
ORIGINAL RESEARCH
published: 01 September 2021

doi: 10.3389/fphys.2021.713118

Frontiers in Physiology | www.frontiersin.org 1 September 2021 | Volume 12 | Article 713118

Edited by:

Yuedong Yang,

Sun Yat-sen University, China

Reviewed by:

Michelangelo Paci,

Tampere University, Finland

Vanessa Diaz,

University College London,

United Kingdom

*Correspondence:

Ignacio García-Fernández

ignacio.garcia@uv.es

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 21 May 2021

Accepted: 03 August 2021

Published: 01 September 2021

Citation:

Romero P, Lozano M, Martínez-Gil F,

Serra D, Sebastián R, Lamata P and

García-Fernández I (2021)

Clinically-Driven Virtual Patient

Cohorts Generation: An Application to

Aorta. Front. Physiol. 12:713118.

doi: 10.3389/fphys.2021.713118

Clinically-Driven Virtual Patient
Cohorts Generation: An Application
to Aorta
Pau Romero 1, Miguel Lozano 1, Francisco Martínez-Gil 1, Dolors Serra 1, Rafael Sebastián 1,

Pablo Lamata 2 and Ignacio García-Fernández 1*

1Computational Multiscale Simulation Lab, Department of Computer Science, Universitat de Valencia, Valencia, Spain,
2Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Kings College London,

London, United Kingdom

The combination of machine learning methods together with computational modeling

and simulation of the cardiovascular system brings the possibility of obtaining very

valuable information about new therapies or clinical devices through in-silico experiments.

However, the application of machine learning methods demands access to large cohorts

of patients. As an alternative to medical data acquisition and processing, which often

requires some degree of manual intervention, the generation of virtual cohorts made of

synthetic patients can be automated. However, the generation of a synthetic sample can

still be computationally demanding to guarantee that it is clinically meaningful and that it

reflects enough inter-patient variability. This paper addresses the problem of generating

virtual patient cohorts of thoracic aorta geometries that can be used for in-silico trials.

In particular, we focus on the problem of generating a cohort of patients that meet a

particular clinical criterion, regardless the access to a reference sample of that phenotype.

We formalize the problem of clinically-driven sampling and assess several sampling

strategies with two goals, sampling efficiency, i.e., that the generated individuals actually

belong to the target population, and that the statistical properties of the cohort can be

controlled. Our results show that generative adversarial networks can produce reliable,

clinically-driven cohorts of thoracic aortas with good efficiency. Moreover, non-linear

predictors can serve as an efficient alternative to the sometimes expensive evaluation

of anatomical or functional parameters of the organ of interest.

Keywords: virtual cohort, thoracic-aorta, digital twin, synthetic population, clinically-driven sampling, support

vector machine, generative adversarial network, in-silico trials

1. INTRODUCTION

In the last decades, the development of computational models able to account for personalized
data has proven to be an essential tool in the path to precision cardiology (Lamata et al., 2014).
When applied to large cohorts of patients, these models allow to perform in-silico clinical trials on
the so-called digital twins (Lopez-Perez et al., 2019; Corral-Acero et al., 2020; Gillette et al., 2021;
Peirlinck et al., 2021), which can focus on target sub-populations (Lange et al., 2016) for particular
applications. One enabling pillar to in-silico analysis is the availiability of 3D image datasets,
acquired via techniques such as Computerized Tomography orMagnetic Resonance Imaging scans.
These techniques provide a spatial description from which the organs of interest are segmented
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and, typically, transformed into a mesh which can be used to
provide patient-specific or population representative computer
models (Lopez-Perez et al., 2015).

However, clinical adoption of digital twin technologies is
limited to the scarce availability of clinical anatomical data
with enough level of detail, specially in the case of rare
conditions. The segmentation of clinical images is time-
consuming and suffers from observer variability. Despite the
promising results in the automation of the process via machine
learning approaches (Bratt et al., 2019; Hepp et al., 2020; Gilbert
et al., 2021), these models fail to generalize well if the object of
interest is infrequent in the population. Thus, in clinical practice,
image processing and segmentation remains mostly a semi-
automatic task. Finally, common approaches used to build virtual
populations are based on statistical shape modeling (Young and
Frangi, 2009; Casciaro et al., 2014), or other descriptive statistics
that rely on the geometrical variability of the samples, that is,
are data-driven (Rodero et al., 2021). As opposed, clinically-
driven approaches must produce virtual cohorts with a common
underlying clinical characteristic or phenotype, and typically
depend on the anatomical or functional properties of the organ
of interest (Romero et al., 2009; Britton et al., 2013).

Some studies based on statistical shape modeling, i.e.,
data-driven approaches, have tried to find correlations with
anatomical phenotype. In Cosentino et al. (2020), they aimed
to explore the aortic morphology and the associations between
shape and function, obtaining shape modes that were associated
to specific morphological features of aneurysmal aortas. In
Bruse et al. (2017), unsupervised hierarchical clustering was
used to cluster anatomical shape data of patient populations to
obtain clinically meaningful shape clusters of aortic arches. More
recently, Thamsen et al. (2021) developed a clinically-oriented
methodology for generating a large database of synthetic cases
to train machine learning models, with characteristics similar
to clinical cohorts of patients with coarctation of the aorta. In
that case, in addition to the geometrical data, flow fields and
simulation results were used to define the virtual cohorts, by
filtering out the virtual population samples that did not meet
some clinical restrictions. This is a common approach, since
random generation of individuals does not guarantee that the
resulting anatomic case will be physiologically plausible or will
belong to the target population. Thus, the generated sample has
to be filtered through different acceptance criteria, which can
range from mere outlier rejection, based on a real observed
cohort when available, to more sophisticated tests to restrict the
sample to a particular phenotype (Niederer et al., 2020).

Nonetheless, the application of acceptance criteria implies
that part of the effort done to generate and assess synthetic
cases will be discarded. This waste of effort can be dramatic if
the acceptance criteria are computationally demanding, e.g., if
the decision depends on the result of a Computational Fluid
Dynamics simulation (Thamsen et al., 2021), or if the target
cohort is infrequent in the population.

The main goal of this paper is to assess different strategies to
increase the efficiency of the generation of thoracic aorta cohorts,
understanding the efficiency as the ratio of accepted cases with
respect to the total number of cases generated and evaluated. We

focus on clinically-driven criteria, and rely on machine learning
techniques to accelerate the acceptance criteria evaluation when
computationally demanding tasks are involved. The problem can
then be recasted into one of classification, where we want to find
the anatomies that meet a given criteria before evaluating it.

Considering the cases in which the evaluation of the
acceptance criterion is expensive, e.g., when simulations are
involved, we propose the substitution of this computation by
machine learning surrogates. In particular, we build functions,
based on Support Vector Machines (SVM), that predict the
outcome of the biomarkers and of the acceptance criteria without
having to compute them explicitly. This strategy can substantially
accelerate the process in those cases in which the evaluation of the
acceptance criterion is computationally demanding.

2. MATERIALS AND METHODS

2.1. Problem Statement
In order to properly define the problem we consider a starting
cohort, C0, which is determined by a set of n-dimensional
vectors, {ai}i=1,...,K0 , in some feature space. Each vector ai ∈ R

n

represents the codification of the aorta anatomy of an individual.
This cohort is a sample of an underlying population P0, which
corresponds to the set of physiologically viable aortas of the
phenotype of interest. The goal of the cohort synthesis problem
is to generate a new cohort C1 = {aj}j=1,...,K1 , with K1 ≫ K0,
and with the property that C1 ⊂ P0. In order to decide whether
a particular aorta belongs to the population, we can use whatever
prior information we have about it, which can range from the
statistical plausibility of a particular vector, compared to the
original cohort, to the evaluation of its anatomical or functional
properties. We can express this by means of a acceptance
function, A :R

n → {0, 1}, with A(a) = 1 ⇐⇒ a ∈ P0.
Provided that we have some computable estimation of A, and
following the scheme depicted by Niederer et al. (2020), the
procedure can be barely described as: draw vectors aj, and add
them to C1 ifA(a) = 1, until |C1| = K1.

As one can expect, this problem has a small efficiency ratio
using a simple draw-and-test strategy. As an example, let us
consider the problem of generating a cohort of patients from
one of the three disjoint phenotypes proposed by Schaefer et al.
(2008). In that study, the authors classify the aortic root based
on the relationship between the radius of the Sinuses of Valsalva,
the sino-tubular junction and the mid-ascending aorta (Figure 1,
left, shows the definition of the three phenotypes). Given an
initial cohort C0 containing the three phenotypes in different
proportions, the goal of the experiment is to generate a virtual
cohort that only includes one of them. Figure 2 shows that, even
though aortas of the three classes can be easily separated in the
clinical biomarkers space (Figure 2, left), the distribution of a
particular class in the feature space can bemuch harder to infer. If
the target class has a low relative frequency (e.g., phenotypeN has
a frequency below 15%), then a simple draw-and-accept strategy
will lead to a very low success ratio. Our study addresses this
limitation by reviewing several sampling methods and assessing
them in terms of efficiency. In addition, we propose the use of
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FIGURE 1 | Geometric biomarkers and phenotypes used in the study. Left, graphical representation of some of the considered anatomical biomarkers superimposed

on the anatomy of an aorta. Right, the three phenotypes defined by Schaefer et al. (2008), that are used in the clinically-driven cohort generation. The reader can refer

to Table 1 for the detailed meaning of the acronyms.

FIGURE 2 | A sample with the three aortic root phenotypes (labeled as N, A, and E) defined in Schaefer et al. (2008) represented in the biomarkers space (left) and in

the feature space (right). Each point represents an aorta. In the biomarkers representation, the coordinates correspond to the three biomarkers involved in the

phenotype definition, in millimeters (refer to Figure 1 and Table 1 for acronym meanings and phenotype definitions). In the feature space representation, the

coordinates are the coefficients of the three deformation modes, c3, c6 and c9, that are most discriminant in this problem. Phenotype N is represented in red,

phenotype A in green and phenotype E in blue. While in the biomarkers space the three phenotypes are clearly separable, the region occupied by a particular group in

the feature space is much harder to identify and exploit for cohort synthesis.

machine learning surrogates to reduce the number of acceptance
function evaluations.

2.2. Geometric Aorta Representation
For this study, we used a retrospective dataset of 26 thoracic
aortas that corresponded to patients with ascending aorta

aneurysm. The patients, with ages ranging from 78 to
89 years old, were diagnosed with aortic valve stenosis
and were prescribed a valve implantation. Data had been
previously segmented manually by expert radiologists from the
Computerized Tomography scans in themesosystole phase of the
cardiac cycle prior to the intervention. The supra-aortic branches
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were removed in all the cases. The final input data used in this
study was the set of 26 anonymized triangular surface meshes.
This original dataset from which meshes were segmented met the
requirements of the Declaration of Helsinki and was approved by
the institutional ethics committee.

In our study, we represent the aorta geometry following the
approach described by Romero et al. (2019), which is partly
equivalent to the description proposed by Meister et al. (2020).
The representation starts by approximating the centerline of
the thoracic aorta as a cubic B-spline, α :[0, 1] → R

3. Then,
for each point on the wall x, we compute the closest point on
the centerline, α(s), and its polar coordinates, (θ , ρ), in a local
reference frame, 〈t, v1, v2〉 centered in α(s), with t the unitary
tangent to the curve. After building a set of points (s, θ , ρ), we
compute a bivariate cubic polynomial that fits ρ as a function
of (s, θ). Using this information, any point on the surface can be
parameterized as

x(s, θ) = α(s)+ ρ(s, θ)(cos(θ)v1(s)+ sin(θ)v2(s)),

s ∈ [0, 1], θ ∈ [0, 2π]. (1)

A high dimensional feature vector for the aorta anatomy is
formed by the coefficients of the polynomials that approximate
the centerline and the radius in Equation (1). Based on this
representation, any anatomy in a cohort of aortas can be
described using a mean aorta plus the sum of a reduced set
of deformation modes, computed with a Principal Component
Analysis (PCA). Eachmode of deformation is a high dimensional
feature vector that, when added to the mean aorta feature vector,
leads to a variation of shape that is relevant in the observed
cohort. The representation of a specific aorta in feature space
consists of the set of coefficients corresponding to the modes of
deformation [the reader can refer to the work by Varela et al.
(2017) for further detail on the approach]. In our experiments, we
will use low dimensional feature vectors obtained in this feature
space generated by the PCA. The dimensionality will be chosen so
that it is able to explain a substantial part of the observed shape
variation and to account for the particular anatomical traits that
are relevant in the experiments. In all the experiments, the feature
space that will be used is the one identified from the cohort or
real patients’ anatomies. This approach is often referred to as
Statistical Shape Modeling (Cootes et al., 1995), where the set of
shapes that can be described by the feature space is limited to the
deformation modes observed in the real cohort. Thus, there is no
guarantee that there is a feature vector accurately representing
a given anatomy, specially if its phenotype is very different to
those observed.

2.3. Anatomical Biomarkers on the Aorta
In order to define different acceptance criteria and target
phenotypes for which to generate synthetic cohorts, we are
going to use a set of 11 anatomical biomarkers of the thoracic
aorta, previously described in the literature (Schaefer et al., 2008;
Craiem et al., 2012; Casciaro et al., 2014; Bruse et al., 2016; Liang
et al., 2017; Sophocleous et al., 2018). Table 1 gives a description
of the biomarkers used here, while Figure 1 shows some of
them sketched over the anatomy of an aorta from the original

TABLE 1 | List of biomarkers used to describe the thoracic aorta geometry.

Label Biomarker description

SoV Radius of the aorta in the middle of the sinuses of Valsalva (mm)

PA Radius at a point in the ascending aorta, close to the sinotubular

junction (mm)

MA Radius at a point in mid ascending (mm)

PT Radius at a point in the top of the aortic arch (mm)

PD Radius at a point in the descending aorta, opposite to PA (mm)

LPD Length of centerline from valve to PD (mm)

k Mean analytic curvature of the centerline from PA to PD ( 1
mm

)

h Height from PT to the level of PA/PD (mm)

w Width of the arch, measured as the distance from PA to PD (mm)

h/w Height-to-width ratio

tor Tortuosity, defined as 1− W
LPD

cohort. For each feature vector, the set of 11 biomarkers are
computed automatically after reconstructing its geometry. Those
biomarkers that are defined as the radius of a cross-section are
always computed as the semi-major axis of the best fitting ellipse.

2.4. Sampling Methodology
The feature space generated after the PCA (described in
section 2.2) can also be exploited to draw new random individuals
by means of Statistical Shape Modeling (Heimann and Meinzer,
2009). Given a feature vector a = (a1, . . . , an), each component ai
is interpreted as the coefficient associated to the i-th deformation
mode, and the corresponding anatomy can be reconstructed by
adding all these deformation modes to the mean aorta shape.
Thus, by means of the generation of random feature vectors,
new anatomies can be synthesized (Liang et al., 2017; Rodero
et al., 2021; Thamsen et al., 2021). We have grouped the sampling
strategies in three main categories: non-parametric sampling,
parametric sampling and Neural Network based generation.

2.4.1. Non-parametric Sampling
If we have a small sample, we can make use of a bootstrapping
technique. Bootstrapping allows to generate a new sample of
larger size, with similar statistical properties to the original
reduced dataset (Efron, 1979; Efron and Tibshirani, 1993).
Essentially, bootstrapping generates a new feature vector a =

(a1, . . . , an) in which each component is chosen randomly from
the observed values in the original, small sample. Starting from
the reference cohort of size K0 = 26, formed by aortas of
real patients, we project their geometric description onto the
reduced dimension feature vector. Next, using the coordinates of
the resulting K0 feature vectors we generate a larger size cohort
using bootstrapping.

2.4.2. Parametric Sampling
An alternative to non-parametric sampling is to assume some
hypothesis on the probability distribution of each coefficient, ai.
Then, the hyper-parameter of the distributions can be inferred
from the original sample. Synthetic samples can be directly
drawn with pseudo-random number generator that mimics the
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inferred distribution. In this work we used multivariate Gaussian
distribution, which is typically assumed when dealing with
natural phenomena, and uniform distribution typically related to
Monte Carlo experiments. Given the multidimensional dataset,

{a}
K0
i=1, where ai = (ai1, . . . , a

i
n), the Gaussian distribution,

N (µ,6) is determined by the mean, µ and covariance matrix 6,

that can be estimated with the sample mean ā = 1
K0

∑K0
i=1 a

i and

the sample covariance matrixQ = 1
K0−1

∑K0
i=1(a

i − ā) · (ai − ā)T .
The uniform distribution, U(lj, uj) is determined by the lower and
upper extrema of the intervals for each dimension 1 ≤ j ≤ n.
Sample min, lj = min

1≤i≤K0

{aj} and max,uj = max
1≤i≤K0

{aj} are used

as estimates.

2.4.3. Generative Adversarial Networks
Generative adversarial networks (GAN), proposed
by Goodfellow et al. (2020), offer a sample generation strategy
from the machine learning perspective. The model consists of
a combination of two artificial neural networks, a Generator
(G) and a Discriminator (D). The generator uses a density
distribution to generate new data. Opposed to the generator,
the discriminator acts as a classifier trying to detect whether
the observed data are coming from G or come from the real
dataset. This learning model is based on the zero-sum or
minimax strategy for non-cooperative games. Within this
learning strategy, D is trying to maximize its accuracy at
classifying data between real and fake, while, G is trying to
minimize D’s accuracy, by fooling it. A GAN model converges
when discriminator and generator reach a Nash equilibrium, or
optimal point for the minimax problem. For the use of GAN to
generate new samples we start with the reference cohort C0 for
which we want to obtain a larger sample. During the training
process, we will present to the GAN the observed feature vectors
as real samples.

2.5. Cohort Generation Experiments
Each experiment will be aimed to evaluate the efficiency of the
different sampling methodologies in a particular scenario. Each
scenario is defined by a reference cohort C0 (with size K0) and an
acceptance function A :R

n → {0, 1} that takes the value 1 on a
feature vector a if and only if a represents an aorta that meets the
defined acceptance criterion. During the experiment, a sampleC1

of size K1 ≫ K0 aortas will be generated and evaluated using A.
The outcome of the experiment for a given sampling strategy will
be an efficiency ratio defined as

e =
|{a ∈ C1 :A(a) = 1}|

K1
. (2)

Based on this common scheme we define three main scenarios.
Data-driven cohort generation, clinically-driven cohort
generation and feature space acceptance criterion usage.
Next, we describe these three problems, together with the
different acceptance criteria that are used. Each experimental
setup is repeated for all the sampling strategies discussed
in section 2.4. The acceptance functions involve the set of
biomarkers described in section 2.3. Thus, the evaluation of an
acceptance function involves the reconstruction of the surface

of the aorta, from the description defined in section 2.2, and
the automatic computation of the biomarkers. Figure 3 shows
an scheme of the workflow along with the complete set of
experiments that are performed.

Problem 1: Data-Driven Acceptance Criteria
Given a reference cohort C0, we consider data-driven cohort
synthesis as the sampling of a larger cohort C1 with the only
acceptance criteria of being compatible with C0. In this first set
of experiments the acceptance function must be some measure of
how likely is a particular observation a, provided that it belongs
to the same population from which C0 was drawn. In our data-
driven cohort generation experiments, the reference cohort is
the sample formed by 26 aorta geometries acquired from real
patients described in section 2.2. The generated cohort will have
a size K1 = 3, 000.

The particular definition of A can depend on our goals when
generating C1; e.g., if we want to simulate and assess the effect
on a biomarker of a clinical intervention, we will favor a cohort
that provides a good statistical description of the underlying
population; on the contrary, if C1 is to be used as the training set
for a nonlinear model, then we may require that the population
is more evenly sampled to prevent unbalanced classes, regardless
the actual frequency of each group in the population. For this
reason we use three acceptance functions and present the results
for discussion, indicating in which contexts they could be of
interest. All three criteria are based on an acceptance interval for
the values of the biomarkers, and differ in the way this interval
is defined.

The first acceptance criterion is based on the mere range of the
observed biomarkers in C0. In order to accept a feature vector
a, the associated geometry must have all biomarkers within the
observed ranges. We will refer to the acceptance function for this
criterion asAr .

The second acceptance criterion takes into account the
dispersion observed in the original cohort to perform a sort
of outlier rejection. More precisely, we define intervals that
accumulate the 95% of the probability of finding each biomarker.
In absence of any other information about the actual distribution
of the different biomarkers, we rely on Chebyshev’s theorem.
This theorem sets a bound for the probability accumulated in
the tails of a distribution based on the mean µ, the variance σ

and the mode M. Assuming unimodality, Chebyshev’s theorem
establishes that the interval defined by M ± 3B, where B =
√

σ 2 + (M − σ )2 contains at least 95% of the area under the
probability function1. Refer to the work by Amidan et al. (2005)
for further detail. The acceptance criterion is met by a vector if
all the biomarkers fall into the corresponding interval, computed
with the estimators on the sample C0. We will refer to the
associated acceptance function asAM .

The third acceptance criterion assumes normality in the
distribution of the biomarkers. Since we are dealing with a
sample of a natural population it is reasonable to consider
the possibility that at least some of the biomarkers follow a

1If unimodality cannot be assumed, then the same interval contains, at least, 91%

of the probability density of the distribution.
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FIGURE 3 | An scheme of the workflow followed in our experimental setup. On the left track, the data-driven cohort generation scenario is shown; the reference

cohort C0, that is characterized using PCA to generate new samples CB, CG, CU, and CGAN, which are assessed with the acceptance functions AX . The middle track,

representing the clinically-driven experiments, starts splitting the samples of the boostrapping cohort, CB, generated on the previous scenario, onto the three target

phenotypes, N, A and E and, then, new cohorts CX
B, C

X
G
, CX

U and CX
GAN

are generated and, again, assessed by the corresponding acceptance functions AX . Finally the

rightmost blocks represents the development of Machine Learning surrogates to predict the acceptance functions. The synthetic cohort CB is used to train two SVM

models, Pp and P
µ

d (PD in the chart), that predict the outcome of Aµ and the aorta phenotype, respectively. The models are evaluated with CU, that was not used

during training. For any item of the picture, a purple frame means data-driven and an orange frame means clinically-driven. The reader can refer to the text for

further detail.
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TABLE 2 | Statistical description of each one of the biomarkers measured on the aorta.

Biomarker µ M σ B [min, max] (Ar ) M ± 3B (AM) µ ± 2σ (Aµ)

PA 14.77 14.71 1.40 1.40 [12.38,17.50] [10.50,18.92] [11.97,17.57]

PD 11.96 11.35 1.12 1.27 [10.24,14.32] [7.53,15.17] [ 9.73,14.20]

PT 13.38 12.78 1.55 1.67 [10.19,17.32] [7.78,17.78] [10.28,16.49]

LPD 233.69 211.36 25.25 33.71 [175.4,274.16] [110.22,312.49] [183.19,284.20]

MA 17.28 15.19 1.79 2.75 [15.19,21.5] [6.95,23.44] [13.71,20.85]

SoV 15.30 15.49 2.12 2.13 [11.78,21.0] [9.10,21.89] [11.06,19.54]

k 7.42 7.49 0.44 0.45 [6.74,8.40] [6.15,8.84] [6.53,8.30]

h 92.12 82.80 15.21 17.85 [70.21,139.42] [29.26,136.33] [61.69,122.55]

w 70.72 60.70 10.76 14.71 [50.25,88.56] [16.56,104.83] [49.19,92.25]

h/w 1.33 1.18 0.29 0.32 [0.91,1.91] [0.22,2.15] [0.76,1.90]

tor 0.70 0.71 0.02 0.02 [0.66,0.73] [0.63,0.78] [0.65,0.74]

From left to right, the first four columns correspond to the mean, µ, the mode M, the standard deviation, and the 95% Chebyshev’s theorem bound. The last three columns contain the

intervals considered in the different acceptance functions A
r ,AM, andA

µ (further detail can be found in the text). All units are in millimeters, except for k, which is expressed in mm−1,

and h/w and tor which are adimensional.

Gaussian distribution. Since the previous acceptance criterion is
rather permissive, as it is completely agnostic of the probability
density functions of the biomarkers, we consider pertinent
adding a more restrictive acceptance interval. Thus, we add the
criterion that all the biomarkers of a synthetic aorta must lie
within two standard deviations from the mean, and denote the
corresponding acceptance functionAµ.

Table 2 presents the values of the statistics for the different
biomarkers proposed and the resulting intervals defined by the
three acceptance criteria. These data correspond to the sample
statistics of the observed cohort C0 formed by the 26 patient
derived anatomies.

As we stated earlier, in some contexts it is important that
the distribution of a biomarker in the virtual cohort is a good
estimation of the original population distribution, e.g., when
we want to draw conclusions about the probability of certain
output variable that results from that biomarker. To provide
some insight on this regard, we will perform an additional test on
the generated cohorts. In order to detect if the distribution of the
biomarkers differ from that in the original sample, we carry out
a Mann-Whitney-Wilcoxson’s hypothesis contrast test (MWW)
on the observed distribution of each one of them. Note that this
test will not be involved on the computation of the efficiency of
the sampling methods, but will point toward their possible loss of
statistical fidelity.

Problem 2: Clinically-Driven Acceptance Criteria
We refer to clinically-driven cohort generation as the process of
generating a sample C1 with an acceptance criterion that is not
based on a reference cohort C0, but on a clinical requirement.
This does not mean the absence of C0, but only that the
acceptance function will not depend on the statistical properties
ofC0. If a reference cohort is used, e.g., to estimate the parameters
for parametric sampling, then it has to be taken into account that
it can bias the generation process. We are interested in the case
in which we do not have access to a representative sample of
the target population. In this case, we can use a sample from a

larger population that contains the subpopulation defined by the
acceptance criterion.

In order to set several acceptance criteria for our experiments,
we refer to the phenotype classification of the aortic root defined
by Schaefer et al. (2008). In their work, they consider three
disjoint classes according to the radius of the sinuses of Valsalva
(SoV), of the sino-tubular junction (PA) and of a point in mid-
ascending aorta (MA). The three phenotypes are defined as:

• Phenotype N : SoV > PA and SoV >=MA,
• Phenotype A : SoV > PA and SoV < MA,
• Phenotype E : SoV <= PA.

In our experiments we will use a different reference cohort for
each phenotype. Since the observed sample of real aortas is too
small to have a proper representation of the three phenotypes, we
will rely on a bootstrapped sample of size K0 = 3, 000 obtained
by resampling the clinical cohort. Let CB be this sample. Given
a phenotype X ∈ {N,A,E}, we define its reference cohort as
CX
0 = {a ∈ CB : a is of phenotype X}.
We will evaluate the efficiency of the sampling strategies

studied by generating a new sample of size K1 = 1, 000 for
each phenotype and augmentation method. Then, we analyze the
results obtained from three different points of view, clinically-
driven criteria, data-driven criteria, and the intersection of both.
We do this for phenotype X ∈ {N,A,E} as follows; first,
the phenotype acceptance criterion AX , that accepts an aorta
if it belongs to phenotype X, will be checked; also, the three
acceptance criteria defined for the data-driven cohort will be
measured (Ar , Aµ and AM); and, finally, simultaneously data-
driven and clinically-driven criteria are evaluated, retaining
aortas that meet both,Ar∩X ,Aµ∩X , andAM∩X .

Problem 3: Feature Space Acceptance Criteria
If the acceptance ratio is low during the sampling process,
generating large cohorts can involve a really high burden. In
order to reduce the amount of unsuccessful evaluations of
the acceptance criteria, our last proposal is to substitute the
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FIGURE 4 | Amount of shape variation explained by each of the components of the feature vector in the space defined by the PCA, in order of importance.

Importance is computed by training a Random Forest model and computing the decrease of impurity of each subtree. The first n = 16 features are capable of

explaining 95% of the shape variation.

acceptance functions A by efficient surrogates that provide a
prediction of the outcome ofA without actually evaluating them.

In the context of our work, we will train two models to
predict the outcome of some of the acceptance functions that
have been defined: a function P

µ

d
:R

n → {0, 1} that predicts if
a feature vector a ∈ R

n will be accepted by Aµ, and a function
Pp :R

n → {N,A,E} that predicts the phenotype of the aorta
associated to a feature vector a ∈ R

n. P
µ

d
will be based on

a Support Vector Machine (SVM), while Pp will be a Support
Vector Classifier (SVC) that, internally, uses several one-vs.-one
SVM classifiers to decide the class (Bishop, 2006). After the
predictors have been trained, they can be used to evaluate very
efficiently every feature vector that is drawn during the sampling
process. Then, only those anatomies that have passed the first
evaluation are then assessed by the real acceptance function.
Note that, in the previous two experiments, the efficiency was
measured in terms of the amount of feature vectors generated.
Now, when the evaluation of A is substantially higher than the
random generation of a vector, the efficiency can be defined as
the ratio between the number of successful evaluations of A and
the total number of evaluations of A. As a consequence, the
efficiency of the overall process will be the sensitivity or recall of
the SVM predictor.

To test this approach, the two predictors will be trained
using cross validation over generated cohorts of aortas where no

acceptance criterion has been applied. In addition, a completely
new generated cohort will be used as a final test set. The rightmost
part of Figure 3 shows the populations and schemes used to train
and test the two different classifiers proposed in this section.

3. RESULTS

Figure 4 shows the variance associated to each mode of
deformation, and the accumulated variation explained by
considering the first n features of the PCA. The first 16 variation
modes can explain 95% of the anatomical variability in the
observed sample of 26 aortas. Moreover, a correlation analysis
indicates that the R2 between the 16 first PCA modes and
the 3 biomarkers of interest that define the clinical acceptance
criteria PA, MA, and SoV, are 93.4, 97.4, and 96.9%, respectively,
indicating that the 16 dimensional space is an adequate basis to
tackle the problem.

3.1. Data-Driven Acceptance Criteria
After performing the PCA on the reference cohort C0, of size
K0 = 26, we have generated a cohort C1 of K1 = 3, 000
synthetic shapes by sampling the space using several methods:
bootstraping, uniform sampling, Gaussian sampling and a GAN.
These cohorts are represented in Figure 3 as CB, CU , CG and
CGAN , respectively. In the case of the GAN, it was trained
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FIGURE 5 | Violin plots for the distribution of biomarkers on the original samples, alongside with those generated using the proposed methods: Bootstrap (Bts),

Gaussian (Gau), Uniform (Unf) and generative adversarial network (GAN). Horizontal lines mark the bounds for the different acceptance criteria defined in section 2.5:

Ar , with dotted lines, Aµ, with dash-doted lines, and AM with dashed lines. The units of the vertical axis are in millimeters, except for biomarkers k, which is

expressed in mm−1, and h/w and tor which are a dimensional.

increasing the epochs from 100 until it reached stability in the
accuracy, which was met with a total of 2,000 epochs. The size of
the batches used in each epoch was set to 5, that is approximately
a fifth of the size of the cohort C0.

For all the aortas in the synthetic cohorts, the different
biomarkers were computed. The resulting biomarker
distributions are presented in Figure 5 by means of violin
charts. Horizontal lines in the figure mark the bounds for the
different acceptance criteria defined in section 2.5: Ar , with
dotted lines, Aµ, with dash-doted lines, and AM with dashed
lines. The figure shows that all sampling methods generate
distributions of the biomarkers that surpass the range defined
by Ar , higher variability than that observed in the original
cohort C0.

One of the properties of the acceptance functions is that, in
most cases, Ar tends to be the most restrictive one due to the
limited variability observed for each biomarker inC0. Most likely,
this is due to the small size of that sample that leaves the tails
of the underlying distribution underrepresented. However, there
are exceptions, such as in the distribution for SoV or h, where
the upper bound is remarkably high compared to that of AM

and Aµ. Among these two acceptance functions, the criterion
based on Aµ is more restrictive than that based on AM , which
is an expected result based on their definition. Figure 6 shows
the anatomy of four synthetic aortas that fall within the different
acceptance intervals. From left to right, an aorta that meets Ar ,

an aorta that meets Aµ but not Ar , an aorta that meets AM but
notAµ and an aorta that does not meet any of the criteria.

Table 3 shows the efficiency of each method measured using
the different acceptance criteria, as defined in section 2.5. The
sampling strategies are arranged in rows, while each column
correspond to an acceptance function. In addition, the last
column shows the results of applying the MWW hypothesis
contrast test to compare the distribution of each biomarker
obtained in C1 to that observed in C0. Consistently with the
ranges observed for Ar , the acceptance ratio for this criterion is
notably smaller than that for the other criteria.

The results show substantial differences between the four
sampling strategies, making them suitable for different scenarios.
Both Gaussian and bootstrapping sampling show similar
efficiency results and are the two that have no biomarker
distributions rejected by the MWW test. These distributions
would be the most adequate to retain the statistical information
of C0. If we are interested on having a denser representation
of any phenotype, despite its actual distribution in the true
population, then uniform sampling provides longer tails for the
different biomarker distributions. This is at the price of having a
very low efficiency if the application of an acceptance function
is compulsory; e.g., in the case of considering Aµ more than
half the feature vectors are disregarded. If we are considering a
clinical scenario in which the biomarkers are the result of costly
simulations (Rodero et al., 2021; Thamsen et al., 2021), this has to
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FIGURE 6 | Examples of four synthetic aortas with decreasing feasibility of the biomarkers according to the acceptance functions. From left to right: the first one is

accepted by all of the criteria; the second one is rejected by Ar , but not by the other acceptance functions; the third one is only accepted by AM and the last one is

rejected by all the criteria.

TABLE 3 | Results of the generation of synthetic aorta cohorts with different sampling methods.

Method Ar Aµ AM MWW test

Bootstrapping 0.599 0.786 0.979 0 / 11 reject H0

Gaussian 0.625 0.739 0.966 0 / 11 reject H0

Uniform 0.293 0.424 0.893 7 / 11 reject H0

GAN 0.808 0.950 0.999 2 / 11 reject H0

The last column shows the number of biomarker distributions significantly different to the original according to the MWW test (refer to the text for further detail). The columns labeled

A
α ,α ∈ {r,µ,M}, indicate the efficiency of the data augmentation methods when considering each acceptance function.

be taken into account. On the opposite side, the cohort generated
by a GAN has the narrowest distributions for all the biomarkers
among the three methods, since the generated anatomies are
closer to the mean in the PCA space. This results in an efficiency
increment on all the criteria, at the price of having much shorter
tails and leaving some plausible regions under represented.

3.2. Clinically-Driven Acceptance Criteria
We start by building three reference samples, CX

0 ,X ∈ {N,A,E}.
Our starting point is the bootstrapped synthetic cohort, CB,
with size 3, 000, that was generated in the previous section. This
sample has been divided in the three reference clinically-based
cohorts:CN

0 , of sizeK0 = 330 aortas (11% ofCB),C
A
0 , of sizeK0 =

1, 605 aortas (53, 5%), and CE
0 with the remaining K0 = 1, 065

aortas (35.5%). For each phenotype, X, we take CX
0 and apply

the four sampling methods described in section 2.5 to generate
the corresponding synthetic cohort CX

1 of size K1 = 1, 000. Even
though the definition of the different acceptance functions can be
found in section 2.5, for the sake of clarity we present a summary
of the meaning of the used criteria in Table 4. Furthermore, we
have added subscript DD for data-driven criteria and subscript
CD for clinically-driven criteria.

Results are shown in Table 5. Each row corresponds to a
sampling method and a phenotype, and shows the results for that
particular synthetic cohort. In the case of the data-driven criteria,
the efficiencies have a meaning similar to those in Table 3; it is
the ratio of aortas that are plausible according to the observed
sample of size K0 = 26. In the case of the clinically-driven
criteria, results can be interpreted like a confusion matrix for
each method. For instance, in Gaussian sampling and phenotype
N, a value of 0.141 under AA

CD means that 141 of aortas in
the synthetic cohort generated to be of class N, actually are of
phenotype A. The efficiencies are the elements of the diagonal in

TABLE 4 | List of the acceptance functions that are used in the experiments

related to clinically-driven-cohort generation.

Label Acceptance function description

Ar
DD Accepts an aorta if all biomarkers are within the corresponding

observed range in C0

A
µ

DD Accepts an aorta if all biomarkers are within the range µ ± 2σ for

that biomarker in C0

AM
DD Accepts an aorta if all biomarkers are within the range M± 3σ for

that biomarker in C0

AX
CD

With X ∈ {N,A,E}, accepts an aorta if it belongs to phenotype X

Aα∩X With α ∈ {r,µ,M}, and X ∈ {N,A,E}, accepts an aorta if it is

accepted by both and Aα
DD and AX

CD

Subscript DD stands for data-driven and subscript CD satnds for clinically-driven. Refer

to section 2.5 for a detailed description.

each method’s block. The last three columns in Table 5 show the
result of requiring both a data-driven acceptance function with
the acceptance criterion of the phenotype for the row.

The results indicate that clinically-driven cohort synthesis is
a much harder problem than data-driven synthesis, in terms of
efficiency. The data-driven columns in the table indicate that,
in general, the anatomies generated are within what is observed
in CB, even for the uniform distribution. However, the columns
for Clinically-driven efficiency point out that a phenotype that
is easily identified in the biomarkers space can occupy a region
in the feature space that is mangled with aortas of a different
phenotype as it was anticipated in section 2.1 and Figure 2.

Again, the GAN is the sampling strategy that provides a higher
efficiency. However, on the contrary to what happened in the
data-driven generation, in this case this does not imply narrower
biomarker distributions, at least in the three values that define
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TABLE 5 | Efficiency values achieved by each method and for each biomarker.

Data-driven Clinically-driven (Data ∩ Clinically)-driven

Method Phenot. Ar
DD

A
µ

DD
AM

DD
AN

CD
AA

CD
AE

CD
Ar∩X Aµ∩X AM∩X

N 0.978 0.650 0.954 0.695 0.301 0.004 0.679 0.457 0.662

A 0.973 0.675 0.957 0.231 0.557 0.212 0.551 0.404 0.529Bootstrap

E 0.969 0.720 0.958 0.008 0.253 0.739 0.724 0.568 0.720

N 0.954 0.753 0.960 0.858 0.141 0.001 0.820 0.655 0.826

A 0.983 0.735 0.968 0.052 0.874 0.074 0.863 0.654 0.845Gaussian

E 0.975 0.722 0.967 0.003 0.117 0.880 0.862 0.646 0.855

N 0.999 0.807 1.000 0.887 0.113 0.000 0.886 0.716 0.887

A 0.979 0.534 0.908 0.135 0.616 0.249 0.605 0.346 0.566Uniform

E 0.954 0.554 0.957 0.009 0.210 0.781 0.753 0.446 0.755

N 0.974 0.806 0.979 0.895 0.102 0.003 0.874 0.736 0.878

A 0.963 0.733 0.958 0.089 0.855 0.056 0.846 0.669 0.833GAN

E 0.931 0.573 0.931 0.000 0.104 0.896 0.840 0.521 0.833

The efficiency of each row is the result of using the method of the first column in the cohort CX
0 , where X is the phenotype corresponding to the row, as specified in the Phenot. column.

Refer to the text for the details on the interpretation of the data. Row colors follow the same convention used in previous figures for phenotypes: red for phenotype N, green for phenotype

A, and blue for phenotype E.

the phenotypes, as it can be inferred from Figure 7. Indeed, this
wider span of the distributions leads to lower acceptance ratios in
the data-driven criteria.

It also noteworthy that the results can be very dependent
on the particular target phenotype in the generated cohort. In
our experiments, phenotype N is, in general, easier to sample
efficiently, while phenotype A yields the worst results in all
sampling methods except in the Gaussian distribution. This
indicates that sampling in the feature space can be very inefficient
depending on the target cohort distribution.

3.3. Machine Learning Surrogates for
Acceptance Criteria
We address now the problem of training predictors for different
acceptance functions. The aim of this SVM classifier is to predict
if a random sample can be considered as an aorta from the
observed distribution of 3,000 bootstrapped aortas. Figure 3

shows the scheme of the training and validation process that is
described next.

We start by building a predictor for one of the data-driven
acceptance functions; a Support Vector Machine (SVM) model,
P

µ

d
was trained, and acted as a predictor of A

µ
DD defined in

section 2.5. A large training set of 15, 000 aortas was generated
using a Gaussian sampling. The reason for using the Gaussian
distribution in this case is that we want a reasonable amount of
infeasible aortas in the training set and, according to the results
of section 3.1, this is the method that samples best the tails of
the biomarkers distributions. To label the elements of this set,
the acceptance functions were applied to all of them. In this case,
since the original sample of size 26 is small, the statistics used to
evaluate A

µ
DD have been those obtained from the set CB of 3,000

bootstrapped aortas. In order to prevent overfitting, a 5 fold cross

validation process has been used to train the model. The accuracy
obtained in the cross validation process with this model was 0.9
with a radial basis function for the SVM kernel.

We can trust P
µ

d
to build our cohort very efficiently, but at the

risk of including some aortas that would not pass the actual test.
If we want to prevent this, we will need to evaluate A

µ
DD on the

aortas accepted by P
µ

d
. If this is the case, the relevant indicator

from the efficiency perspective is the sensitivity of P
µ

d
(ratio of

correctly accepted aortas with respect to the total number of
accepted aortas). An assessment of the sensitivity of the model
was performed using the samples generated with the uniform
distribution (size K0 = 3, 000), a dataset that is different to the

one used in the training process. The resulting confusion matrix

is presented in Figure 8 (left). It shows that the sensitivity is
0.884, meaning that only 11.6% of the aortas evaluated by A

µ
DD

will be discarded after using P
µ

d
. Note that, even though the

number of false negatives is not relevant from the efficiency point
of view –rejected aortas will not lead to any evaluation of the
acceptance function–, they lead to a bias in the resulting cohort;
the aortas that result in false negatives will not be represented in
any cohort that has been generated with a surrogate acceptance
function. Thus, this possible bias has to be taken into account if
the statistical properties of the resulting cohort is very relevant
in our study. In our case, for P

µ

d
, the aortas wrongly rejected

represent about a 6% of the total sample of size 3,000 and nearly
a 16% of the aortas that should be accepted.

The second classifier, Pp, aims to learn a function able to
classify, in the PCA feature space, the three phenotypes used
in the clinically-driven cohort generation experiments. A SVC
was trained using the set of 3,000 bootstrapped aortas, since
this set represents properly the considered phenotype. The best
accuracy for this model was 0.92, obtained during 5 fold cross
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FIGURE 7 | Distributions of the three biomarkers that define the target phenotypes (SoV, PA, and MA) in the set of aortas that actually belong to each one of the three

classes. All the values are in millimeters.
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FIGURE 8 | Confusion Matrices obtained for the P
µ

d and Pp models.

validation using a linear kernel. Again, we tested the performance
of Pp by applying the model to the sample of 3,000 aortas
generated with a uniform distribution, which is different to the
one used during the training process. Figure 8 (right) shows the
confusion matrix obtained during this evaluation. We provide
a graphical representation of the confusion matrix for Pp in
Figure 9. The figure shows an example of an aorta for each one
of the scenarios described by that confusion matrix. If our goal is
to generate a cohort of only one class, either N, A or E, then the
corresponding column of the matrix throws information about
the resulting efficiency. For phenotype N, we can see that the
efficiency (sensitivity) in the test sample is nearly 94% and that
the prediction of type E presents an efficiency of 93%. On the
lower side, phenotype A has a ratio of true positives of 89%,
leading to the rejection of 11% of the generated geometries.
Regarding false negatives, it is noteworthy that class N is the one
that has higher ratio of improperly rejected aortas, with nearly
a 13%.

Training prediction models opens the possibility of assessing
which features are the most relevant for the particular problem
we are facing. In the case of the phenotype classifier, Pp, we
have performed an analysis of the importance of each feature
in the decision process. Feature importance has been provided
by training a Random Forest model and computing the mean
decrease in impurity within each subtree. Figure 10 (left) shows
the importance obtained for each feature in the classification
problem. As expected, the most important features are those
related to the biomarkers involved in the classes definition. For
example an inspection of the effect of feature nine on the anatomy
shows that the associated deformation mode has a big impact
on the Sinuses of Valsalva radius (SoV), which is related to the
definition of all three phenotypes.

The training was performed not only for the complete feature
vector of dimension 16, but also for the first n = 3, 4, . . . , 16
components, sorted by importance. Figure 10 (right) shows the
evolution of accuracy –obtained during the cross validation
process– of Pp as the number of features increases, using both

the SVM (linear kernel) and the random forest model. Results
indicate that, in order to properly separate the three classes, at
least 14 features are needed.

In summary, the SVM models are very useful to obtain the
decision boundaries of the populations under study, and the data
augmentation techniques can take advantage of this ability. The
straightforward application is the use of classification models as
fast rejection sampling mechanisms in the PCA space, in order to
improve the accuracy of the data augmentation technique used at
lower cost than rejecting samples in the biomarkers space.

4. DISCUSSION

In this study we have shown that there is no universal data-driven
cohort generation method, but that the right election highly
depends on the purpose of the study. Next, we discuss how the
different methods assessed in this paper can be useful according
to the needs of the reader. A summary of our findings can also be
found in Table 6.

If the goal is to reproduce the existing sample, in what we
call data-driven cohort generation then bootstrapping yields
trustworthy results. Gaussian sampling achieves similar results.
Nonetheless, for some particular biomarkers it leads to longer
tails than bootstrapping, while for others to shorter ones.
In conclusion, if the actual distribution of the biomarkers is
unknown, this can not be assured. On the other hand, the
uniform sampling can be well suited if the goal is to obtain
the maximum variability, as in machine learning scenarios.
The GAN sampling achieved the best acceptance efficiency in
most of the criteria measured in this work. However, statistical
conclusions should be drawn carefully since there is no guarantee
of preserving the underlying probability distributions. On the
contrary, bootstrapping and Gaussian have proven to be robust
with more moderate values of efficiency. The use of non-linear
methods to predict the anatomical or functional phenotype
of interest from a compact PCA representation is the most
efficient method to generate virtual cohorts, but at the cost
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FIGURE 9 | Graphic representation of the confusion matrix of Pp. Examples of aortas of phenotype N, A and E row-wise, with the phenotype predicted

column-wise arranged.

of losing statistical characteristics that will be better preserved
with bootstrapping.

Over the last years, virtual populations have been built for a
variety of applications in the area of cardiac modeling. Britton
et al. (2013) generate a population of 10,000 ionic cellular
models by varying randomly a specific set of parameters, as
in bootstrapping method, to study the variability in cardiac
cellular electrophysiology. Haidar et al. (2013) apply Markov
Chain Monte Carlo methodology to generate a cohort of Type
1 Diabetes subjects and test glucose controllers. In a similar
approach to our work, Allen et al. (2016) present a strategy to
efficiently sample and filter virtual populations of pharmacology
models, taking empirical data to build data-driven acceptance
criteria. Notwithstanding these works do not focus on the
anatomy, they share with our research the essential methodology,
especially in the last case.

Other authors do focus in shape generation, mainly with
medical image as the source of information. Gilbert et al. (2021)
generate synthetic 2D, labeled echocardiography images using
GAN, and then train a convolutional neural network segment
the left ventricle and left atrium using only synthetic images.
Rodero et al. (2021) link the main deformations of a cohort
of 19 healthy hearts with the electrophysiological biomarkers
acquired via simulation. Instead of randomly sampling, the
authors perform a sensitivity analysis over a grid on the PCA
space, formed by the 9 main modes of variability (covering 90%
of variation). They validate the synthetic cohort comparing the
obtained biomakers with distributions from literature. Related to
thoracic aorta cohorts, in Liang et al. (2017) use 25 geometries
of ascending aortic aneurysm to generate a synthetic cohort
of 729 shapes in order to asses aneurysm rupture risk using
an SVM. They use uniform sampling in the intervals [µ −

Frontiers in Physiology | www.frontiersin.org 14 September 2021 | Volume 12 | Article 713118

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Romero et al. Clinically-Driven Virtual Cohorts Generation

FIGURE 10 | Left: Features importance. Right: Subpopulation classification accuracy as the number of features increases.

TABLE 6 | A summary of the conclusions that can be obtained from the results of the study presented in this paper.

Method Remarks Sampling scenarios

Bootstrapping Well suited when there is no prior knowledge over the variables

defining the cohort.

It preserves statistical properties of the original sample.

Appropriate if the statistical properties of the resulting sample are

relevant, e.g., when the goal is to perform an in-silico trial.

Gaussian distribution

sampling

Results comparable to bootstrapping in both data-driven and

clinically-driven scenarios.

It is the most consistent sampling method across the experiments.

Gaussian distribution sampling can provide denser sampling of the

tails than bootstrapping, specially if the reference cohort is small.

Anatomies far from the mean in feature space can still be

underrepresented, leading to unbalanced training sets for Machine

Learning models.

Assuming normality can bias the sample if the underlying

distribution is not Gaussian.

Uniform distribution

sampling

Increases the variance of the synthetic sample more than any

other method. Oversamples the tails of the observed distribution

where less plausible individuals can be found, leading to low

efficiency for data-driven acceptance functions.

Not suitable for reproducing the original statistical properties

observed in the reference cohort, it can provide better balanced

training sets for Machine Learning models.

Generative Adversarial

Networks

Achieves good results in the clinically driven scenario, with high

efficiency and variance.

Sensitive to training set size. Worse results than probability

distribution methods if the reference cohort is small. The sample

variance was substantially reduced in our data-driven experiments

with 26 aortas.

The limitation of the sample size must be taken into account for the

sampling scenario.

Statistical properties of the original sample can be lost, specially

with small reference cohorts.

Machine Learning

surrogates

Combined with a sampling method, they can be used to reduce

the number of evaluations of acceptance functions.

It still requires building a starting sample to be used as training set.

Statistical properties of the resulting cohort depend on the

sampling method. High rates of false negatives can bias the

sample by reducing its density in certain regions of the space of

aortas.

For each of the techniques evaluated, we present the main remarks and discuss possible strengths and limitations under different sampling scenarios.

2σ ,µ + 2σ ] for the first three modes of variation of the PCA.
In each one of these works, a particular sampling methodology
is chosen, according to the goals of their research. In our paper,
we do not focus on a particular clinical outcome but on the
methodology itself, providing a systematic comparison of some
of these methods.

A common question in any computational anatomy study is
the ability of our parametric space to capture the desired real
clinical variability. This is pretty difficult to ascertain, and a

surrogate metric is the compactness of the PCA basis. In this
respect, our study required 16 modes to capture 90% of the
variance from a sample of diseased aortas presenting ascending
aortic aneurysm. A healthy subset of aortas, by Casciaro, required
only 6 modes to capture 84%, and another congenital set of
aortas, required 19 modes to capture 90%. In Bruse et al. (2017),
thoracic aorta geometry is encoded in a PCA space to solve a
classification problem by means of hierarchical clustering. They
retain the 19 modes of deformation covering 90% of the variance.
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Liang et al. (2017) cover 80% of variance with the first three
modes of deformation. Our results thus fit within the range of
variability seen in previous results.

Clinically-driven generation have proven to be much difficult
to achieve. The efficiency of the generation of the synthetic cohort
has considerable dependence on the acceptance criteria. Our
results show this in the low efficiency achieved for aortas of
type A, which contrasts with the high efficiency obtained with
phenotypeN. In the work by Thamsen et al. (2021), they achieved
an efficiency below 0.27 using a Gaussian distribution. They
generate a first synthetic cohort of more than 10,000 individuals
and apply what they call a stepwise filtering to limit the cohort to
aortas suffering from coarctation.

We have seen that classical statistical methods in many cases
obtained considerably lower values of efficiency than the GAN,
which outperformed the rest of the methods in both, variance
and acceptance. This notable increase in the throughput of the
GAN is likely to be related with the increase in the training set.
In the data-driven scenario, the training set was formed by 26
samples, while in the clinically-driven, initial synthetic cohorts
were much larger (between 330 and 1,000 cases). It is also worth
to mention that Gaussian achieved results noticeably better than
bootstrap and Uniform. This is partly explained by the fact that
multivariate Gaussian distribution accounts for the co-variance
of the cohort, what makes the drawn samples scatter around the
mean and be mainly distributed in the main axes of variation.
This is, in general, not true for uniform distribution. Otherwise,
the bootstrapping method has a particular limitation in our
case; each reference cohort CX

0 , was extracted from an already
synthetic cohort, CB also generated by bootstrapping from the
cohort of real aortas, with size 26. This reduces the set of possible
values from which to sample when drawing each coordinate of
the feature vector. In any case, the efficiency of the sampling
methods for the clinically-driven criteria suggested that there is
an overlap in the PCA space between the phenotypes N and A,
and phenotypes A and E.

The evaluation of the acceptance functions A can require
a non-negligible amount of computation. Any vector a, has to
be translated from the feature space to the biomarkers space
to take the decision, being this computation of the biomarkers
part of the evaluation of A. In the cases considered here,
where only distances in the anatomy are involved, this process
requires evaluations of the polynomials that describe the aorta
wall. However, biomarkers derived from hemodynamics or from
the cardiac function (Liang et al., 2017; Rodero et al., 2021;
Thamsen et al., 2021), require the simulation of the process
of interest to obtain the involved biomarkers. Even with low
resolution models, this process can require a computation time
in the range of minutes to hours on a modern workstation.
Machine learning and deep neural networks are already being
used to accelerate different processes related to simulation of
hemodynamics in the aorta or perform diagnosis (Xiao et al.,
2016; Liang et al., 2018, 2020; Feiger et al., 2020). We show that,
in the generation of virtual patients cohorts, machine learning
can replace the evaluation of acceptance functions with high
accuracy. We choose to use SVM bacause they are known to
be capable of avoid over-fitting in situations where reduced size

dataset are available. This means that this strategy could be used
without requiring thousands of samples as used in this work,
what makes it feasible for simulation-based clinical criteria.

This last point, however, has to be taken into account when
using machine learning surrogates to estimate the acceptance
functions. In order to fit the model, a training set still needs to
be built. While in models such as SVM the required dataset can
be relatively small, for GAN and other network-based models
are more sensitive to this limitation, as we have seen in the poor
performance achieved by the GANwhen trained with the original
cohort of size 26. Thus, a first cohort generation task has to be
completed using the original acceptance functions, no matter
how expensive they are. This effort, however, can later pay off by
including the training set in the final cohort.

Another limitation of our study is the size of the original
sample, with a total of 26 aortas. This limitation, however, also
underpins the fact that cohort generation can be addressed even
without having large reference datasets. Indeed, the original
sample only had 3 aortas of class N, and we conjecture that it is
feasible to generate phenotypes that are absent from the reference
cohort provided that the anatomy can be properly described by
the resulting PCA representation.

Among the possible future extensions to our work we consider
the addition of Markov Chain Monte Carlo methods to the set
of sampling strategies. All the experiments have been performed
using a reduces sample of aortas with the same pathology. The
proposedmethodology could be applied to a larger, perhapsmore
heterogeneous, reference dataset. This could be of special interest
to better assess the performance of GAN in the data-driven
experiments. Also, we would like to validate our hypothesis that
it is possible to generate clinically-driven cohorts that are not
present at all in the reference dataset.

5. CONCLUSIONS

The generation of synthetic cohorts of patients is a methodology
of increasing utility in cardiovascular modeling. In this paper, we
have addressed some of the problems faced by the generation
of clinically meaningful virtual cohorts. Using the case of aorta
cohort synthesis, we have performed a systematic evaluation of
sampling methods that are commonly used in Statistical Shape
Modeling. According to our experiments, the sampling strategy
and the verification of the generated cases can have a great impact
on the efficiency of the process and on the quality of the resulting
cohort. We identify several scenarios and discuss the quality of
the results of the assessedmethodologies in each case. In addition,
we propose the use of machine learning models to accelerate the
cohort generation.

As simulation models in physiology increase their quality, and
the application of machine learning models become ubiquitous,
the use of virtual cohorts will become more frequent in therapy
design, patient stratification or in-silico trials. The results of this
paper can guide other authors in the process of reliably building
synthetic populations.
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