%

Table 8. Comparison of accuracy between KNN, GoogLeNet, and the proposed approach with 40%
pre-emphasis.

Method Training Time Accuracy
(Training)

Accuracy
(Validation)

Accuracy
(Testing)

KNN 5.4 (sec) 82.5% - 76.6%

GoogLeNet 43.5 (min) - 75.6% 66.5%

DNN 32.7 (sec) 95.2% 88.1% 86.2%

Table 9. Comparison of accuracy between KNN, GoogLeNet, and the proposed approach with
rotation 40% and FM-10%.

Method Training Time Accuracy
(Training)

Accuracy
(Validation)

Accuracy
(Testing)

KNN 5.3 (sec) 82.2% - 75.7%

GoogLeNet 41.2 (min) - 72.4% 66.7%

DNN 64.9 (sec) 97.0% 92.7% 88.9%

Table 10. Comparison of accuracy between KNN, GoogLeNet, and the proposed approach with
rotation 40%, FM-10%, and pre-emphasis.

Method Training Time Accuracy
(Training)

Accuracy
(Validation)

Accuracy
(Testing)

KNN 9.7 (sec) 84.1% - 77.9%

GoogLeNet 56.8 (min) - 81.0% 68.7%

DNN 50.9 (sec) 94.4% 89.1% 86.2%

5. Conclusions and Future Work

In this study, two sound data extension methods were used to extend the data and
increase the variability of the data in the original type of data, thereby improving the
accuracy of identification. In the experiments, we applied the extension methods to all
samples, including training, validation, and testing data. In sound frequency modulation,
the impact of different frequency data on the recognition rate was tested through the
extension method, and it was found that the conversion to high frequency may produce
distortion in the voice data. The experiment found that the result of 10% frequency
adjustment is the best, and more voice data of different frequencies can be obtained.
In sound rotation, experiments were conducted based on the difference in the degree of
rotation, and it was found that the effect of 40% rotation was the most prominent. Therefore,
it is judged that this degree of rotation is quite different from the original data, which
promotes the variability of the training data. After the final comprehensive adjustment, the
optimal sound rotation degree and the sound frequency modulation degree are combined
into training data and 29 sound features are extracted and input into the specially designed
DNN for training in this study. The final average recognition accuracy of speech emotion is
up to 88.9%.
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In future studies, several parts can be improved to increase the emotion recognition
rate. The first is to increase the amount of Chinese speech and emotion data. The second
part is to increase the gender recognition ability. If the data can be distinguished from
gender in the pre-training stage, or the gender label can be added, it is expected to effectively
improve the recognition accuracy. In addition, future research will try to use different
types of deep network models, such as Attention Mechanism and Transformer models,
combining with acoustic features for training and performance evaluation.
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