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Abstract 

Background: Influenza A virus is one of the leading causes of annual mortality. The 
emerging of novel escape variants of the influenza A virus is still a considerable chal-
lenge in the annual process of vaccine production. The evolution of vaccines ranks 
among the most critical successes in medicine and has eradicated numerous infec-
tious diseases. Recently, multi-epitope vaccines, which are based on the selection of 
epitopes, have been increasingly investigated.

Results: This study utilized an immunoinformatic approach to design a recombinant 
multi-epitope vaccine based on a highly conserved epitope of hemagglutinin, neu-
raminidase, and membrane matrix proteins with fewer changes or mutate over time. 
The potential B cells, cytotoxic T lymphocytes (CTL), and CD4 T cell epitopes were iden-
tified. The recombinant multi-epitope vaccine was designed using specific linkers and 
a proper adjuvant. Moreover, some bioinformatics online servers and datasets were 
used to evaluate the immunogenicity and chemical properties of selected epitopes. 
In addition, Universal Immune System Simulator (UISS) in silico trial computational 
framework was run after influenza exposure and recombinant multi-epitope vaccine 
administration, showing a good immune response in terms of immunoglobulins of 
class G (IgG), T Helper 1 cells (TH1), epithelial cells (EP) and interferon gamma (IFN-g) 
levels. Furthermore, after a reverse translation (i.e., convertion of amino acid sequence 
to nucleotide one) and codon optimization phase, the optimized sequence was placed 
between the two EcoRV/MscI restriction sites in the  PET32a+ vector.

Conclusions: The proposed “Recombinant multi-epitope vaccine” was predicted with 
unique and acceptable immunological properties. This recombinant multi-epitope 
vaccine can be successfully expressed in the prokaryotic system and accepted for 
immunogenicity studies against the influenza virus at the in silico level. The multi-
epitope vaccine was then tested with the Universal Immune System Simulator (UISS) 
in silico trial platform. It revealed slight immune protection against the influenza virus, 
shedding the light that a multistep bioinformatics approach including molecular and 
cellular level is mandatory to avoid inappropriate vaccine efficacy predictions.
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Background
Influenza has been for centuries a significant contributor to mortality and continues 
to be a significant threat to public health worldwide [1, 2]. The influenza virus belongs 
to the Orthomyxoviridae family and is divided into four subtypes: A, B, C, and D [3]. 
The influenza virus genome consists of several cRNA-segments which facilities viral 
variation by the mechanism of genetic reassortment [4]. The influenza A viruses have 
been responsible for causing the flu pandemic [5]. Influenza A virus structural proteins 
include hemagglutinin (HA) and neuraminidase (NA), which appear extensively on the 
lipid coating and serve the classify the virus. Currently, 18 HA and 11 NA subtypes are 
known, and 131 subtypes have been identified in nature [6]. HA protein can be divided 
into two functional domains, head and stem, encompassing highly conserved regions 
too; receptor-binding site (RBS) and the fusion peptide, respectively [7]. There are also 
two internal proteins: matrix protein (M1) and membrane matrix protein (M2). The M2 
protein from the influenza A virus is crucial for infection. While the influenza A virus 
evolves rapidly with frequent mutation, the M2 protein, compared with other proteins 
encoded by the genome, comprises highly conserved residues [8]. These variations origi-
nate from two mutations: antigenic shift and antigenic drift, which allows the influenza 
virus to evade the human immune system [9]. Antigenic shift is caused by the substitu-
tion of hemagglutinin and sometimes neuraminidase through gene reassortment. New 
subtypes have not appeared in human viruses for a long time. Antigenic drift is caused 
by frequent point mutations during virus replication, affecting the antibody-binding 
sites in the HA protein, NA protein, or both.

Several vaccines have been developed for prophylaxis against human influenza viruses 
with the main target of HA. However, the function of these vaccines is limited due to the 
high mutation rate in the antigenicity of HA, short time for production, and the host’s 
immune system. Consequently, vaccines are required to be frequently reformulated 
[10, 11]. Moreover, it is possible that sometimes the antigenicity of the vaccine does 
not match the epidemic viruses. One approach for improving the efficacy of vaccines 
is the approach of predicting the specific influenza A subtype that will be prevalent in 
a particular year. Prediction accuracy has decreased because of random genetic drift, 
incomplete samples of viruses that cause epidemics, and lack of knowledge regarding the 
evolution mechanism of sequences [12].

During the last decade, complex calculation techniques have been developed for pre-
dicting virus lineages, detecting genetic variations, and their functional impact. These 
techniques, such as in silico trials or thermostatted kinetic theory methods [13], ought 
also to be instrumental for vaccine design [14]. In silico trials use individual computer 
simulations to generate or evaluate a pharmaceutical product, medicinal equipment, or 
medical intervention. In the medical context they play a significant role in all aspects 
of diseases: prevention by designing and developing vaccines, diagnosis, prognostic 
appraisal, and prediction of the efficacy of specific treatment strategies [15]. In particu-
lar, considering the high mutation rate and evolutionary procedure in HA and NA, it is 
assumed that the conserved parts play a remarkable role in vaccine design [16]. In addi-
tion, the highly conserved M2 protein is valuable in the stability and improvement of 
vaccine function as it has 23 residues located outside the virus and assists M2 protein for 
the virion function [17, 18]. In this work, we evaluated the conserved parts of HA, NA, 
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and M2, among the seven pathogenic strains, especially in Asia: H1N1, H1N2, H3N2, 
H5N1, H7N3, H7N9, and H9N2 by in silico method and combination as a single protein 
that can activate human humoral and cellular immunity [19–21].

The combination of epitope prediction tools and vaccine design methodologies alone 
do not frequently produce sufficient piece of evidence to evaluate the global immune 
response elicited by the vaccine under investigation. Agent based modeling can provide 
additional information useful to assess immune system elicited response at a cellular and 
organ level, closing the circle. For example, immune entities dynamics is revealed also 
in antigenic competition environment: this is not clearly predictable using only epitope 
prediction tools.

Results
After applying this immunoinformatic procedure, related results of each step are 
reported below.

Retrieving influenza protein sequences and multiple alignments

Amino acid sequences with FastA format for HA, NA, and M2 proteins strains were 
extracted from the NCBI database (Additional file  1). After multiple alignments by 
Jalview, consensus sequences for HA, NA, and M2 consist of 582, 257, and 487 amino 
acids, respectively.

B‑cell epitopes prediction

Epitopes with a length 10 to 20 were extracted from IEDB, and from SVMTriP only 
epitopes with a score above 0.5 were collected. Finally, 15 epitopes for HA, 11 epitopes 
for M2, and 12 epitopes for NA were chosen from these B-cell prediction tools.

CTL epitopes prediction

15 supertype A2 ligand, 18 supertype A3 ligands, and 11 supertype B7 ligands were pre-
dicted for HA, M2, and NA proteins (Consensus peptide sequences) using NetCTL 1.2 
server. Epitope identification threshold was set to 1; weight on C terminal cleavage, and 
TAP transport efficiency were set at to default.

CD4 T cell epitopes prediction

A total of 40 strong bound epitopes without repetition were predicted using NetMH-
CIIpan–4.0 for human alleles HLA-DR, HLA-DQA1, and HLA-DQB1 (DRB1_1303, 
DRB1_1302, DRB1_1401, DRB1_0701, HLA-DQA10103-DQB10603, HLA-DQA10102-
DQB10604, HLA-DQA10104-DQB10503, HLA-DQA10201-DQB10202, and HLA-
DQA10201-DQB10303). NetMHCIIpan–4.0 web server was used based on their IC50 
scores, and all parameters were set to default.

Antigenicity and allergenicity prediction of CTL, CD4 T cell, and B cell epitopes

To select epitopes for the final recombinant vaccine, we evaluate the antigenicity, aller-
genicity, and toxicity of all 122 peptides (Additional file  2); then, we opted for non-
allergenic and non-toxicity epitopes, which are antigens for the recombinant vaccine. 
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Vaxigen provided antigenicity score for virus model is equal to 0.73 while AllerTOP 2.0 
server predicted that the final recombinant vaccine is non-allergenic.

Human population coverage analysis

Worldwide human population coverage analysis predicted that T-cell epitope based on 
the combination of HLA-I and HLA-II can cover 90.78% of the human population.

Recombinant multi‑epitope vaccine

The final vaccine, after considering some parameters for three adjuvants (PI, weight, 
half-life, etc.) has 813 amino acids and consists of a total of 40 epitopes including 11 
CTL, 16 CD4 T cell, and 13 B cell peptides sequences (Table 1) (Additional file 3). The 
Adjuvant (A 50 S ribosomal protein L7/L12) was linked to N-terminal by EAAAK linker, 
and CTL, CD4 T cell, and B cell epitopes were merged using AYY, GPGPG, and KK link-
ers. AAY linkers significantly affect the expression of the target proteins and improve 
the immunogenicity of the multi-epitope vaccine. The significant feature of the GPGPG 
linker deals with its ability to break the junctional immunogenicity, which is caused by 
the amendment of the immunogenicity of each epitope, and GPGPG linkers have illus-
trated the ability to induce CD4 T cell responses which are essential for a multi-epitope 
vaccine. While the KK linker decreases the junctional immunogenicity by preventing 
the induction of antibodies for the peptide sequence that each epitope can form when 
joined linearly [22]. All linkers have pivotal roles in providing an extended conforma-
tion (flexibility), assisting folding, separating protein domains, and generally making the 
recombinant multi-epitope vaccine structure more stable [23]. Hence, from a general 
point of view, the possibility of introducing new "fake" epitopes in the linking regions 
would not represent a concrete issue to our best knowledge. A 6xHis tag was added to 

Table 1 List of all the epitopes used in the construction of the recombinant multi-epitope vaccine

Predicted linear B‑cell epitopes and T‑cell epitopes were selected from HA, NA, M2 proteins to design of the recombinant 
multi‑epitope peptide

PROTEIN CTL epitope HTL epitope B‑CELL epitope

Hemagglutinin KSYINNRGK KPEIGARPKVNGQSG TELLEDTHNGKLCDLKGVAPLDLG

SSNYQQKFK LIWLLKKNDNAAYPK

NIHPITIGK SSLPFQNIHPITIGK KGAINSSLPFQNIHP

CPRAGSKSF ANNSTTTVDTLTEKN

LPFQNIHPI EQGSGYAADLKSTQK LKLATGLRNV

AVILAGLSF LIEKMNTQFEAIDKE

NSTTTVDTLTEKNVE

Neuraminidase ITTVTLHFK MGRTISEKSRSGYEM TTLNNKHSNGTIHDRSP

NQEIVNITNTIIEKE GSASGQADTK

ITGFAPFSK NSKFQINRQDIVDID YGTGSWPDGADINF

NQEIVNITNTIIEKE VRCVCRDNWKGSNRPWVDIN

Matrix RMGTVNTEV TNPLIRHENRMVLAS PSGPTRNEWECRCS

NPLIRHENRMVLAST YGLKRVALSYST

AVKLYRRFK VLGFVFTLTVPSERG RMGTVNTEVA

GLKRVALSY TEQQSAVDVDDGHFV VQAMRTIGTEQQSAVDVDDG

GTEQQSAVDVDDGHF ELEQKRMGLQM

GVLGFVFTLTVPSERGLQRR
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the C-terminal of the generated vaccine to increase protein purification and identifica-
tion. The recombinant multi-epitope vaccine comprises several ectodomain locations, 
glycosylation sites, and solvent-accessible regions; while the selected B-cell epitopes 
shows averagely a score about 0.2 which mean the presence of suitable Relative Surface 
Accessibility regions (RSA).

Evaluation of physicochemical properties and solubility prediction

The molecular weight (MW) of the final vaccine is 87.3 KDa. The predicted theoretical 
pI is 9.35, and based on the pI of this protein is basic. The vaccine consists of 83 nega-
tively charged residues and 108 positively charged residues. Half-life was estimated to be 
30 h mammalian reticulocytes in vitro, > 20 h yeast in vivo, and > 10 h Escherichia coli 
in vivo. The formula is C3878H6146N1088O1171S18, and the total number of atoms is 
12301. The Instability Index (II) is computed to be 27.74 and classifies the protein as sta-
ble. A protein with an instability index greater than 40 is unstable. The Aliphatic index 
was estimated to be 70.69, indicating thermostability. Furthermore, the last property is 
GRAVY which was predicted to be − 0.547. A negative GRAVY value indicates that the 
protein is non-polar and hydrophilic. The recombinant vaccine was evaluated as a solu-
ble protein with a solubility score of 0.49.

Secondary structure prediction of the recombinant vaccine

According to the data obtained from PSIPRED, the final vaccine consists of 16% alpha-
helix, 21% beta-sheet, and 61% coil, and 137 (16%) positions predicted as disordered. 
Predicting disordered regions is based on the cut-off value at 0.25 (Fig.  1). Another 
property is solvent accessibility, divided into three states by two cut-off values: 10% and 
40%. This means that the three states have equal distribution: buried for less than 10%, 
exposed for larger than 40%, and medium for between 10 and 40%. Solvent accessibility 
was predicted to be 53% exposed, 24% medium exposed, and 22% buried.

Codon adaption and in silico cloning of recombinant vaccine

JAVA Codon Adaptation tool was performed to optimize codon usage of the vaccine in 
E. coli (strain K12) for high protein expression. The optimized codon sequence length 
for a multi-epitope recombinant vaccine with 813aa was 2439 nucleotides. CAI value 
for optimized nucleotide sequence was 0.97, and CG-content of sequence was 50.88%, 
representing the excellent possibility expression of the recombinant vaccine in the E. coli 
host. SnapGene software was used to insert adapted codon sequences into  pET32a+ vec-
tor by assisting EcoRV and MscI restriction enzymes. The final product (vector and opti-
mized codon sequence) consists of 8194 bp (Fig. 2).

In silico trial immune simulation

UISS computational platform was used to predict the immune simulation of the final 
recombinant multi-epitope vaccine. Here, we show in silico results of two specific sce-
narios in an average patient: (i) immune system dynamics after influenza exposure, (2) 
immune system dynamics after vaccine administration, and (3) immune system response 
to recombinant multi-epitope vaccine administration in presence of influenza exposure. 
In the first scenario, the peak level of IFN-g is about 1 ×  106 molecules at day 50 (Fig. 3, 
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Fig. 1 Prediction of secondary structure by PSIPRED. Graphical illustration of secondary structure features 
of the final recombinant multi-epitope vaccine sequence. The protein is estimated to contain alpha-helices 
(16%), beta strands (21%), and coils (61%)
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Fig. 2 In silico cloning of vaccine candidate. In silico restriction cloning of the recombinant vaccine 
sequence (the red part) into the  pET32a+ vector using EcoRV and MscI restriction site
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panel A), while in the second one, its level (about 1.6 ×  106 molecules is considerably 
higher than after influenza exposure at day 25 (Fig. 3, panel B). Figure 3, panel C shows 
a higher second peak as to highlight the effect of the vaccination in response to influ-
enza challenge. Furthermore, the recombinant multi-epitope vaccine response is char-
acterized by high levels of IgG, approximately 130,000 titers (Fig. 4, panel B), while after 
influenza exposure, IgG level is fewer (24,000 titers) compared to the one after vaccine 
simulation (Fig. 4, panels A–C). The recombinant multi-epitope vaccine responses dem-
onstrate a notable increase in the number of TH1 cells (about 16,000 at day 30 (Fig. 5, 
panel B)). However, after influenza exposure, this amount is approximately 1000 cells at 
day 50 (Fig. 5, panel A). Figure 5, panel C, shows a higher second peak as to highlight the 
effect of the vaccination in response to influenza challenge.

Still, after influenza exposure, the number of infected lung epithelial cells is slightly 
higher than in the vaccine administration scenario (Fig. 6, panels A-B). This means that 
the proposed multi-epitope vaccine could elicit an immune response that partially pro-
tects from the infection.

Discussion
Influenza is one of the most significant contagious respiratory infection diseases, 
and despite vaccination, it is still one of the leading causes of mortality and threatens 
worldwide public health [24]. The generation of new multi-epitope vaccines brings 
various advantages in comparison to other approaches. Infectious substances or per-
ilous sequences can be extracted, thus reducing the risk of undesired host reactions. 
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Furthermore, multi-epitope vaccines are not at risk of relapse, because are weak or 
live vaccines [25]. Also, from a pharmaceutical point of view, multi-epitope vaccines 
demonstrate some desirable properties. Because multi-epitope vaccines are based on 
chemically well-characterized peptides, they can be produced efficiently and cost-
effectively. The multiple-epitope vaccine can cover a wide range of pathogens or 
strains of a particular pathogen, especially for highly variable pathogens such as influ-
enza virus, which faces several mutations and generates novel variants [26].

Animal studies demonstrate that T lymphocytes can induce a protective immune 
response against the influenza virus by identifying proteins processed and delivered 
by MHC molecules. CTL can detect several epitopes in the HA structure. Due to this 
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fact, the response of CTL to epitope vaccines is entirely dependent on the structure 
of the HLA molecule. Therefore, in designing multi-epitope vaccines, T lymphocyte 
epitopes should be selected according to their power to elicit a response in the most of 
the population [27, 28]. In addition to T lymphocytes, the importance of CD4 + cells 
has also been considered during the immune response to the influenza virus [29]. By 
identifying the peptides provided by MHCII molecules, they initiate and amplify the 
dependent responses of CD8 + and B lymphocytes against influenza virus infection 
[30]. Conserved regions in HA, NA, and M are the main target to design recombinant 
protein as a multi-epitope vaccine which can be presented by both MHCI and MHCII 
and activates cellular or humoral responses.

A trial platform such as UISS computational framework is helpful in evaluating the 
goodness of vaccine efficacy designed through available bioinformatics tools, enhanc-
ing their success probability when tested in pre-clinical and clinical settings. However, 
a multi-epitope vaccine has some limitations; for instance, one of the significant limi-
tations of a multi-epitope vaccine that most epitope prediction tools do not suitably 
consider is the need to distinguish proper antigen processing sites that can lead to the 
prediction and presentation of predicted epitopes. Because the composition of antigen 
processing mechanisms varies based on proinflammatory signals and can vary among 
different cell classes, currently existing prediction algorithms may not be proper to eval-
uating the processing effectiveness of viral antigens in an infected target cell [31].

Here, we evaluated HA, NA, and M2 proteins in pathogenic strains in Asia (H1N1, 
H1N2, H3N2, H5N1, H7N3, H7N9, and H9N2). Consensus sequences for each protein 
were identified after extracting and blasting sequences of HA, NA, and M2 proteins for 
seven pathogenic strains. Consensus sequences comprise highly conserved residues. 
Then, B-cell linear, CTL, and CD4 T cell epitopes were predicted, and epitopes with high 
scoring and high affinity were selected for calculating antigenicity, allergenicity, and tox-
icity for the individual peptides, as well as for the entire vaccine. Vaxijen v2.0 default 
threshold for showing antigenicity is equal to 0.4; therefore, epitopes with scores above 
0.4, non-toxic, and non-allergenic, were chosen for designing a recombinant vaccine. To 
select the suitable adjuvant, three peptides were evaluated: a 50 S ribosomal protein L7/
L12, H9E, and MDA5. L7/L12 seems to be a more appropriate choice. The past study 
reported that AAY, GPGPG, and EAAAK linkers were used between the predicated 
epitopes to generate a sequence with minimized junctional immunogenicity, allowing 
the rational design of a potent recombinant multi-epitope vaccine. Codon optimization 
was carried out to achieve high-level expression of the recombinant multi-epitope vac-
cine in the 12 K strain of E. coli. CAI value for optimized nucleotide sequence was 0.97, 
and CG-content was equal to 50.88%, showing the excellent possibility of expression of 
the multi-epitope vaccine.

Conclusions
This study deals with the design of a recombinant vaccine against influenza A, especially 
against seven pandemic strains in Asia (H1N1, H1N2, H3N2, H5N1, H7N3, H7N9, and 
H9N2), based on conserved residues of HA, NA, and M2 proteins. B cell linear, CTL, 
and CD4 T cell epitopes were predicted using online servers, and after spreading high 
scoring and high-affinity epitopes, antigen, non-allergic and non-toxic epitopes were 
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selected for the recombinant vaccine. Epitopes were linked together by several differ-
ent linkers to reduce junctional immunogenicity. Population coverage was calculated, 
and this recombinant vaccine can cover 90.78% of the worldwide population. Then, 
codon optimization was carried out for cloning and expression of the vaccine in E. coli 
(strain K12). CIA and CG-content indicate a high level of expression in E.  coli. Then, 
the recombinant vaccine was inserted into the  pET32a+ vector by assisting EcoRV and 
MscI restriction enzyme for cloning. The resulting suggested vaccine formulation was 
found with a high immunogenicity score. However, further investigations conducted 
with UISS in silico platform highlighted a partial immune system protection response 
elicited by the designed multi-epitope vaccine formulation. A multistep bioinformatic 
approach would hence ameliorate the vaccine development pipeline enhancing the 
probability of keeping good results in pre-clinical and clinical settings. The recombinant 
multi-epitope vaccine is an entirely hypothetical protein construct with no experimental 
verified epitopes; therefore, we can claim that all positive results obtained belong to the 
in silico level. Further experimental studies, along with epitope confirmation, should be 
performed.

Methods
In this section, the specific steps involved in designing the recombinant multi-epitope 
vaccine against influenza are reported in detail through specific subparagraphs. In par-
allel, a sketch of the entire workflow of the multi-bioinformatic workflow is depicted in 
Fig. 7.

The online services have been all accessed on August, 10th 2021.

Retrieving influenza protein sequences and multiple alignments

The amino acid sequences of HA, NA, and M2 proteins for seven strains (H1N1, H1N2, 
H3N2, H5N1, H7N3, H7N9, and H9N2) have been revealed from the NCBI database 
[32]. These seven strains include chicken, swine, and goose sequences to cover a wide 
range of influenza viruses. Separately, multiple alignments were performed by Jalview 
software based on the Muscle algorithm for seven strains of HA, seven strains of NA, 
and seven strains of M2 to identify consensus sequences for each protein [33] (Addi-
tional file 1).

B‑cell epitopes prediction

The main purpose of predicting B-cell epitopes is to develop synthetic peptide vaccines, 
in which case the predicted epitopes must also be able to elicit antibodies that neutralize 
the infectivity pathogen harboring the protein antigen [34]. Therefore, there are various 
databases to predict B-cell epitopes. This study used SVMTriP (http:// sysbio. unl. edu/ 
SVMTr iP/ predi ction. php) and IEDB Analysis (http:// tools. iedb. org/ bcell/) resources to 
predict B-cell linear epitopes. In this method, a support vector machine (SVM) with a 
combination of three peptide similarities and propensity scores (SVMTriP) is used to 
achieve better predictive performance [35]. To use SVMTriP the epitope length was set 
to 20 amino acids. Bepipred Linear Epitope Prediction 2.0 method was chosen to use 
IEDB Analysis tools and the residues with scores above the threshold (default value is 
0.5) are predicted to be part of an epitope. The sensitivity of 0.5 threshold is 0.58564 and 

http://sysbio.unl.edu/SVMTriP/prediction.php
http://sysbio.unl.edu/SVMTriP/prediction.php
http://tools.iedb.org/bcell/
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the specificity is 0.57158, which are superior to other available tools for sequence-based 
epitope prediction [36].

CTL epitopes prediction

MHC class I epitopes were identified by NetCTL 1.2 server (http:// www. cbs. dtu. dk/ servi 
ces/ NetCTL/) for three selected proteins. The method integrates peptide MHC class I 

Collecting HA,NA and
M2 protein
sequences

Blast procedure

Epitope mapping

B-cell epitopeT-cell epitope

Selection of
Antigenic, non-
allergenic, non-

toxic epitope portions

Vaccine design

LinkersAdjuvant

Recombinant multi-
epitope vaccine

Immunogenicity
evaluation of the
designed vaccine

Population covarage

Secondary structure

In silico cloning

Physiochemical
properties

Codon adaption

Immune simulation

Primary recombinant
multi- epitope vaccine

Fig. 7 Workflow of the multi-bioinformatic approach. Graphical illustration of the step-by-step phases used 
for the in silico design of the proposed recombinant multi-epitope vaccine against influenza A virus

http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetCTL/
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binding prediction, proteasomal C terminal cleavage, and Transporter Associated with 
Antigen Processing (TAP) transport efficiency. The server provides predictions of CTL 
epitopes restricted to 12 MHC class I supertypes. MHC class I binding and proteasomal 
cleavage are performed using artificial neural networks. TAP transport efficiency is pre-
dicted using a weight matrix [37]. Recent studies on the influenza virus have shown that 
the epitopes of HLA class I (-A2, -A3, or -B7 supertypes) are highly conserved among 
different influenza virus strains. Therefore, they have a high potential for the immunity 
of the CTL-based vaccine against all serotypes of the influenza virus [38]. In this study, 
the threshold value for epitope identification was set to 1; weight on C terminal cleavage 
was set to 0.15, and weight on TAP transport efficiency was set to 0.05 to predict CTL 
epitopes.

CD4 T cell epitopes prediction

NetMHCIIpan–4.0 (https:// servi ces. healt htech. dtu. dk/ servi ce. php? NetMH CIIpan- 
4.0) was used to predict MHC class 2 epitopes with a length of 15- Mer for human 
alleles and threshold for strong binder (% Rank) was set to 2, while threshold for weak 
binder (% Rank) was set to 10. Both of them are default settings. NetMHCIIpan pre-
dicts epitope binding to any MHC II molecule of known sequence and covers the 
three human HLA-DR, HLA-DQ, and HLA-DP alleles using artificial neural networks 
(ANNs). NetMHCIIpan has been reported to predict T cell epitopes with great accuracy 
[39]. Based on extensive research, it has been confirmed that DRB1_1303, DRB1_1302, 
DRB1_1401, DRB1_0701, HLA-DQA10103-DQB10603, HLA-DQA10102-DQB10604, 
HLA-DQA10104-DQB10503, HLA-DQA10201-DQB10202, and HLA-DQA10201-
DQB10303 are frequent in all populations; therefore, they have been selected for the 
present study [40]. All parameters were set to the default value, and only strong binding 
peptides were included in this study.

Antigenicity and allergenicity prediction of CTL, CD4 T cell, and B‑cell epitopes

Antigenicity, allergenicity, and toxicity were predicted for each CTL, CD4 T cell, and 
B-Cell epitopes. VaxiJen v2.0 (http:// www. ddg- pharm fac. net/ vaxij en/ VaxiJ en/ VaxiJ 
en. html) was applied to determine the antigenicity of the peptidesand AllerTOP v2.0 
(https:// www. ddg- pharm fac. net/ Aller TOP/) to evaluate allergenicity of the peptides, 
while ToxinPred (https:// webs. iiitd. edu. in/ ragha va/ toxin pred/ design. php) was used to 
show the toxicity of the peptides [41–43]. The prediction method of ToxinPred was set 
to SVM (Swiss-Prot) + Motif based and E-value cut-off for motif-based method was set 
to 10. Physicochemical properties option was set to “all”. The method of VaxiJen is based 
on the physicochemical properties of proteins without recourse to sequence alignment. 
The threshold for VaxiJen was set to 0.4 (default), and the target organism selected was 
the virus.

Human population coverage analysis

The vaccines that are being designed should cover a wide range of the world population. 
Also, the extension of Human Leukocyte Antigens (HLA) diversity varies in different 
populations [44]. To determine worldwide human population coverage, IEDB (http:// 
tools. iedb. org/ popul ation/) was used to evaluate 16 HLA class I and class II alleles 

https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0
https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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https://www.ddg-pharmfac.net/AllerTOP/
https://webs.iiitd.edu.in/raghava/toxinpred/design.php
http://tools.iedb.org/population/
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considered in this study [44]. The area option was set to “world” and calculation option 
was set to “Class I and II combined”.

Recombinant multi‑epitope vaccine

We selected antigen, non-allergenic, and non-toxicity epitopes from high-scoring CTL, 
high-affinity CD4 T cell, and B-cell epitopes with scoring above 0.5 to generate a multi-
epitope vaccine. Three peptide adjuvants were chosen for further analysis; A 50 S ribo-
somal protein L7/L12 (accession no. P9WHE3), H9E, and MDA5. After checking some 
parameters, the candidate adjuvant was selected for the final vaccine [45–47]. Adjuvants 
have a pivotal role in increasing the immunogenicity of the vaccine. For joining adjuvant 
to the N-terminal, EAAAK linker was used. EAAAK is a stable and rigid α-helical pep-
tide linker that includes an intramolecular hydrogen bond and a closed-packed back-
bone. Therefore, the EAAAK linker has a domain spacer’s role in a fusion protein [48]. 
To merge CTL, CD4 T cell and B-cell epitopes, AYY, GPGPG, and KK linkers were used, 
respectively, and also a 6xHis tag was added at the C-terminal part to improve protein 
purification and identification [49]. Ectodomain location, glycosylation sites, and sol-
vent-accessible regions were predicted for the multi-epitope vaccine using the BCEPS 
web server (http:// imbio. med. ucm. es/ bceps/) and NetSurfP (https:// servi ces. healt htech. 
dtu. dk/ servi ce. php? NetSu rfP-1.1) used to evaluate solvent accessible regions for selected 
B-cell epitopes. The NetSurfP server measures the solvent accessible regions of all amino 
acids in each selected B-cell epitope [50]. The parameters for BCEPS web server were set 
to default, which means the model was set to SVM; the number of aa was set at 16; the 
threshold was set to 0.5 and the immunogenicity was set for considering both CD4 and 
any human. The recombinant multi-epitope vaccine is the synthetic protein at this level.

Evaluation of physicochemical properties and solubility

ProtParam (https:// web. expasy. org/ protp aram/) was used to indicate various physico-
chemical properties of the recombinant vaccine included the number of amino acids, 
molecular weight, theoretical isoelectric point (pI), amino acid composition, atomic 
composition, chemical formula, extinction coefficients, estimated half-life, instability 
index, aliphatic index, and grand average of hydropathicity (GRAVY) [51]. The solubil-
ity of the recombinant vaccine was evaluated using the Protein-sol server (https:// prote 
in- sol. manch ester. ac. uk). The population average for the experimental dataset (PopAvr-
Sol) is 0.45. Therefore, any scaled solubility value greater than 0.45 is predicted to have a 
higher solubility than the average soluble E. coli protein from the experimental solubility 
dataset. Moreover, any protein with a lower scaled solubility value is predicted to be less 
soluble [52].

Secondary structure prediction of the recombinant vaccine

PSIPRED 4.0 web server (http:// bioinf. cs. ucl. ac. uk/ psipr ed/) was used to predict the 
secondary structure of the final vaccine formulation [53]. In this study, amino acid 
sequences were used as an input to predict the secondary structure. Secondary structure 
properties were predicted using the RaptorX Property web server (http:// rapto rx. uchic 
ago. edu/ Struc tureP roper tyPred/ predi ct/) [54–56].

http://imbio.med.ucm.es/bceps/)and
https://services.healthtech.dtu.dk/service.php?NetSurfP-1.1
https://services.healthtech.dtu.dk/service.php?NetSurfP-1.1
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https://protein-sol.manchester.ac.uk
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Codon adaption and in silico cloning of the recombinant vaccine

After selecting the most suitable vaccine candidate based on bioinformatics analy-
sis, JAVA Codon Adaptation Tool (JCat) (http:// www. jcat. de/ Start. jsp) was utilized for 
reverse translation and codon optimization for vaccine candidates to express in the E. 
coli (strain K12) host. Codon optimization is a technique that significantly increases 
gene expression in the expression vector and host cell. All parameters of the additional 
options section, such as avoid rho-independent transcription terminators, prokaryotic 
ribosome binding sites, and cleavage sites of restriction enzymes, were selected. The 
output of Jcat consists of the codon adaption index (CAI-Value) and CG-content of the 
improved sequence. The ideal score for the CAI index is 1.0, but > 0.8 is considered a 
great score, and for CG- content is among 30–70% [57]. By performing the SnapGene 
tool, the E. coli pET-32a+ vector was used to clone the optimized nucleotide sequence of 
the final recombinant vaccine construct. The pET system is one of the advanced systems 
to clone and express recombinant proteins such as multiple-epitope vaccine in E. coli. 
One disadvantage of using a pET system is that, despite adjustment by the lac repressor, 
it can still sometimes leak slightly (up to 5% in some cases). Thus, this may not be the 
best option if the protein under examination has significant effects in small amounts. 
Also, very hydrophobic proteins can produce some toxic, so those should be avoided 
when applied in this system. On the other hand, the pET-32a + plasmid owns a high bac-
terial expression, and it can produce soluble, active target proteins [58]. Then, EcoRV 
and MscI restriction sites were introduced to the N and C-terminals of the sequence, 
respectively.

In silico trial immune simulation

To further evaluate the immunogenicity and related immune response profile of the 
recombinant protein, an agent-based methodology through Universal Immune System 
Simulator (UISS) was applied. UISS is an agent-based model (ABM) [59] developed 
firstly for tumor immunology and then adapted, through different stages of immune 
system features development, to comprehensive disease modeling scenarios including 
influenza and other infectious diseases [60–63]. This model can reproduce and capture 
the immune system dynamic both from a humoral and cellular point of view [64].

In this specific case study, the simulations we run represent the mean patient for three 
different scenarios: immune system dynamics after H1N1 influenza strain exposure, 
immune system dynamics after vaccine administration, and immune system dynamics 
after influenza exposure and vaccine administration. The time step for the first scenario 
is set at 90, while the second one is set at 2; the replication rate is equal to 60.0 h.
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