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Abstract
Purpose: Robotic scrub nurses have the potential to become an attractive solution for the operating room. Surgical instrument
detection is a fundamental task for these systems, which is the focus of this work. We address the detection of the complete
surgery set for wisdom teeth extraction, and propose a data augmentation technique tailored for this task.
Methods: Using a robotic scrub nurse system, we create a dataset of 369 unique multi-instrument images with manual
annotations. We then propose the Mask-Based Object Insertion method, capable of automatically generating a large amount
of synthetic images. By using both real and artificial data, different Mask R-CNN models are trained and evaluated.
Results: Our experiments reveal that models trained on the synthetic data created with our method achieve comparable
performance to that of models trained on real images. Moreover, we demonstrate that the combination of real and our artificial
data can lead to a superior level of generalization.
Conclusion: The proposed data augmentation technique is capable of dramatically reducing the labelling work required for
training a deep-learning-based detection algorithm. A dataset for the complete instrument set for wisdom teeth extraction is
made available for the scientific community, as well as the raw information required for the generation of the synthetic data
(https://github.com/Jorebs/Deep-learning-based-instrument-detection-for-intraoperative-robotic-assistance).

Keywords Robotic scrub nurse · Dataset · Data augmentation · Robot-assisted surgery · Mask R-CNN · Mask-based object
insertion

Introduction

Robot-assisted surgery has gained significant relevance in the
last few years. Improvements in safety and efficiency during
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surgical procedures and the reduction of the probability of
infection, make robot-assisted surgery an attractive solution
for medical centers [22]. Robots can not only be involved
directly in surgical procedures but also play a meaningful
supporting role in the operating room. A clear example of
this are robotic scrub nurses (RSNs), systems responsible
for handing surgical instruments to the operating physician
and retrieving them after their use. An RSN has the potential
of making great contributions to the medical field since it
could support surgeons during staff shortages and become
an economically attractive system. An example of an RSN
system is presented in Fig. 1.

A fundamental task of an RSN is to detect and identify
surgical instruments within a set. Thus, there is a need for
accurate surgical tool detection techniques that allow the
RSN to reliably retrieve a requested instrument upon com-
mand. This can be observed in the numerous related studies
that focus on instrument detection [1,15,16].
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Fig. 1 Complete robotic scrub
nurse system used during our
experiments. The system relies
on a robot manipulator, an
RGB-D camera system, a
computer, and a gripper to
interact with surgical
instruments located on a
medical table

The most popular solution for the detection task is to uti-
lize a camera. Among the camera-based approaches found
in the literature is the work presented in [21], which relies
on the use of markers attached to the instruments, and also
the works of Zhou et al. [23,24] which identify instruments
one at a time, employing an identification tray. Similarly, in
[16], an RGB-D camera and 3D-printed models of surgical
instruments are employed during the experiments.

Finding surgical instruments in images constitutes an
application of object detection/segmentation. State-of-the-
art supervised deep-learning algorithms are hence a potential
solution. These techniques require annotated datasets that
would ideally include the corresponding segmentationmasks
since they not only provide information regarding the instru-
ments’ location but also their geometry,which can be relevant
for a gripping task. To the best of our knowledge, there is
no publicly available image dataset for a complete surgical
instrument set that includes the ground-truth segmentation
masks.

In general, bigger datasets achieve higher accuracy and
better generalization properties of a trained deep-learning
model. Hence, a large amount of annotated data is desir-
able. Nevertheless, the labelling process is time-consuming
and expensive. For this reason, data augmentation (DA)
techniques are popular since they can produce synthetic auto-
matically annotated data. Advanced augmentation methods
are based on the segmentation of objects of interest as fore-
ground and the replacement of their backgroundwith specific
image content. Examples of this are presented in [9,19]. In
[5], the authors apply a cut-and-paste technique and demon-
strate how the insertion of objects of interest onto different
background images constitute a useful way of generating
reliable synthetic data.

In this work, our main goal is to successfully detect the
instruments of a complete surgical set from camera images
without relying on external means (e.g., barcodes, stickers,
predefined positions) and by considering the presence of
multiple instruments in the scene. For this matter, the com-
plete instrument set for wisdom teeth extraction surgery (18
instruments) is chosen and the deep-learning algorithmMask
R-CNN [6] is applied. To reduce the amount of required
manually-labelled data, we introduce a DA approach, called

Mask-Based Object Insertion (MBOI). This technique takes
inspiration from the method presented in [5] and exploits
the way the instruments are set up on the instrument tray
(on a flat surface, with a similar looking background and
arranged in an orderly way so that occlusions are avoided).
The MBOI method utilizes a reduced amount of annotated
single-instrument images and the depth information of the
scene to generate a large amount of automatically annotated
multi-instrument images, in which the relative size of the
instruments is preserved. Our approach is therefore intro-
duced to address the need for reliable surgical tool detection
and promote further research in the field of RSNs.

The contributions of our work are: 1) the creation and
publication of a labelled image dataset for the complete
instrument set for wisdom teeth extraction surgery with
multi-instrument images and including the corresponding
segmentation masks, 2) the introduction of a data aug-
mentation method based on the cut-and-paste technique
for object detection/instance segmentation, especially use-
ful when both the RGB images and depth maps of the scene
are available, 3) the additional creation and publication of
a collection of single-instrument images of the instrument
set with corresponding segmentation masks and depth maps,
4) deep-learning-based multi-instrument detection of a com-
plete surgical instrument set under quasi-real conditions,
similar to those found in the operating room.

Related work

Several research groups have studied the performance of an
RSN. However, in these studies, important simplifications
are considered that deviate from the actual surgical scene.
An example of this is presented in [14], where the authors
recognize the challenges associated with the use of multiple
instruments and hence, limit their prototype to exclusively
interact with an endoscope. In [7,8], one of the most well-
known works in the field of RSNs is presented, namely the
Gestonurse. The authors develop a multi-modal operation,
allowing the system to retrieve five different instruments by
interpreting both gestural and oral commands. The instru-
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ments’ positions are predefined, and no object detection is
applied.

Other RSN-related works have greater focus on the iden-
tification of surgical instruments. In [2], a robotic system
capable of interpreting voice commands, identifying dif-
ferent surgical instruments, and grasping them using an
electromagnetic gripper is proposed. However, a limited set
of only seven instruments is employed. Additionally, the
authors rely on the Matrox Imaging Library [13] for the
instrument identification, which is a non-open-source image
processing software. Another interesting approach is pro-
vided in [23,24], where the identification of five different
instruments is addressed by grasping an unidentified instru-
ment, putting it into an identification tray and using machine
learning to determine its class. This is a slow and unreliable
procedure for an intra-operative application of an RSN.

The instrument identification based on external means is
studied in [21], where the authors rely on small barcodes
attached to the instruments and a scanner to determine each
instrument’s class. This requires high resolution images and
high proximity, as well as previously prepared instruments
and visible barcodes during the identification process, which
can increase the cost of the system, the identification time,
and be susceptible to errors produced by overexposure.

Dataset

A suitable dataset is fundamental for a deep-learning-based
RSN. Therefore, the setup in which the dataset is created
must resemble the actual conditions of an operating room and
contain enough information so that a trained deep-learning
algorithm is capable of achieving good generalization on
unseen data.

Robotic scrub nurse system

With the goal of creating an image dataset useful in a
real RSN application, an actual RSN system (see Fig. 1)
is employed for the image generation. The system was
constructed in our research lab and it includes a 7-degree-of-
freedom robotic arm (KUKALBR iiwa 14R820), anRGB-D
camera system (Intel� RealSenseTM D435) in a hand-in-eye
configuration, a complete instrument set, an electromagnetic
gripper, and a computer (GPU:Nvidia GeForce GTX980Ti),
where the programming was implemented using the Python
API Keras based on Tensorflow 1.13.1.

Instrument set

The selected instrument set corresponds to the surgical set for
wisdom teeth extraction. This set has a total of 18 different
instruments. Despite the relatively small number of instru-

Table 1 Instrument names, shape types, and classes of the instrument
set for wisdom teeth extraction

Instrument name Shape type Class

Root elevator Unique Class 00

Dental pliers Unique Class 01

Raspatory Unique Class 02

Scalpel holder Unique Class 03

Dental mirror Stick-like Class 04

Freer raspatory Stick-like Class 05

Dental sharp spoon Stick-like Class 06

Luniatschek gauze packer Stick-like Class 07

Anatomical forceps Forceps Class 08

Surgical forceps Forceps Class 09

Dental forceps Forceps Class 10

Long retractor Retractor Class 11

Short retractor Retractor Class 12

Big needle holder Scissors-like Class 13

Small needle holder Scissors-like Class 14

Surgical Scissors Scissors-like Class 15

Surgical clamp Scissors-like Class 16

Backhaus towel clamp Scissors-like Class 17

ments, the set includes both similar-looking instruments and
others that differ significantly in both shape and size. The
great variety and limited number of instruments make this
set ideal for our application.

Similar-looking instruments are expected to lead to poor
performance of the detection algorithm. In order to better
study this potential challenge, the instruments are classi-
fied according to their shapes. The different shape types are:
Unique, Stick-like,Forceps,Retractor, and Scissors-like. The
names, shape type, and class designation for the detection
algorithm are presented in Table 1.Additionally, Fig. 2 shows
pictures of all the instruments in the surgical set.

Images and annotations

During the generation of our dataset, the instruments are set
up on a surgical cloth in such a way that inter-instrument
occlusions are avoided. This is meant to depict the real-
world scenario, in which the instruments are arranged on
a tray in an orderly fashion. The RGB-D camera mounted
on the robot’s end-effector is used to generate the images.
Different end-effector poses are used to simulate the actual
operation of the RSN, while the instruments are rearranged
regularly to increase the spatial variability of the data. This
means that the size of the instruments varies from one image
to another. A total of 369 images, with a resolution of
640x480 pixels, are created. The generated images aremanu-
ally annotated using the online tool available at [4], obtaining
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Fig. 2 18 instruments of the
surgical set for wisdom teeth
extraction and their
corresponding class labels. The
instruments are classified based
on their shape in the groups
Unique, Stick-like, Forceps,
Retractor, and Scissors-like

the segmentation masks for each image. The correspond-
ing bounding boxes are determined on the basis of these
masks.

This labelled dataset is split into disjoint training, vali-
dation, and test sets. The test and validation sets contain 72
images each. The remaining 225 images form the base of
the training set. To increase the number of the training sam-
ples, the images are artificially augmented using horizontal,
vertical, and diagonal flips creating a total of 900 annotated
images in the training set.

Mask-based object insertion

A trained deep-learning model relies on the quality of
the dataset with which it is trained. The generalization
capacity of a model increases with the size of its train-
ing set. A common approach to artificially increase the
size of a training set is data augmentation (DA) [3,10,
18].

SimpleDA techniques rely on the application of geometric
and color transformations to the manually annotated images

to generate artificial data. Some more advanced augmenta-
tion techniques are based on the segmentation of objects of
interest as foreground and the replacement of their back-
ground with specific image content. Examples of this are
presented in [9,11,17,19].

Inspired by this concept, we introduce a segmentation-
based DA approach, called Mask-Based Object Insertion
(MBOI). The MBOI method can automatically generate
synthetic multi-instrument (MI) images from annotated
single-instrument (SI) images, while creating their corre-
sponding bounding boxes and segmentation masks. For this,
the method employs a collection of annotated SI images
per instrument class, their corresponding depth maps, and
a collection of background images. In our case, background
images simply correspond to pictures of the surgical cloth
under different illumination conditions and camera angles.
The background and SI images, as well as the correspond-
ing depth maps are created using the robot-mounted camera
presented in Fig. 1, using different end-effector poses. This
implies that the size of the instruments is different in every
image and in some cases a small part of the instrument is out
of the scene.
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Synthetic multi-instrument images

For the creation of each synthetic image, a background image
is randomly selected, aswell as a subset of instrument classes.
For each instrument class in this subset, an SI image is cho-
sen from its corresponding collection. A randomized spatial
transformation is then applied to each of the SI images and
their corresponding masks, leading to a different transfor-
mation for each class. The instruments are then segmented
as foreground using their segmentation masks and inserted
one by one onto the previously selected background image,
by substituting the corresponding pixel values, to create a
synthetic MI image. Similarly, the transformed masks are
inserted into a black single-channel image, creating the cor-
responding segmentation mask. A diagram of the method
is presented in Fig. 3, where a background image, three SI
images, and their segmentation masks are employed to gen-
erate anMI synthetic image and its corresponding mask. The
spatial transformations applied on the SI images significantly
increase the variability on the generated synthetic data,which
is expected to lead to better performance of the trainedmodel.

The MBOI method makes the following considerations:
1) The scale of the first inserted instrument is the same as
that of SI image, while the scale of the others is calculated so
that the relative size of the instruments is preserved. 2) The
method keeps count of the amount of instances introduced
in the generated data and guarantees that the classes in the
synthetic MI images are balanced. 3) In typical instrument
arrangements, the instruments are set up in a way such that
overlapping is avoided. Hence, the pixel insertion is carried
out in such a way that no overlapping takes place. 4) If after
the insertion onto the background image a considerable part
of the original instrument from the SI image is out of frame,
the instrument is not annotated since it is considered that the
synthetic MI image does not contain enough information for
the determination of its class.

Spatial transformation

The randomized spatial transformation is determined by the
parameterized 2D homogeneous transformation matrix T,
given by:

T =
⎛
⎝
s (−1)n · cos θ − sin θ tx

sin θ s (−1)m · cos θ ty
0 0 1

⎞
⎠ (1)

with n,m ∼ Bernoulli(0.5), θ ∼ Uniform(−π
2 , π

2 ),
tx ∼ Uniform(−w

2 , w
2 ), ty ∼ Uniform(− h

2 , h
2 ), where w

and h correspond to the width and height of the image, in
that order. In this transformation, n andm determine the flips
of the image, while θ determines its rotation. tx and ty corre-
spond to the horizontal and vertical displacements. Finally,

the parameter s corresponds to the scale factor, which is espe-
cially interesting and is explained in the following subsection.

Preservation of the relative size

Since the SI images are created with different distances
between the camera and the instrument, the size of the instru-
ments is different in each of them. If the MBOI method
were to be applied without taking the size of the instruments
into consideration, theMI images would include instruments
whose relative size would not match the reality.

In order to preserve the relative size of the instruments
in the synthetic MI images, the MBOI method relies on the
concept of scale. In this work, the scale s of an instrument in
an specific image is defined as the quotient of its image length
l[p] (maximum length of an instrument in an image, obtained
from their segmentation mask), measured in pixel units, and
its physical length l[m] (determined by the 3D information
from the corresponding depth map), measured in meters.

When creating an MI image, after applying the spa-
tial transformation of the first instrument foreground to be
inserted, the instrument’s scale is calculated and taken as
reference (s0) for the subsequent instrument foregrounds to
be inserted. The insertion is then made in such a way, that the
relative size of the instruments in theMI images is preserved.
This is done by applying a scale si given by:

si = li[m]
li[p]

· s0 = li[m]
li[p]

· l0[p]
l0[m]

(2)

The relative size of the instruments is considered a mean-
ingful feature for their identification since our instrument set
includes similar-looking instruments, whose main difference
is their size. Clear examples of this can be seen in the scissors-
like instrument group for the big and small needle holders
(Class 13 and Class 14), as well as the surgical clamp (Class
16), as shown in Fig. 2).

Occlusion avoidance

During the creation of the synthetic MI images the inserted
instruments can potentially overlap each other. The MBOI
approach detects such events and avoids themby re-sampling
the parameters of the transformation matrix T and applying
it to the SI images until no overlapping takes place. If certain
number of iterations is reached (20, in our experiments) and
the issues persist, the instrument in question is omitted from
the final MI image.
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Fig. 3 Diagram of the MBOI
method for three different
instruments. The background of
the masks is set as white for a
better visualization. The
instruments and their
corresponding segmentation
masks are cut and pasted onto
the background images one by
one. The 3D information
corresponding to the
single-instrument images is used
to preserve the relative size of
the instruments in the synthetic
multi-instrument images and the
corresponding masks

Instances partially out of frame

If a large portion of an instrument is missing from an image,
the determination of the instrument’s class can become
impossible, even for a human observant. The MBOI method
takes this into account by not annotating instruments in cases
where at least 50% of the instrument’s pixels are missing in
the synthetic MI image after the insertion.

Experiments and results

In order to apply the MBOI method and use the synthetic
MI images in our experiments, 20 background images, 12
SI images per instrument class, as well as their correspond-
ing depth maps, are generated using the RGB-D camera in
the robot’s end-effector (see Fig. 1). The SI images are then
annotated. All of these data are made publicly available,
along with the 369 real images, to support further research
regarding medical instrument detection: https://github.com/
Jorebs/Deep-learning-based-instrument-detection-for-intra
-operative-robotic-assistance.

Employing the aforementioned data, theMBOI technique,
and the 900 annotated images mentioned in Sect.“Images
and annotations” , four different Mask R-CNN [6] models
are trained:

1. Baseline-model: Trained using the 900 images (225man-
ually annotated images plus their flips).

2. Pseudo-MBOI-model (PMBOI-model): Trained on a
fully-synthetic dataset created with the MBOI method
without preserving the relative size of the instruments.
This dataset includes a total of 2892 images and 1000
instances per instrument, with a minimum and maximum
number of instruments per image of 3 and 12, respectively.

3. MBOI-model: Trained on a fully-synthetic dataset cre-
ated with the MBOI method preserving the instruments’
relative size. This dataset includes a total of 2940 images
and 1000 instances per instrument, with a minimum and
maximum number of instruments per image of 3 and 12,
respectively.

4. MBOI+-model: Trained on a dataset that combines the
2940 images of the MBOI-model as well as the 900
images of the baseline-model.

The training weights of the COCO dataset [12] are used
as initialization weights for all training processes. Addition-
ally, the resolution of the images is set to 512x512 pixels. The
training is performed using batch size of 3 and a learning rate
of 0.0001, using stochastic gradient descent with momen-
tum as optimizer. Both the validation and test sets remain
as defined in Sect. “Images and annotations” throughout
these experiments. Themodels are trained until convergence.
Finally, all instrument detections with class scores below 0.7
are discarded, and therefore not included in the results.

General performance of themodels

To compare the general performance of all the models on the
test set, the Intersection overUnion (IoU)metric is employed.
This metric is applied on both the bounding boxes and masks
and the results are shown in Fig. 4. A qualitative example of
the performance of each model is presented in Fig. 5

Figure 4 suggests some interesting conclusions. First, the
MBOI+-model seems to outperform the others for both the
bounding boxes and the segmentation masks. Additionally,
the MBOI-model appears to lead to higher IoU values than
those corresponding to the pseudo-MBOI-model, potentially
indicating the relevance of the preservation of the relative
instrument size during the application of the MBOI tech-
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Fig. 4 Boxplots of the IoU
values for the baseline-model
(blue), pseudo-MBOI-model
(orange), MBOI-model (green),
and MBOI+-model (red). All
models are evaluated on the test
set. Qualitatively, the results
indicate a better performance for
the MBOI-model in comparison
to the pseudo-MBOI-model.
The results also suggest that the
MBOI+-model is superior to all
the others

Fig. 5 Qualitative examples of
the performance of the trained
Mask R-CNN models. The
predictions include the
instrument class, the bounding
boxes, and segmentation masks.
Each instrument class is
assigned a fixed color for the
corresponding bounding boxes
and masks. The expected output
is presented in the ground-truth
(a). In this particular example,
the baseline-model (b)
mis-classifies Class 16 for Class
17 and Class 07 as part of the
background, while the
pseudo-MBOI-model (c)
mis-classifies Class 13 for Class
15 and fails to detect Class 16.
Very accurate results are
obtained by the MBOI-model
(d) and the MBOI+-model (e),
being close to identical to the
ground-truth. It is important to
note, that this is just a qualitative
example and does not
necessarily reflect the average
behavior of the trained models
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Table 2 Mean values of the IoU (mIoU) metric for the trained Mask
R-CNN models, evaluated on the test set

Baseline PMBOI MBOI MBOI+

mIoUbbox 0.555 0.543 0.576 0.682

mIoUmasks 0.375 0.388 0.435 0.520

nique. Another potential conclusion is that the MBOI-model
leads to comparable results to those of the baseline-model,
despite being trained entirely on artificial data, created using
only 12 manually annotated instances per instrument class
(corresponding to the SI images).

Dependent Student’s t-tests for paired samples are then
performed to verify the statistical significance of these poten-
tial conclusions. For this matter, intervals of 0.05 ≤ p <

0.10, 0.01 ≤ p < 0.05, and 0.00 ≤ p < 0.01 are selected
for weak, moderate, and strong significance, respectively.

With the p-values of pbbox = 0.077 and pmask = 0.053,
for the case of the pseudo-MBOI-model and the MBOI-
model, the t-test indicates a weak statistical significance for
the performance difference, for both the bounding boxes and
masks. When analysing the difference between the perfor-
mances of the baseline-model and the MBOI+-model, the
p-values correspond to pbbox = 0.091 and pmask = 0.007,
which indicate a weak statistical significance for the case of
the bounding boxes and a strong significance for the case
of the segmentation masks. Finally, the application of the
t-test for the performance difference for the baseline-model
and the MBOI-model leads to p-values of pbbox = 0.690
and pmask = 0.167. Since both values are greater than 0.10,
it can be concluded that there is no evidence of a statisti-
cally significant difference for both models’ performances.
This is a relevant conclusion, since it indicates that training
using synthetic data generated via the MBOI method can
lead to similar performance to that of models trained on real
data, with significantly less amount of annotating work (12
instances per instrument class).

To further analyse the performance of themodels, the aver-
age values of the IoU metric for each of them are presented
in Table 2. The values clearly suggest that the MBOI+-
model is the most suitable for the detection task, followed by
the MBOI-model. Despite the weak statistical significance
observed when comparing the PMBOI-model and MBOI-
model, the latter presents, in average, a higher performance,
indicating that the preservation of the relative size in the
synthetic images leads to better results. Additionally, the
contribution of the data generated with the MBOI method
is clear, when comparing the performance of the baseline
and MBOI+-model.

Average performance per instrument class

In order to understand the performance of the models on
each instrument class, the average values of the IoU metric
for both the bounding boxes and the masks are presented in
Fig. 6.

This figure indicates that the IoU values for the dental
mirror (Class 04), the forceps (Class 08, Class 09, and Class
10), and the retractors (Class 11, and Class 12) are consid-
erably lower than rest in most if not all cases. This can be
attributed to the fact that all of these instruments share their
shape type with other instruments. This can not only cause
mis-predictions between instruments of the same shape type,
but also reduce the class score of a correct prediction, which
can lead to the detection being discarded and being wrongly
classified as background. To further analyze this, the confu-
sion matrix for the detected instruments can be studied.

Analysis of mis-classifications

The normalized confusion matrix for instrument detection
for the best performing model, namely theMBOI+-model, is
created in order to study the behavior of mis-classifications
between instruments. For this matter, a successful detection
is considered if the IoU metric of a predicted and a ground-
truth bounding box is greater or equal to 0.5. The normalized
confusion matrix is presented in Fig. 7.

The entries on the main diagonal of the presented confu-
sion matrix indicate the percentage of correct classifications
for a particular instrument class. It can be noted that the
MBOI+-model is capable of correctly classifying more than
70% of the instances in the test set for 13 out of the 18 instru-
ments present in our instrument set, indicating a promising
performance. The mis-classifications could be attributed to
insufficient examples in the training data or the reduced
amount of SI images employed during the generation of the
synthetic images createdwith theMBOImethod. The classes
with poor performance (entry on the main diagonal lower
than 0.70) are Class 04, Class 08, Class 09, Class 10, Class
11. The problematic areas highlighted in red in the confu-
sion matrix can be used to explain the poor performances
in the aforementioned classes. In the case of the stick-like
instruments, the off-diagonal entries indicate the presence
of mis-classifications, also known as confusion, between
Class 04 and Class 07. Similarly, in the case of the forceps
(Class 08, Class 09, and Class 10), strong confusion can be
noticed between the three instrument classes. In the case of
the retractors (Class 11 and Class 12), a similar behavior can
be observed. This supports our hypothesis i.e. it is hard for
the detection algorithm to distinguish similar-looking instru-
ments from one another.

The performance of the detection algorithm can poten-
tially be improved by increasing the number of background
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Fig. 6 Average IoU values per
instrument class for the
baseline-model, the
pseudo-MBOI-model, the
MBOI-model, and the
MBOI+-model. The presented
results are obtained from the
evaluation on the test set. Top:
Values for the bounding boxes,
Bottom: Values for the masks
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and SI images employed during the generation of the MI
synthetic images or simply by enlarging the amount of cre-
ated data. This could allow the models to further learn the
different features of similar-looking instruments and reduce
the number of mis-classifications.

Conclusions

In this work, we present a deep-learning-based approach for
instrument detection under similar conditions to those of an
actual operating room, i.e. multi-instrument images taken
with a real scrub nurse under varying conditions.

We propose a novel data-augmentation technique, called
MBOI, capable of automatically creating synthetic anno-
tated images. By training on these artificial data, the Mask
R-CNN algorithm is capable of achieving results compara-
ble to the case in which real data is employed. This implies
that our approach dramatically reduces the amount of anno-
tating work required. The method can be applied to extend
datasets that rely on annotations in the form of segmentation
masks.

We create and make available for the scientific commu-
nity the raw data required for the application of the MBOI
method, for the specific case of the instruments of the surgi-
cal set for wisdom teeth extraction. We also include 369 real
images of the same instrument sets and their corresponding
segmentation masks.

A detection algorithm is trained and evaluated on the basis
of these data for its future use in robotic scrub robot system.
The algorithm achieved promising results, correctly classi-
fying more than 70% of the instances in the test set for 13
out of the 18 instruments present in our instrument set.

Future experiments will focus on studying the relation-
ship between the amount of raw data employed by theMBOI
method, as well as the number of generated synthetic images,
and the associated improvement of amodel after trainingwith
these data. Additionally, 3Dmodel-based data-augmentation
approaches, such as the ones presented in [10,18,20], will be
explored to further improve the performance of the instru-
ment detection algorithm.
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Fig. 7 Normalized confusion
matrix of the MBOI+-model
evaluated on the test set. The
areas of the confusion matrix
corresponding to predictions of
instruments belonging to the
same shape type are highlighted.
Areas of high performance are
assigned the color green, while
areas of poor performance are
highlighted in red. Entries on
the main diagonal of the
confusion matrix higher or equal
to 0.70 are considered indicators
of high performance, while
lower values are considered
indicators of low performance
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