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Abstract

Background: In Nigeria, hepatitis B virus (HBV) infection has reached hyperendemic levels and its nature and origin have
been described as a puzzle. In this study, we investigated the molecular epidemiology and epidemic history of HBV
infection in two semi-isolated rural communities in North/Central Nigeria. It was expected that only a few, if any, HBV strains
could have been introduced and effectively transmitted among these residents, reflecting limited contacts of these
communities with the general population in the country.

Methods and Findings: Despite remoteness and isolation, ,11% of the entire population in these communities was HBV-
DNA seropositive. Analyses of the S-gene sequences obtained from 55 HBV-seropositive individuals showed the circulation
of 37 distinct HBV variants. These HBV isolates belong predominantly to genotype E (HBV/E) (n = 53, 96.4%), with only 2
classified as sub-genotype A3 (HBV/A3). Phylogenetic analysis showed extensive intermixing between HBV/E variants
identified in these communities and different countries in Africa. Quasispecies analysis of 22 HBV/E strains using end-point
limiting-dilution real-time PCR, sequencing and median joining networks showed extensive intra-host heterogeneity and
inter-host variant sharing. To investigate events that resulted in such remarkable HBV/E diversity, HBV full-size genome
sequences were obtained from 47 HBV/E infected persons and P gene was subjected to Bayesian coalescent analysis. The
time to the most recent common ancestor (tMRCA) for these HBV/E variants was estimated to be year 1952 (95% highest
posterior density (95% HPD): 1927–1970). Using additional HBV/E sequences from other African countries, the tMRCA was
estimated to be year 1948 (95% HPD: 1924–1966), indicating that HBV/E in these remote communities has a similar time of
origin with multiple HBV/E variants broadly circulating in West/Central Africa. Phylogenetic analysis and statistical neutrality
tests suggested rapid HBV/E population expansion. Additionally, skyline plot analysis showed an increase in the size of the
HBV/E-infected population over the last ,30–40 years.

Conclusions: Our data suggest a massive introduction and relatively recent HBV/E expansion in the human population in
Africa. Collectively, these data show a significant shift in the HBV/E epidemic dynamics in Africa over the last century.
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Introduction

Hepatitis B virus (HBV) infection presents a global health

problem. Worldwide, at least 2 billion people or one third of the

world’s population have been infected with HBV. Approximately

378 million people are chronic carriers and ,620,000 people die

each year from acute and chronic sequelae of HBV infection [1,2].

Furthermore, 4.5 million new HBV infections occur worldwide

each year, of which a quarter progress to liver disease [3].

The HBV genome is a partially double-stranded circular DNA

molecule of ,3.2kb in length. It contains four partly overlapping

open reading frames (ORFs): the preS1/preS2/S ORF encoding

the hepatitis B surface antigen (HBsAg); the precore/core ORF

encoding the hepatitis B e antigen and core protein; the P ORF

encoding the polymerase protein; and the X ORF encoding the X

protein [4]. The HBV genome is heterogeneous and can be

classified into 8 genotypes: A, B, C, D, E, F, G and H. Currently,

HBV genotypes are defined based on at least 8% divergence

across the complete genome sequence [5] and less than 4% intra-

genotypic divergence [6].

HBV genotypes are known to be geographically segregated [7].

Genotype E (HBV/E) is predominant in the West/Central African

crescent spanning from Senegal to Angola [8,9,10]. Despite the

extensive spread of HBV/E in this crescent, the virus is marked by a

peculiarly low overall sequence diversity of 1.75% over the whole

genome [8]. It has been suggested that it would take 200 years to

generate the current extent of HBV/E diversity [11]. Rare findings of

HBV/E in the Americas suggest a relatively recent HBV/E
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expansion in the human population in Africa, because the high

HBV/E prevalence in Africa coupled with the high volume of the

Afro-American slave trade that took place between the 17th and the

19th century [8,11,12,13] would have resulted in frequent detection of

HBV/E infection in the Americas. How HBV/E may have spread

within and throughout the HBV/E crescent remains a puzzle.

In Nigeria, HBV infection has reached hyperendemic levels

with the seroprevalence of HBsAg estimated to range from 10–

40% [13,14,15,16]. Despite the availability of a safe and effective

vaccine since 1982 [17,18] and its inclusion in Nigeria’s national

immunization program in 1995, the vaccine became available to

the country only in 2004 [19,20]. Owing to this late entry and the

absence of a national HBV surveillance program, the burden of

hepatitis B remains substantial.

The present study was conducted to obtain insight into the

molecular epidemiology of HBV/E in two remote rural commu-

nities in Nigeria, West Africa. These communities have limited

contact with the general population in the country. It was expected

that they were shielded from the major epidemiological processes

that introduced HBV infection in Nigeria. Sub-genomic and

whole-genome-based molecular epidemiological investigation

identified multifarious HBV/E strains in these communities.

Evolutionary analyses indicated the recent origin of the modern

HBV/E variants and suggested a massive introduction of HBV to

the communities at the same time it was introduced to the entire

West/Central Africa sub-region.

Materials and Methods

Serum samples and HBsAg serology
A total of 500 serum samples were collected from asymptomatic

volunteers residing in two neighboring remote rural communities in

Nasarawa State, Nigeria, West Africa in 2007. These two remote

communities are ,2 miles from each other with a total population of

,2000 inhabitants. The traditional heads of the communities served

as the society entry points. Written informed consent was obtained

from all participants involved in this study. The use of specimens in

this study was approved by the Institutional Review Board of the

Centers for Disease Control and Prevention, Atlanta, GA and the

Nigerian Federal ministry of Health. The inhabitants of these villages

are of low socio-economic status lacking basic medical facilities. The

commercially available Smart Check immunoassay (Globalemed,

Cape Town, South Africa) for the qualitative detection of HBsAg by

rapid chromatography was used for screening HBV infection in all

the samples and was conducted according to the manufacturer’s

instructions.

Nucleic acid extraction
Total nucleic acid was isolated from all serum samples (n = 500)

using the robotic Roche MagNA Pure LC system (software version

3.0.11) and the MagNA Pure LC Total Nucleic acid isolation kit

(Roche, Applied Sciences, Indianapolis, IN) according to manu-

facturer’s instructions.

PCR amplification of the S gene
Amplification of the partial S-gene was performed in a nested

format to yield a product of approximately 400 bp using: for first-

round PCR primer pairs, HBV_S1F (position 179), 59-CGA TTT

AGG TGA CAC TAT AGA AGA GAG GCT CTA GGA CCC

CTG CTC GTG TT, and HBV_S1R (position 704), 59-CAG

TAA TAC GAC TCA CTA TAG GGA GAA GGC TCG AAC

CAC TGA ACA AAT GGC ACT; and for second-round PCR

primer pairs, HBV_SNF (position 217), 59-CGA TTT AGG TGA

CAC TAT AGA AGA GAG GCT GTT GAC AAG AAT CCT

CAC AAT ACC, and HBV_SNR (position 658), 59-CAG TAA

TAC GAC TCA CTA TAG GGA GAA GGC GGC TGA GGC

CCA CTC CCA TA. After a denaturation step at 95uC for

10 min, PCR reactions were performed in 30 cycles (95uC for

30 sec, 55uC for 1 min and 72uC for 32 sec) followed by melting

curve analysis (95uC for 1 min, 80uC for 30 sec and 95uC for

30 sec) performed in one cycle using an Mx3005P SYBR Green

Real-Time PCR System (Stratagene, La Jolla, CA).

HBV whole-genome amplification
Full-length HBV genome was amplified by two rounds of PCR.

The first round of PCR was conducted using the primer

combination of HBV1798FLong and HBV1801RLong (Table 1)

as follows: initial denaturation (94uC for 3 min), followed by 10

cycles with each cycle consisting of denaturation at 94uC for 20 sec,

annealing at 55uC 245uC for 30 sec, and extension at 68uC for

4 min. Annealing temperature was reduced at the rate of 1uC per

cycle from 55uC to 45uC. Thereafter followed 35 cycles, with each

cycle consisting of denaturation at 94uC for 20 sec, annealing at

45uC for 30 sec and extension at 68uC for 4 min. The extension

time was increased by 10 sec/cycle up to 7.2 min. The final

extension was at 68uC for 10 min followed by cooling at 4uC. The

first-round PCR was performed on the GeneAmpH PCR system

9700 (Applied Biosystem) using the Expand High-Fidelity PCR test

kit. The nested PCR was done with set of six overlapping fragments,

using the following primer combinations (Table 1): (HBV1847FS

with HBV2394RS, HBV2298FS with HBV2933RS, HBV2821FS

with HBV0272RS, HBV0179FS with HBV0704RS, HBV0599FS

with HBV1286RS and HBV1175FS with HBV1788RS) under the

following cycling conditions: pre-incubation at 95uC for 5 min, after

which amplification for 25 cycles, each cycle consisting of

denaturation at 95uC for 15 sec, annealing at 55uC for 20 sec

and extension at 72uC for 1 min. After amplification, melting curve

analysis was performed by raising the temperature to 95uC
for 0.01 sec in one cycle using the Mx3005P SYBR Green Real-

Time PCR System (Stratagene, La Jolla, CA). The derivative

melting curves were obtained with the instrument data analysis

software.

S-gene quasispecies analysis
Twenty-two HBV/E samples representing the major branches of

the HBV/E phylogenetic tree and the two HBV/A3 samples were

used for quasispecies analysis. Five specimens in this HBV/E panel

were obtained from 2 groups of siblings. Additionally, when selecting

samples for quasispecies analysis, preference was given to genetically

close HBV/E variants identified in each major branch of the

phylogenetic tree in order to assess potential transmissions. This

subset was analyzed using an adaptation of our previous method,

end-point limiting-dilution real-time PCR (EPLD-PCR) to HBV

[21] that could detect HBV S-gene variants at a concentration of

0.1% of the total viral population [22]. Briefly, EPLD-PCR was

performed using serially diluted DNA. The BiomekH 3000 robotic

work station (Beckman Coulter, Brea, CA) was used to obtain 0.25

log dilutions of the HBV DNA. The dilution that resulted in

positivity in two of four replicates was considered to be limiting

(DNA target templates being assumed to be distributed in a Poisson

manner so that 50% or less reactions do not carry template

molecules and thus do not generate PCR products). Under such

conditions, the positive reactions are most likely to have been

initiated from a single template molecule. The LightCyclerH 480

software (Version 1.5.0.SP3, Roche, Indianapolis, IN,) was used to

perform the melting curve analysis. For each isolate, 96 EPLD

amplification reactions were carried out to obtain approximately 48

clones per sample; the exact number varied depending on the viral
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titer. The PerfeCTa SYBR FastMix chemistry (Quanta BioSciences,

Gaithersburg, MD) was used for the PCR amplification.

DNA sequencing
Sequencing was performed using the second-round PCR

products. SP6 and T7 primers (Table 1) were used for sequencing

of the PCR products using BigDye version 3.1 in an automated

DNA sequencer ABI 3130xl (Applied Biosystems, Foster City,

CA). Sequencing PCR involved 25 cycles, each cycle consisting of

96uC for 10 sec, 50uC for 5 sec and 60uC for 4 min. Sequence

electrophoregrams were initially analyzed and edited using the

SeqMan and MegAlign programs of the Lasergene DNA and

protein software version 7.0 (DNASTAR Inc., Madison, WI).

Phylogenetic analysis and inference of serotypes
Nucleotide sequences were aligned using the GCG (Version

11.1.2-UNIX, Accelrys Software Inc, San Diego, CA) multiple

alignment program Pileup. HBV genotypes were classified based

on the S-gene sequence and confirmed with whole-genome

sequences by comparing each sequence with published reference

sequences from GenBank. Initial Neighbor-joining trees were built

using the Kimura two-parameter model of nucleotide substitution

[23]. Phylogenetic trees were constructed using the maximum

likelihood algorithm implemented in Dnaml (PHYLIP package,

v.3.6). Frequency distributions of pair-wise distances between

nucleotide sequences were estimated using the evolution program

in the Accelrys GCG Package (Genetic Computer Group, version

11.1-UNIX, Accelrys Inc., San Deigo, CA). SAS for Windows

(Version 9.12, SAS Institute Inc., Cary, NC) was used for statistical

analysis. HBV serotypes were predicted based on amino acid

sequences at positions 122, 160, 127 and 134 in the S gene [24,25].

Median-Joining network (MJN)
MJN of the S-gene quasispecies of HBV/E and HBV/A3 were

constructed using the program NETWORK 4.0 [26]. The MJN

method begins computing the minimum spanning trees (a graph that

connects all the sequences with the minimum necessary total length of

the branches), following which all the constructed graphs are combined

within a single (reticulate) network. Aiming at parsimony, the algorithm

subsequently adds a few consensus sequences (called Median Vectors)

of three mutually close sequences at a time. These median vectors can

be biologically interpreted as possibly extant but unsampled sequences

or extinct ancestral sequences. The resulting network normally harbors

all optimal trees, as well as numerous suboptimal trees [26].

Genetic structure of HBV/E
Every complete genome of HBV was obtained from the National

Center for Biotechnology Information Website (NCBI) in late 2008.

All sequences were aligned using ClustalW [27]. Further refinement

of the alignment was made manually. Two tests for detecting

population growth based on the Tajima’s D [28] and Fu’s FS [29]

statistics were performed using ARLEQUIN [30]. A p value of 0.05

or less was considered statistically significant.

Geographic distribution
Nucleotide sequences identical to the most frequent S- gene

sequence variant found in this study were selected from GenBank

using BLAST [31]. Information on the geographic location where

these sequences were identified was extracted from GenBank and

published articles.

Prediction of the Most Recent Common Ancestor (MRCA)
MRCA of the S gene was determined using FASTML version

2.02 [32] from the basal node on a maximum-likelihood tree of

nucleotide sequences deduced from the S-gene quasispecies of 22

HBV/E variants, using as out-group a sequence from a patient

infected by a different genotype.

Divergence time calculations of HBV genotype E
Divergence times were calculated using 47 P gene sequences of

HBV/E from the two Nigerian villages. A second sequence

Table 1. PCR primers.

Primer name Primer sequence

HBV1798FLong CTGCGCACCAGCACCATGCAACTTTTTC

HBV1801RLong CAGACCAATTTATGCCTACAGCCTCCTA

HBV1847FS CGATTTAGGTGACACTATAGAAGAGAGGCTTGTTCATGTCCCACTGTTCAA

HBV2394RS CAGTAATACGACTCACTATAGGGAGAAGGCTGGCGAGGGAGTTCTT

HBV2298FS CGATTTAGGTGACACTATAGAAGAGAGGCTGACCACCAAATGCCCCTAT

HBV2933RS CAGTAATACGACTCACTATAGGGAGAAGGCTTCGGGAAAGAATCCCAGAGGAT

HBV2821FS CGATTTAGGTGACACTATAGAAGAGAGGCTGGTCACCATATTCTTGGGAAC

HBV0272RS CAGTAATACGACTCACTATAGGGAGAAGGCTTGAGAGAAGTCCACCACGAGT

HBV0179FS CGATTTAGGTGACACTATAGAAGAGAGGCTCTAGGACCCCTGCTCGTGTT

HBV0704RS CAGTAATACGACTCACTATAGGGAGAAGGCTCGAACCACTGAACAAATGGCACT

HBV0599FS CGATTTAGGTGACACTATAGAAGAGAGGCTGTATTCCCATCCCATCATCCTG

HBV1286RS CAGTAATACGACTCACTATAGGGAGAAGGCTGCTAGGAGTTCCGCAGTATGG

HBV1175FS CGATTTAGGTGACACTATAGAAGAGAGGCTGCCAAGTGTTTGCTGA

HBV1788RS CAGTAATACGACTCACTATAGGGAGAAGGCTGCCTACAGCCTCCTA

SP6 cgatttaggtgacactatagaagagaggct

T7 cagtaatacgactcactatagggagaaggct

*Numbers within primer names represent the primer positions. An F after the primer position stands for sense primers while R stands for anti-sense primers.
**SP6 and T7 are tag sequences attached at the 59 end of all PCR primers used in this study. SP6 and T7 primers were used to sequence PCR fragments.
doi:10.1371/journal.pone.0011615.t001
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alignment was created by adding 12 sequences from GenBank

with known dates of collection to the original Nigerian sequences.

The accession numbers for these sequences are (AB194947),

(AB194948), (AB205129), (AB205189), (AB205190), (AB205191),

(AB205192), (AP007262), (AY738144), (AY738145), (AY738146)

and (AY738147). Divergence times were calculated using BEAST

v 1.4.8 [33]. The GTR substitution model was used with four

gamma categories and invariant sites. Codons were partitioned

into three with unlinked substitution model and unlinked rate

heterogeneity model across the codon partitions. Each sequence

alignment was analyzed with a strict or relaxed clock with an

initial estimate for the rate of substitution as 2.9761024 [34].

Constant size, exponential and expansion growth priors were used.

All models were run until the effective sample size for each was

greater than 200. In order to compare the models, the Bayes

Factor was estimated using importance sampling of the posterior

probability [35]. The exponential substitution model with an

expansion growth prior was chosen because it had the largest

Bayes Factor; however, none of the models tested was found to be

superior to any other model. Only HBV/E isolates were included

in the BEAST analysis.

The effective population of the Nigerian HBV sequences was

calculated using the skyline plot as implemented in BEAST. All

models tested showed an expansion in the effective population of

HBV in these two villages. The Bayes Factor for these models

indicated that no single model was superior to any other model.

The plot chosen for presentation here was the strict clock with the

piecewise linear Bayesian skyline model with three population

groups.

Detection of positive selection
To determine if the HBV/E strains that are uniquely restricted

to the HBV/E crescent are adapted to the populations in that

region, we calculated overall and site-by-site selection pressures

acting on the four ORFs in the 47-HBV/E whole genomes. We

estimated the mean numbers of non-synonymous substitutions (dN)

and synonymous substitutions (dS) per site (ratio dN/dS) using the

Fixed Effects Likelihood (FEL) analysis implemented in the

program HyPhy 0.99 beta [36], which is available in a parallel

computing fashion at the Datamonkey web interface [37]. The

algorithm works in three phases [38,39]: first, the General Time

Reversible nucleotide model was fitted to the data and tree using

maximum likelihood to obtain branch lengths and substitution

rates; second, a codon model was fitted to the data to obtain codon

branch lengths for scaling dN and dS estimated subsequently from

each site; and thirdly, a site-by-site likelihood-ratio test was

performed to assess whether dN is significantly different from dS.

Nucleotide sequence accession numbers
The S-gene sequences of the 55 HBV isolates have been

deposited in the National Center for Biotechnology Information

GenBank database under the accession numbers (HM363565) to

(HM363619). The 47 HBV/E and the two HBV/A3 full-genome

sequences were deposited with accession numbers (HM363565) to

(HM363611) and (HM363612) to (HM363613) respectively.

Results

HBV seroprevalence
The 500 samples collected from the 2 villages were tested for

HBsAg and for HBV DNA by the S-gene PCR. Fifty-three

samples were HBsAg-positive and 55 were HBV-DNA-positive.

All HBsAg-positive specimens were found to be HBV DNA-

positive. However, HBsAg was not detected in 2 HBV DNA-

positive specimens. In all, 55 samples were HBV-positive giving an

overall prevalence of 11%, indicating a high prevalence of HBV

infection.

Phylogenetic analysis of HBV variants
Taking into consideration the relative isolation of these 2

communities, it can be expected that only a single HBV strain or

very few strains are in circulation in their populations. However,

analysis of the S-gene sequences identified 2 HBV genotypes, A

(sub-genotype A3, n = 2) and E (n = 53), with 2 and 35 distinct

sequence variants representing HBV sub-genotype A3 and

genotype E, respectively (Fig. 1). To further characterize these

HBV variants, the full-length HBV-genome sequences from 47

HBV/E-infected individuals and 2 HBV/A3-infected individuals

were obtained. Six HBV/E isolates did not yield a complete

sequence probably due to low viral titers. Phylogenetic analysis of

the full genomes for 47 HBV/E and two A3 isolates confirmed the

genotype classification based on the S-gene sequences (Fig. 2) and

further substantiated that a wide diversity of HBV strains

circulated in both communities. Consistent with analysis of the

S-gene sequences, phylogenetic analysis of the whole-genome

sequences (Fig. 2) did not reveal any village-specific clustering and

showed extensive intermixing of these sequences with other HBV/

E variants identified in different countries in Africa.

Serotype distribution of HBV strains
Based on the presence of Arg122, Lys160 and Leu127/Ile127

[24,25] all the A3 isolates could be classified as serotype ayw1.

Among the 53 HBV/E isolates, two isolates could be classified as

serotype ayw2 (3.7%). All the others belonged to ayw4 (96.3%).

The ayw2 was deduced by the presence of Pro127 and Phe134

[24,25].

Intra-host HBV heterogeneity
The presence of 2 HBV genotypes and many HBV strains raises

questions about the origin and maintenance of this remarkable

HBV diversity in these two communities. To investigate the extent

of variant/strain distribution and their spread within the

population, quasispecies analysis was conducted using EPLD

RT-PCR [21] on 2 HBV/A3 and 22 HBV/E specimens. The

quasispecies analysis revealed many HBV/E variants (n = 229)

circulating in these 2 communities and substantial intra-host

diversity in all individuals (Fig. 3). Among individuals infected with

HBV/E, 3 were co-infected with HBV genotype G and 2 with

HBV genotype D (Fig. 4). Genetic diversity between HBV variants

identified in 19 individuals infected with only one HBV genotype

was in the range of 0.8%–3.6%, while individuals coinfected with

two genotypes (HBV/G and HBV/D) showed higher variability

ranging from 5.4%–7.1% (Table 2). The HBV sequence variants

identified in the 2 individuals infected with genotype A3 strains

were separated into 2 clusters in the phylogenetic tree (Fig. 1 and

2), indicating that both individuals were infected with 2

independent strains. Initial phylogenetic analysis showed strong

intermixing of the HBV/E variants recovered from different

residents (not shown). To visualize genetic interconnections

between HBV variants and show variant frequencies in the

population at the same time, we used a MJN [26]. Among 229

HBV variants, 210 (91.7%) were unique and 19 (8.3%) were found

in more than one individual. The most frequent HBV sequence

was shared by 10 residents of both villages; it was located in the

center of the MJN and had the highest number of direct links to

other sequences (Fig. 3). The majority of the high-frequency HBV

variants were located in proximity to the center of the MJN.

Among 19 HBV variants shared by more than one individual, 8
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had a direct link to the most frequent variant in the center of the

MJN (Fig. 3). These findings indicate a very close genetic

relatedness between predominant and frequently shared HBV/E

variants.

Network of shared HBV sequences
Interestingly, among the 22 HBV/E infected people only 2 were

infected with unique strains, while the other 20 individuals were

infected with at least one HBV variant shared by two or more

residents. The quasispecies analysis identified 19 different

sequences distributed among 20 HBV/E infected individuals,

with each person sharing HBV sequences with 2 to 14 other

people (Fig. 3). A network of shared HBV sequences was

constructed (Fig. 5) using the distribution of HBV/E sequences

among infected people. In this network, each node represents a

person infected with the HBV/E strain and each link connects

individuals sharing at least one HBV/E sequence. The network is

very densely connected. Ten individuals, a67, a84, a85, a112,

a227, c16, c19, c98, v67 and v137, representing a half of all nodes

in the network, are completely interlinked, thus constituting the

largest complete clique or the entirely interlinked component of

the network.

The network and the largest clique included males and females

of different ages residing in both villages (Fig. 5). Such extensive

HBV strain sharing suggests very efficient HBV transmission

between residents of both villages. This transmission seemed

effective among both genders and people of a wide range of ages.

Among 24 individuals tested for HBV quasispecies, 5 were females

with the age ranged from 5 to 21 yr and 19 were males between 15

and 66 yr. All 5 females were infected with HBV/E strains shared

with other persons. The linked females resided in both villages.

Among 20 linked individuals, two were males, 60 and 66 yr old;

both resided in the same village.

Among 24 individuals tested for HBV quasispecies, we

identified two groups of siblings residing in the same village.

Siblings a84 and a85 were found sharing HBV variants not only

with each other but also with 13 and 9 other individuals,

respectively (Fig. 5). Both were members of the largest clique in the

HBV/E network. However siblings v5, v64 and v157 did not share

any HBV/E variants with each other. Sibling v157 was not

connected to the network. Siblings v5 and v64 were part of the

network but did not have a direct link between each other and

shared HBV/E variants only with 2 other individuals residing in

the same village (Fig. 5). These observations suggest that HBV

transmission between siblings was not the major route of

transmission in these communities. Involvement of individuals

with a wide range of demographic characteristics in the network of

shared HBV/E sequences implies a complex pattern of transmis-

sion operating among residents of these 2 villages. This supposition

is consistent with finding four HBV genotypes and numerous HBV

variants circulating in the 2 communities. Interestingly, the

quasispecies analysis of both HBV/A3 strains showed no

coinfection with any other HBV strain found in this population

(Fig. 6) despite a significant HBV prevalence and frequent

coinfections between HBV/E strains.

Selection pressures
Continuous circulation of HBV strains in closed communities

may lead to the unique HBV adaptation under selection pressures

acting specifically on their populations. Such selection pressures

may be detected by determining dN/dS ratios. Analysis of the dN/

dS values for each of the four ORFs of the 47 HBV/E isolates

showed that the evolution of these HBV variants was driven

predominantly by negative or purifying selection. Specifically, the

mean dN/dS for the P, precore/core, X and S genes were 0.390805

(95% CI, 0.3538–0.430356), 0.631286 (95% CI, 0.553566–

0.715977), 0.880608 (95% CI, 0.745113–1.03199), and

0.638155 (95% CI, 0.537437–0.750901), respectively. However,

five codons of the P gene, four codons of the precore/core gene,

three codons of the X gene and one codon of the S gene showed

statistically significant evidence of positive selection (Table 3).

A substitution within codon 762 of the P gene showed a

statistically significant evidence of positive selection (p = 0.044). A

non-synonymous substitution affected codon 768. These two

codons encode amino acids at the anchor positions 2 and 8 within

a potential HLA A23, HBV T-cell epitope [40], which is one of

the most frequent HLA alleles in Nigeria and the West/Central

Africa sub-region [16,41,42]. Although analysis of the HBV

genotype A, C and D sequences retrieved from GenBank

identified mutations within the same T-cell epitope, none of these

mutations affected the anchor positions (data not shown). This

finding suggests the HBV/E-specific adaptation to HLA-restricted

immunological responses. The significance of the other sites under

positive selection within the HBV/E genome is unclear.

Geographic distribution of the most frequent HBV/E
variant

The most frequent HBV/E sequence variant located in the

center of the MJN (Fig. 3) was found to be identical to the HBV/E

MRCA. A search of GenBank using BLAST yielded 160

nucleotide sequences identical to the HBV/E MRCA, 130 of

which had associated information on their geographic location in

Africa. These sequences were broadly distributed across West

Africa (Benin, n = 2; Burkina Faso, n = 1; Gambia, n = 30; Ghana,

n = 28; Guinea, n = 41; Mali, n = 3; Nigeria, n = 10; Togo, n = 2),

Central Africa (Central African Republic, n = 1; Cameroon,

n = 11) and Madagascar (n = 1).

Time to the most recent common ancestor of HBV/E
The remote location of these 2 Nigerian villages suggests

infrequent opportunities for HBV to be introduced to these

communities. However, the identification of 4 HBV genotypes and

numerous HBV/E variants implies more than one introduction of

HBV. In order to evaluate the epidemic history of HBV/E in the

villages we calculated the tMRCA for the HBV isolates identified

in this study. A number of models were used which showed that

the tMRCA for the HBV/E variants found in these communities

existed ,60 years ago (1952; 95% HPD: 1927–1970). However, it

should be noted that analysis of sequences linked to a single date of

collection could result in underestimating the true tMRCA. To

place the tMRCA for these HBV/E isolates within the time frame

for the entire HBV genotype E, the tMRCA was calculated for all

HBV/E variants found in different countries of West/Central

Africa in addition to those identified in this study. This calculation

showed that the tMRCA for the entire HBV/E also existed ,60

years ago (1948; HPD: 1924–1966). These results suggest that the

HBV/E variants from the 2 communities originated at the same

time as HBV/E strains circulating in the entire HBV/E crescent.

Figure 1. Phylogenetic tree of the partial S-gene sequences (378bp) from 55 Nigerian HBV isolates identified in this study (marked N)
and sequences recovered from GenBank (not marked). Sequences retrieved from GenBank are denoted by their accession numbers and the
source country of the isolates. Bootstrap values of major branches are shown.
doi:10.1371/journal.pone.0011615.g001
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Population dynamics of HBV/E
The recent origin and broad distribution of the HBV/E variants

in West/Central Africa suggests a rapid population expansion of

HBV/E infections. Indeed, both Tajima’s D and Fu’s FS tests

rejected the null hypothesis of neutrality and constant population

size (p = 0.0046 and 0.0009, respectively), suggesting the expan-

sion of the HBV/E population. The star-like topology of the MJN

constructed for the HBV/E quasispecies (Fig. 3) is consistent with

this suggestion. Skyline plot analysis (Fig. 7) of HBV/E variants

found in these 2 communities supported these observations and

showed an increase in the effective number of HBV/E infections

over time. Collectively, these findings indicate significant changes

in the epidemiological processes affecting HBV/E infection over

the last 50–100 years.

Discussion

Analysis of serum specimens collected from two remote rural

communities in North Central Nigeria revealed that ,11% of

their residents were actively infected with HBV. Although this

high prevalence concurs with the rate of HBV infection of 10–40%

found in other populations across Nigeria [13,14,15,16], it is

surprising that limited outside contacts did not shield these

communities from HBV infection. Taking into consideration the

isolation of these communities from the general population and

the high prevalence of HBV infection, it is conceivable that only a

few HBV strains could have been introduced and effectively

transmitted among the residents. However, phylogenetic analysis

of the S-gene sequences from 55 HBV isolates recovered in this

study showed the presence of many HBV variants that belong to

two genotypes, A and E (Fig. 1 and 2).

HBV/E was the most prevalent genotype, being detected

among 96.4% of the isolates. Phylogenetic analysis showed that all

the HBV/E variants were closely related to HBV/E strains

circulating in West and Central Africa (Fig. 1 and 2). Detection of

the most frequent HBV/E variant (Fig. 3) in many African

countries strongly supports close genetic relatedness between

HBV/E variants in these communities and other regions of Africa.

These findings are in agreement with the previous observation of

HBV/E in the majority of HBV-infected individuals in Nigeria

[13]. Additionally, it confirms that Nigeria is part of the HBV/E

crescent spanning countries from Senegal to Namibia

[8,11,13,43]. Only 2 (3.6%) isolates belonged to HBV/A3, and

both preferentially clustered with the recently identified HBV/A3

isolates from Cameroon [44] rather than with HBV/A3 isolates

from Gabon [45]. Cameroon could have been a possible source of

HBV/A3 into Nigeria owing to the substantial volume of trade

and intermarriage between these two neighboring countries (J.C.F.

Figure 2. Phylogenetic tree of the 47 HBV/E and 2-HBV/A3 whole genome sequences from Nigeria (marked N) and GenBank
references (not marked). Sequences retrieved from GenBank are denoted by their accession numbers and the source country of the isolates.
Bootstrap values of major branches are shown.
doi:10.1371/journal.pone.0011615.g002

Figure 3. Median joining network of the intra-host S-gene sequence variants identified in 22 individuals infected with HBV/E. Each
node represents a single sequence variant. Each color represents a single individual. The size of the node reflects frequency of the corresponding
variant in the population.
doi:10.1371/journal.pone.0011615.g003
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personal observation). None of the HBV/A in this study grouped

with the African/Asian A1 or European/American A2 subgeno-

types.

Of the 53 HBV/E isolates, 51 (96.2%) were predicted to belong

to serotype ayw4 and 2 (3.8%) to ayw2, while the 2 HBV/A3

isolates belonged to ayw1. These data are in disagreement with

previous findings that all HBV/E from Africa belonged to serotype

ayw4 [13,46,47]. No evidence of recombination was found in the

HBV/E ayw2 isolates. The geographical distribution and frequen-

cy of HBV/E ayw2 are not known.

Phylogenetic analysis of the whole-genome sequences (Fig. 2)

did not reveal any village-specific clustering and showed extensive

intermixing of these sequences with other HBV/E variants

identified in different countries in Africa. Genetic diversity

between the whole-genome sequences identified for HBV/E

isolates circulating in the 2 communities was 2.1%, which is

similar to the range found among all other HBV/E variants

[8,11,43]. Such low genetic diversity among these local HBV/E

isolates indicates that the virus might have only been recently

introduced into these rural populations. Additionally, the presence

of many HBV/E variants in the 2 communities and apparent

intermixing with variants from other African countries suggest that

all these HBV variants were introduced rather than having

independently evolved in these communities. Because of limited

Figure 4. Phylogenetic tree of HBV sequence variants identified in 5 individuals with mixed genotype infections. Sequences identified in
this study are colored. Reference sequences retrieved from GenBank for genotypes HBV/E, HBV/G and HBV/D are shown in black. The consensus
S-gene sequences for each individual are indicated with white arrows. All sequences that obtained from a single individual are shown using same color.
doi:10.1371/journal.pone.0011615.g004
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contacts with outside populations, few opportunities were available

for extraneous transmission, and, therefore, these HBV variants

were most probably introduced to these villages simultaneously or

within a very short timespan.

Analysis of HBV quasispecies from 24 residents of these 2

communities revealed that each individual was infected with

many different HBV variants (Fig. 3). Identification of the

genotype D and G sequences in 5 individuals (Fig. 4) adds

another level of complexity to HBV populations circulating in the

2 communities. However, the consensus sequences identified by

direct sequencing of PCR fragments (Fig. 1 and 2) did not

accurately reflect the genotype complexity of the HBV popula-

tion in each infected person. Among 22 residents infected with

HBV/E, 20 shared HBV variants with 2–14 other individuals.

Variant sharing was so extensive that a large network of shared

HBV sequences linking 20 residents could be constructed (Fig. 5).

Among these 20 residents, 10 were completely interlinked

through shared HBV sequences to each other. Should variant

sharing be considered as the proof of transmission [48,49], this

network reveals a very complex pattern of HBV transmission,

which could be related to frequent infections with more than one

HBV variant or to extensive superinfections with different HBV

variants. The network contains male and female individuals of

different ages residing in both villages, which suggests that HBV

transmission occurred across both communities via a mode

affecting the entire population.

The predominant mode of transmission leading to such

significant HBV variant sharing is not known. Analysis of HBV

quasispecies shared within 2 groups of siblings suggests that intra-

familial transmission is not the only possible mode of transmission.

These numerous HBV strains could have been maintained within

the population through socio-cultural practices like facial or body

scarification, traditional birth attendance and shaving by local

barbers using unsterilized sharp instruments, all of which have the

potential for the transmission of blood-borne pathogens and which

have been associated with the transmission of human immunode-

ficiency virus (HIV) in Nigeria [50,51].

Phylogenetic analysis also indicated a very close genetic

relatedness between predominant and frequently shared HBV/E

variants. These observations in conjunction with the star-like

MJN topology suggest a very dynamic evolution of HBV/E

variants found in these communities. The close connections

between the HBV/E variants (Fig. 3 and 5) and frequent sharing

of HBV sequences between individuals did not allow for a clear

division of these HBV/E variants into separate strains,

suggesting that the population of variants can be seen as a

single swarm evolving among many hosts. Given the significant

intermixing between the HBV/E variants found in this study and

HBV/E variants identified in other African countries, together

with the low heterogeneity of all these variants, this suggestion

seems applicable to the entire HBV/E. The existence of this

swarm of closely related HBV variants may reflect its recent

Table 2. Divergence within the HBV S-gene quasispecies.

Isolates
Age
(years) Gender Community

HBV
genotype

HBV
Serotype

Number
of Clones

Number of
unique clones

% Divergence within
quasispecies

Co-infecting
HBV genotype

A32 30 M 1 E ayw4 96 3 0.8 -

A51 66 M 1 E ayw4 46 19 1.8 -

A58 33 M 1 E ayw4 40 17 2.5 -

A67 60 M 1 E ayw4 15 4 0.8 -

A84 30 M 1 E ayw4 77 24 3.8 -

A85 15 M 1 E ayw4 64 15 1.8 -

A100 19 M 1 E ayw4 65 3 1.3 -

A112 21 F 1 E ayw4 88 11 1 -

A178 5 F 1 E ayw4 48 12 2.3 -

A227 18 M 1 E ayw4 86 17 7.1 (2.8) D

C16 24 M 2 E ayw4 23 7 1.0 -

C19 25 M 2 E ayw4 66 19 1.8 -

C8 25 M 2 E ayw4 46 14 6.8 (1.8) D

C98 12 F 2 E ayw4 59 10 1.5 -

V5 23 M 1 E ayw4 8 6 5.4 (2.0) G

V16 21 F 1 E ayw4 96 13 1.0 -

V30 22 M 1 E ayw4 92 37 6.0 (0.8) G

V64 27 M 1 E ayw4 41 12 1.3 -

V67 19 F 1 E ayw4 15 7 6.8 (1.5) G

V100 26 M 1 E ayw4 44 11 1.8 -

V137 20 M 1 E ayw4 47 8 0.8 -

V157 24 M 1 E ayw4 18 12 2.5 -

V103 22 M 1 A ayw1 78 4 2 -

C3 24 M 2 A Ayw1 45 12 2.5 -

*The percentage diversity in bracket represents the genetic distance observed when co- infecting viral genotypes was removed from the analysis. Gender: M = male,
F = female. Location: Village 1 and village 2.
doi:10.1371/journal.pone.0011615.t002
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origin followed by diversifying selection and adaptation to its

particular transmission mode in the West/Central African

HBV/E crescent.

The origin of HBV/E remains unclear. The very rare detection

of HBV/E infections outside of Africa suggests that HBV/E

became prevalent in the West/Central Africa only after the trans-

Atlantic slave trade [8,9,10,11,12,13,43,52]. This hypothesis of the

recent HBV/E origin was supported by tMRCA analysis. The

MRCA for the 47 HBV/E full-length isolates identified in this

study was estimated to appear in ,1952 (95% HPD: 1927–1970).

Surprisingly, a similar tMRCA (,1948; 95% HPD: 1924–1966)

was estimated for the entire HBV/E. These findings indicate that

the HBV/E variants identified in the 2 villages and in the entire

HBV/E crescent in Africa have a similar time of origin.

Uncertainty in establishing the rate of substitutions for HBV may

significantly affect estimates of tMRCA. Recently, tMRCA for HBV/

E has been estimated to range between 30 to 1536 years depending on

the used substitution rate [53]. The rate of 2.9761024 substitutions

per site per year [34] used in the present analysis is most consistent

with estimates made in several studies [54]. The analysis conducted

here dated the HBV/E MRCA within a timeframe consistent with the

hypothesis that modern HBV/E lineages emerged after the cessation

of the trans-Atlantic slave trade [8,11,12,13].

Although the modern HBV/E variants have a recent origin, the

HBV/E variants were probably present long before the calculated

tMRCA. Therefore, HBV/E could still have been introduced to

the other parts of the world through the slave trade. The recent

discovery of HBV/E variants among individuals of African

descent in one isolated community in Colombia, South America

[53] provides some support to this hypothesis. The coalescent

analysis conducted in that study suggested that the closely related

HBV/E variants found in that community originated from a single

variant that existed a few years ago, thus indicating that only a

single HBV/E strain was introduced to that community [53].

Considering its isolation and lack of contacts with persons

traveling from Africa over the period of time exceeding the

calculated tMRCA for these variants [53], it can be speculated

that the ancestral HBV/E strain was introduced to that

community many years ago, possibly even during the time of

the slave trade.

Figure 5. Network of individuals sharing identical sequences. Each node represents an individual and the link connects individuals that share
at least one HBV variant. Blue nodes belong to village 1 (light for females, dark for males) and yellow nodes belong to village 2 (light for females, dark
for males).
doi:10.1371/journal.pone.0011615.g005
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The 2 isolated Nigerian communities in the current study were

infected with and maintained a diverse population of HBV/E

variants. This diversity is of the same degree as for all HBV/E isolates

identified in different countries of Africa. Thus, HBV/E variants

from Colombia [53] and the 2 communities in this study most

probably had different evolutionary and epidemiological histories.

Although the actual epidemiological and evolutionary processes

leading to such a difference in the HBV/E sequence diversity are not

known, it may be speculated that the conditions for massive

introduction of multifarious HBV variants to the Nigerian commu-

nities did not exist when HBV was introduced to the Colombian

community.

Strikingly, the estimated divergence dates for the identified

HBV/E variants from the MRCA coincide with the period of

intense mass public-health campaigns conducted in West/Central

Africa. During 1967–1969, the World Health Organization

mounted a large-scale program to eradicate smallpox and measles

in West and Central Africa by arm-to-arm injections using jet

injectors that have been recognized as presenting a significant risk

for infection by blood-borne pathogens [55,56,57]. The geograph-

ical area stretching from Mauritania to the Congo (Zaire) river and

from the Bight of Benin to the Sahara desert, covering 20

countries, constituted a single contiguous territory with ,120

million inhabitants at that time. Between January 1967 and

December 1969, one hundred million persons living in this belt

were vaccinated against smallpox [57]. However, the mass

vaccination practices were already adopted more than 50 years

before the campaigns began. Mass inoculations against smallpox

was carried out in the late 19th century in Nigeria, Benin, Ghana,

Guinea and Burkina-Faso that involved serial exchanges of blood

and lymph [58,59,60,61]. These could have constituted a route

along which HBV/E was transmitted. It has been proposed that

mass vaccination campaigns were associated with the dissemina-

tion of HBV/E in this region of Africa [55,62]. In Egypt, unsafe

injections used during nationwide campaigns against schistosomi-

asis between 1920 and 1980 have been associated with the

country’s high prevalence (.40%) of hepatitis C virus (HCV)

infection [63,64]. With HBV estimated to be ,10 times more

transmissible than HCV [62,65], unsafe injections are a possible

route of HBV/E transmission.

The data obtained in this study, although providing no direct

indication on the actual events leading to the high HBV

Figure 6. Median joining network of the intra-host S-gene
sequence variants identified in 2 individuals infected with
HBV/A3. Each node represents a single sequence variant. Each color
represents a single individual. The size of the node reflects frequency of
the corresponding variant in the population.
doi:10.1371/journal.pone.0011615.g006

Table 3. The number of negatively selected sites and specific sites under positive selection.

ORFs Number of negatively selected sites Positively selected sites P-Value for positively selected sites

Polymerase 66 Codon 11 0.010608

Codon 295 0.024116

Codon 681 0.011953

Codon 762 0.044131

Codon 827 0.041043

PreC/Core 17 Codon 20 0.045301

Codon 29 0.017184

Codon 87 0.033245

Codon 103 0.011595

X 8 Codon 76 0.036484

Codon 127 0.006012

Codon 129 0.028060

S 12 Codon 170 0.033047

doi:10.1371/journal.pone.0011615.t003
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prevalence in the 2 communities, are consistent with massive

transmission that resulted in rapid expansion of the HBV/E-

infected population. In addition to the Bayesian coalescent,

phylogenetic and MJN analyses described above, the Tajima’s D

and Fu’s statistical tests [28,29] provided support to this

hypothesis. Analysis of the skyline plot (Fig. 7) for HBV/E

variants identified in these 2 communities showed increase in the

effective number of HBV/E infections ,30–40 years ago.

Identification of HBV/E variants identical in the S-gene

sequence to the HBV/E MRCA in many countries in Africa

also suggests a rapid HBV/E spread. The conditions facilitating

such massive HBV/E expansion are not known. It is possible that

HBV/E was the most prevalent genotype in this region of Africa

before the expansion and/or the most adapted to the mode of

transmission leading to such expansion. Analysis of selection

pressures acting in the 2 Nigerian communities identified only

few HBV/E sites under the positive selection (Table 3).

Identification of a unique positively selected site at the anchor

position of the potential T-cell epitope in the polymerase

[40,41,42] supports a possible unique adaptation of HBV/E at

the population level. All these findings suggest a dramatic shift in

the epidemiological factors and evolutionary trends affecting the

presentation of HBV/E in the West and Central Africa sub-

region over the last century.
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