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Abstract

Making good decisions requires updating beliefs according to new evidence. This is a

dynamical process that is prone to biases: in some cases, beliefs become entrenched and

resistant to new evidence (leading to primacy effects), while in other cases, beliefs fade over

time and rely primarily on later evidence (leading to recency effects). How and why either

type of bias dominates in a given context is an important open question. Here, we study this

question in classic perceptual decision-making tasks, where, puzzlingly, previous empirical

studies differ in the kinds of biases they observe, ranging from primacy to recency, despite

seemingly equivalent tasks. We present a new model, based on hierarchical approximate

inference and derived from normative principles, that not only explains both primacy and

recency effects in existing studies, but also predicts how the type of bias should depend on

the statistics of stimuli in a given task. We verify this prediction in a novel visual discrimina-

tion task with human observers, finding that each observer’s temporal bias changed as the

result of changing the key stimulus statistics identified by our model. The key dynamic that

leads to a primacy bias in our model is an overweighting of new sensory information that

agrees with the observer’s existing belief—a type of ‘confirmation bias’. By fitting an

extended drift-diffusion model to our data we rule out an alternative explanation for primacy

effects due to bounded integration. Taken together, our results resolve a major discrepancy

among existing perceptual decision-making studies, and suggest that a key source of bias

in human decision-making is approximate hierarchical inference.

Author summary

When humans and animals accumulate evidence over time, they are often biased. Identi-

fying the mechanisms underlying these biases can lead to new insights into principles of
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neural computation. The confirmation bias, in which new evidence is given more weight

when it agrees with existing beliefs, is a ubiquitous yet poorly understood example of such

biases. Here we report that a confirmation bias arises even during perceptual decision-

making, and propose an approximate hierarchical inference model as the underlying

mechanism. Our model correctly predicts for what stimuli and tasks this bias will be

strong, and when it will be weak, a critical prediction that we confirm using old and new

data. A quantitative model comparison clearly favors our model over a key alternative:

integration to bound. The key dynamic driving the confirmation bias in our model is an

interaction between inferences on different timescales, a common scenario in decision-

making more generally.

Introduction

Human decisions are known to be systematically biased, from high-level planning and reason-

ing to low-level perceptual decisions [1, 2]. Decisions are especially difficult when they require

synthesizing multiple pieces of noisy or ambiguous evidence for or against multiple alterna-

tives [3–6]. Perceptual decision-making studies across multiple species and sensory modalities

have exposed systematic biases that differ in ways that are not well understood. Here, we focus

on temporal biases, which range from over-weighting early evidence (a primacy effect) to

over-weighting late evidence (a recency effect) (Fig 1A) even in situations when an equal

weighting of evidence would be optimal. Despite seemingly comparable tasks, existing studies

are surprisingly heterogeneous in the biases they find: some report primacy effects [7–9], some

find that information is weighted equally over time [10–12], and some find recency effects [13]

without a clear pattern emerging from the data.

Existing models propose mechanisms for either primacy [7] or recency [14] effects alone,

or are flexible enough to account for either type of bias [3, 4, 11, 13, 15–18], but none identifies

or predicts factors that cause one bias or the other to appear in a given experimental context.

All of these models are based on a variant of the classic drift-diffusion model [5]. For example,

Kiani et al (2008) proposed that evidence integration stops when an internal bound is reached,

even during fixed stimulus duration tasks. Averaged over many trials in which the bound is

reached at different times, this leads to a primacy effect. Alternatively, a primacy effect is also

expected if evidence integration is implemented by an attractor network [16, 17, 19], or mutual

inhibition of competing accumulators [15, 18, 20]. However, neither of these mechanisms can

account for recency effects. On the other hand, including a “forgetting” or “leak” term in the

updating of the decision-variable leads to a recency effect [3, 4, 14, 15, 17, 18, 20]. The analysis

by Glaze et al (2015) shows that a recency bias is optimal in a volatile environment, but such

mechanisms cannot explain primacy effects [14]. Deneve (2012)’s normative analysis predicts

that primacy and recency should depend on trial-by-trial changes in difficulty [21], while Prat-

Ortega et al (2021) find that primacy and recency can change as a function of the variability of

the input to a attractor-based decision-circuit [22]. However, neither account alone, or in com-

bination, can explain the differences found across experiments. It is thus an open question

whether the disparate biases observed empirically are due to differences in species, sensory

modalities, training, experimental design, or individual observers.

Here, we propose a new model that not only accounts for the existing findings in the litera-

ture, but also predicts which key aspect of the stimulus determines the specific temporal bias

shown by an observer. Our model extends classic ideal observer models to the hierarchical

case by explicitly including the intermediate sensory representation. This reveals that task

PLOS COMPUTATIONAL BIOLOGY A perceptual confirmation bias due to hierarchical approximate inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009517 November 29, 2021 2 / 30

T32 EY007125 (RDL,JLY), as well as an National

Science Foundation/NRT graduate training grant

NSF-1449828 (RDL). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009517


difficulty is modulated by two distinct types of information: the information between the stim-

ulus and sensory representation (“sensory information”), and the information between sen-

sory representation and category (“category information”) (Fig 1B). We show that

approximate inference in such a model predicts characteristic temporal biases in a way that

can explain prior empirical findings. Furthermore, our model makes a critical prediction: that

the temporal bias of an individual observer should change from primacy to recency as the bal-

ance in the types of information is changed. We verify this critical prediction of our model

using newly collected data from a novel pair of visual discrimination tasks. Finally, we perform

a quantitative model comparison demonstrating that inference dynamics, not a finite integra-

tion bound, explain our observers’ biases, consistent with our theory.

Results

“Sensory information” vs “Category information”

Normative models of decision-making in the brain are typically based on the idea of an ideal
observer, who uses Bayes’ rule to infer the most likely category on each trial given the stimulus.

On each trial in a typical task, the stimulus consists of multiple “frames” (by “frames” we refer

to independent pieces of evidence that are not necessarily visual). If the stimulus or evidence

Fig 1. Differences in “sensory information” and “category information” can explain differences in temporal biases

reported by earlier studies. a) A observer’s “temporal weighting strategy” is an estimate of how their choice is based on a

weighted sum of each frame of evidence ef (more precisely, a weighted sum of the log odds at each frame). Three commonly

observed motifs are decreasing weights (primacy), constant weights (optimal), or increasing weights (recency). b) Information

in the stimulus about the category may be decomposed into information in each frame about a sensory variable (“sensory

information”) and information about the category given the sensory variable (“category information”). c) Category information

and sensory information may be manipulated independently, creating a two-dimensional space of possible tasks. Any level of

task performance can be the result of different combinations of sensory and category information. A qualitative placement of

previous work into this space separates those that find primacy effects in the upper-left (low sensory/high category information

or LSHC regime) from those that find recency effects or optimal weights in the lower right (high sensory/low category

information or HSLC regime). Numbered references are: [1] Kiani et al (2008), [2] Nienborg and Cumming (2009), [3]

Brunton et al (2013), [4] Wyart et al (2012), [5] Raposo et al (2014), [6] Drugowitsch et al (2016). See S1 Text for justifications of

placements.

https://doi.org/10.1371/journal.pcbi.1009517.g001
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in each frame, ef, is independent, then information about the category C can be combined by

the well-known process of summing the log odds implied by each piece of evidence [4, 5, 23]:

log
pðC ¼ þ1je1; . . . ; eFÞ

pðC ¼ � 1je1; . . . ; eFÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Log Posterior Odds; LPOF

¼ log
pðC ¼ þ1Þ

pðC ¼ � 1Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Log Prior Odds

þ
XF

f¼1

log
pðef jC ¼ þ1Þ

pðef jC ¼ � 1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Log Likelihood Odds; LLOf

:
ð1Þ

The ideal observer updates their current belief about the correct category by adding the infor-

mation provided by the current evidence: LPOf = LPOf−1 + LLOf.

In the brain, however, a decision-making area cannot base its decision on the externally

presented stimulus, ef, directly, but must rely on intermediate sensory features, which we call

xf (Fig 1B). Accounting for the intervening sensory representation implies that LLOf cannot be

computed directly, but only in stages. The information between the stimulus and category (ef

to C) is therefore partitioned into two stages: the information between the stimulus and the

sensory features (ef to xf), and the information between sensory features and category (xf to C).

We call these “sensory information” and “category information,” respectively (Fig 1B). These

two kinds of information define a two-dimensional space in which a given task is located as a

single point (Fig 1C). For example, in a visual task, each ef would be the image on the screen

while xf could be the instantaneous orientation or motion direction.

An evidence integration task may be challenging either because each frame is perceptually

unclear (low “sensory information”), or because the relationship between sensory features and

category is ambiguous in each frame (low “category information”). Consider the classic dot

motion task [24] and the Poisson clicks task [11], which occupy opposite locations in the

space. In the classic low-coherence dot motion task, observers view a cloud of moving dots, a

small percentage of which move “coherently” in one direction. Here, sensory information is

low since the percept of net motion is weak on each frame. Category information, on the other

hand, is high, since knowing the true net motion on a single frame would be highly predictive

of the correct choice (and of motion on subsequent frames). In the Poisson clicks task, on the

other hand, observers hear a random sequence of clicks in each ear and must report the side

with the higher rate. Here, sensory information is high since each click is well above sensory

thresholds. Category information, however, is low, since knowing the side on which a single

click was presented provides only little information about the correct choice for the trial as a

whole (and the side of the other clicks). When frames are sequential, another way to think

about category information is as “temporal coherence” of the stimulus: the more each frame of

evidence is predictive of the correct choice, the more the frames must be predictive of each

other, whether a frame consists of visual dots or of auditory clicks. Note that our distinction

between sensory and category information is different from the well-studied distinction

between internal and external noise; in general, both internal and external noise will reduce

the amount of sensory and category information.

In general, sensory and category information depends on the nature of the sensory features

x relative to e and C, and those relationships depend on the sensory system under consider-

ation. For instance, a high spatial frequency grating may contain high sensory information to a

primate, but low sensory information to a species with lower acuity. Similarly, when “frames”

are presented quickly, they may be temporally integrated, with the effect of both reducing sen-

sory information and increasing category information.

Qualitatively placing prior studies in the space spanned by these two kinds of information

results in two clusters: the studies that report primacy effects are located in the upper left quad-

rant (low-sensory/high-category or LSHC) and studies with flat weighting or recency effects

are in the lower right quadrant (high-sensory/low-category or HSLC) (Fig 1C; see S1 Text for
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justifications of placements). This provides initial empirical evidence that the trade-off

between sensory information and category information may underlie differences in temporal

weighting seen in previous studies. Unfortunately, since our placement of prior studies is only

qualitative this observation only constitutes weak evidence in favor of this hypothesis. How-

ever, this hypothesis makes the strong prediction that a simple change in the stimulus statistics

corresponding to sensory and category information, while holding everything else constant,

should change the temporal weighting found in these previous studies (predictions provided

in Table A in S1 Text). Below we will present new data from an experiment in which we did

exactly that and found that biases indeed shifted from primacy to optimal/recency as

predicted.

Approximate hierarchical inference explains transition from primacy to

recency

If stimuli were processed by the brain in a purely feedforward fashion, then a decision-making

area could simply integrate the evidence in sensory features (xf) directly. This is consistent

with some theories of inference in the brain in which sensory areas represent a likelihood func-

tion over stimuli [25–28]. However, activity in sensory areas does not rigidly track the stimu-

lus, but is known to be influenced by past stimuli [29, 30], as well as by feedback from the rest

of the brain [31, 32]. In fact, the intermediate sensory representation is itself often assumed to

be the result of an inference process over latent variables in an internal model of the world

[33–35]. This process is naturally formalized as hierarchical inference (Fig 2A) in which feed-

forward connections communicate the likelihood and feedback communicates the prior or

other contextual expectations, and sensory areas combine these to represent a posterior distri-

bution [27, 36–39].

We hypothesize that feedback of “decision-related” information to sensory areas [40, 41]

implements a prior that reflects current beliefs about the stimulus category [39, 42, 43]. While

such a prior is optimal from the perspective of estimating the sensory features, xf, this compli-

cates evidence accumulation (Methods). When xf is influenced by prior beliefs about the stim-

ulus category, the calculation of the “update” (log likelihood odds or LLOf) cannot simply

replace p(ef |C) by p(xf|C); instead, the decision-making area would need to account for or

“divide out” the influence of the top-down prior on the sensory representation to avoid a dou-

ble-counting of the prior (Fig 2B and 2C). For an ideal observer performing exact inference,

this process would not entail any suboptimalities or biases. However, inference in the brain is

necessarily approximate, with the potential to induce a bias.

Under-correcting for this prior would lead to earlier frames entering into the update multi-

ple times, giving them a larger weight in the final decision. Over multiple frames, the effect is a

positive feedback loop between estimates of sensory features xf and the belief in C. This mecha-

nism constitutes a “perceptual confirmation bias,” since belief updates are biased towards con-

firmatory evidence [2, 44], and leads to primacy effects. Over-correcting for the prior, on the

other hand, would lead to information from earlier frames decaying away, giving earlier

frames less influence on the final decision and manifesting as recency effects. In either case,

the strength of any bias is directly related to the strength of the prior.

Importantly, the strength of the prior only depends on the amount of category information,

and not the amount of sensory information (unlike task performance which depends on both).

For instance, in a task with high category information such as the classic dot motion task [24],

high certainty in the trial category, based on stimulus frames seen so far within a trial, directly

translates into high certainty about the net motion direction in subsequent frames of that trial

(Fig 2B). In a low category information task such as the Poisson clicks task [11], on the other
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hand, certainty in the trial category is only weakly predictive whether any one click is on the

left or on the right (Fig 2C). In the motion dots task, the relevant sensory feature, x, is the net
motion of all dots, not the motion of any one dot. The net motion in later frames is highly pre-

dictable from the net motion in earlier frames (i.e. high category-information) even if the

motion of any one dot is not, and it is known that the sensory neurons involved in the task rep-

resent the net motion by averaging over the motion of many neurons within their receptive

field [5].

We implemented two canonical models, corresponding to each of the two major classes of

approximate inference schemes known from statistics and machine learning: sampling-based

and variational inference [45, 46], and both of which have previously been proposed models

for inference in the brain [27, 36, 37, 47]. In both cases, we assumed that sensory areas of the

brain approximate the posterior, incorporating both the current sensory input and expecta-

tions based on past frames. Interestingly, both sampling-based and variational inference mod-

els behaved similarly in terms of performance and biases, and so here only show the results

from the sampling-based model, and provide the corresponding variational results in the SI.

The performance of our approximate models (Fig 3B) largely matched that of an exact infer-

ence model (Fig 3A), with accuracy somewhat reduced for high category information. We

computed the temporal biases of the approximate inference models for each combination of

sensory information and category information, and found that both models showed a primacy

effect whose magnitude decreased with the amount of category information (Fig 3B, 3C and

Fig 2. Information flow during hierarchical inference where categorical beliefs are fed back as a prior on sensory features. a) Generative

model that we assume the brain has learned for a discrimination task, which specifies how sensory observations ef depend on the category for

the trial, C, in two stages: each sensory observation ef is assumed to be a noisy realization of underlying sensory features, xf, and each frame of

sensory features is itself assumed to be selected according to the trial’s category. b-c) Integrating evidence about C requires updating the current

belief about C with new information derived from the sensory representation (left-right “integration” and bottom-up “update” arrows). The

posterior distribution over x combines top-down expectations (diagonal “prior” arrows) with new evidence from the stimulus, ef (bottom-up

“likelihood” arrows). Width of arrows indicates average amount of information communicated; red and blue arrows indicate changes in

information flow between conditions. Note that when inference is exact, the prior is subtracted from the information in the update during the

integration to prevent double-counting early evidence. While the generative model in (a) operates with discrete frames, f, inference in the brain

happens in continuous time, t. b) LSHC: Low sensory information means little information in the likelihood about sensory features xf. High

category information means that most of this information is also informative about C. It also means high information in the prior that is fed

back to the sensory representation. c) HSLC: High sensory information means high information in the likelihood about sensory features xf. Low

category information means that this information is only weakly predictive of C. It also means little information in the prior that is being fed

back to the sensory representation.

https://doi.org/10.1371/journal.pcbi.1009517.g002
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3D). Both hierarchical inference models under-corrected for the influence of prior expecta-

tions on the sensory representation. Over the course of a trial, this lead to a positive feedback

loop between the evidence-integration part of the model and the sensory representation, with

the strength of this loop being strong in the LSHC and weak in the HSLC condition (Fig 2B

and 2C). Importantly, this bias is a direct consequence of the approximate nature of the repre-

sentation of the posterior distribution; for instance, in the sampling model, the bias disappears

as the number of samples gets large (Methods).

Results for the variational and sampling-based inference models are qualitatively the same

(Fig D in S1 Text), as are results from simulating a larger neurally-inspired sampling model

(Fig H in S1 Text) [42]. This indicates that the observed pattern of biases is not tied to a partic-

ular representation scheme—sampling or parametric—but to the approximate and hierarchical
nature of inference.

Previous studies further suggest that evidence integration in the brain may be “leaky” or

“forgetful,” which can be motivated either mechanistically [3, 4, 13, 17], or as an adaptation to

non-stationary environments in normative models [14]. Including leaky integration, our final

approximate inference models contain two competing mechanisms: first, they exhibit a confir-

mation bias as a consequence of approximate hierarchical inference, which is strongest when

category information is high, leading to a primacy effect. Second, they contain leaky integra-

tion dynamics, which dampens the primacy effect and results in recency effects when category

information is low and confirmation bias dynamics are weak (Fig 3E, 3F and 3G). While the

exact magnitude of the leak is a free parameter in our model, to be constrained by data, the

change in bias with changes in category information is a strong prediction, i.e. changing from

strong primacy to no bias, or changing from weak primacy to recency, depending on the mag-

nitude of the leak.

Fig 3. Changes in bias predicted by approximate hierarchical inference models. a) Performance of an ideal observer reporting C given ten

frames of evidence. White line shows threshold performance, defined as 70% correct. The ideal observer’s temporal weights are always flat (not

shown). b) Performance of our sampling-based approximate inference model with no leak (Methods). Colored dots correspond to lines in the next

panel. c) Temporal weights in the model transition from flat to a strong primacy effect, all at threshold performance, as the stimulus transitions

from the HSLC to the LSHC conditions. d) Visualization of how temporal biases change across the entire task space. Red corresponds to primacy,

and blue to recency. White contour as in (b). Black lines are iso-contours for slopes corresponding to highlighted points in (b). e-g) Same as (b-d)

but with leaky integration, which lessens primacy effects and produces recency effects when category information is low.

https://doi.org/10.1371/journal.pcbi.1009517.g003
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We performed additional simulations to explore the interaction between leaky integration

and hierarchical inference. First, we observed that leaky integration can, surprisingly, improve
performance, since it counteracts the confirmation bias when category information is high

(Fig E in S1 Text). We further observed that optimizing the magnitude of the leak for maxi-

mum performance, separately for each combination of sensory information and category

information, always resulted in flat temporal weights (Fig F in S1 Text).

Our models make a critical prediction that is not shared by any other model: that the tem-

poral bias of the very same observer should change from primacy to flat or recency in a task in

which nothing changes apart from the balance between category and sensory information.

Changing category information in a visual discrimination task

To test this prediction, we designed an orientation discrimination task with two stimulus con-

ditions that correspond to the two opposite sides of this task space (LSHC and HSLC), while

keeping all other aspects of the design the same (Fig 4A and 4B). Importantly, in this

Fig 4. Two task conditions that reduce either sensory or category information to threshold level using a staircase. a) Each trial consisted of a

200ms start cue, followed by 10 stimulus frames presented for 83ms each, followed by a single mask frame of zero-coherence noise. After a 750ms

delay, left or right targets appeared and participants pressed a button to categorize the stimulus as “left” or “right.” Stimulus contrast is amplified

and spatial frequency reduced in this illustration. b) Category information is determined by the expected ratio of frames in which the orientation

matches the correct category, and sensory information is determined by a parameter κ determining the degree of spatial orientation coherence

(Methods). At the start of each block, we reset the staircase to the same point, with category information at 9: 1 and κ at 0.8. We then ran a 2-to-1

staircase either on κ or on category information. The Low-Sensory-High-Category (LSHC) and High-Category-Low-Sensory (HSLC) ovals indicate

sub-threshold trials; only these trials were used in the regression to infer observers’ temporal weights. c) Visualization of a noisy stimulus in the

LSHC condition. All frames are oriented to the left. d) Psychometric curves for all observers (thin lines) and averaged (thick line) over the κ
staircase. Shaded gray area indicates the median threshold level across all observers. e) Example frames in the HSLC condition. The orientation of

each frame is clear, but orientations change from frame to frame. f) Psychometric curves over frame ratios, plotted as in (d).

https://doi.org/10.1371/journal.pcbi.1009517.g004
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experiment, within-observer comparisons between the two task conditions isolate relative

changes in sensory information and category information. This overcomes the difficulties in

directly quantifying sensory information and category information as “high” or “low” in an

isolated task, which requires additional assumptions, as discussed above.

The stimulus in our task consisted of a sequence of ten visual frames (Fig 4A). Each frame

consisted of band-pass-filtered white noise with excess orientation power either in the −45˚ or

the +45˚ orientation [48] (Fig 4B and 4D). On each trial, there was a single true orientation

category, but individual frames might differ in their orientation. At the end of each trial,

observers reported whether the stimulus was oriented predominantly in the −45˚ or the +45˚

orientation (Methods).

Sensory information in our task is determined by how well each image determines the ori-

entation of that frame (i.e. the amount of “noise” in each frame), and category information is

determined by the probability that any given frame’s orientation matches the trial’s category.

We used signal detection theory to quantify both sensory information and category informa-

tion as the area under the receiver-operating-characteristic curve for ef and xf (sensory infor-

mation), and for xf and C (category information). Hence for a ratio of 5 : 5 frames of each

orientation, a frame’s orientation does not predict the correct choice and category information

is 0.5. For a ratio of 10 : 0, knowledge of the orientation of a single frame is sufficient to deter-

mine the correct choice and category information is 1. Quantifying sensory information

depends on individual observer’s sensory noise, but likewise ranges from 0.5 to 1 (see S1 Text).

For each observer, we compared two conditions intended to probe the difference between

the LSHC and HSLC regimes. Starting with a stimulus containing both high sensory and high

category information, we either ran a 2:1 staircase lowering the sensory information while

keeping category information high, or we ran a 2:1 staircase lowering category information

while keeping sensory information high (Fig 4B). Sub-threshold trials in each condition define

the LSHC and HSLC regimes, respectively (Fig 4C and 4E). For each condition and each

observer, we used logistic regression to infer the influence of each frame onto their choice.

observers’ overall performance was matched in the two conditions by setting a performance

threshold below which trials were included in the analysis (Methods).

In agreement with our hypothesis, we find predominantly flat or decreasing temporal

weights in the LSHC condition (Fig 5A), and when the information is partitioned differently—

in the HSLC condition—we find flat or increasing weights (Fig 5B). To quantify this change,

we first used cross-validation to select a method for quantifying temporal slopes, and found

that constraining weights to be either a linear or exponential function of time worked equally

well, and both outperformed logistic regression with a smoothness prior (Fig B in S1 Text;

Methods). A within-observer comparison revealed that the change in slope between the two

conditions was as predicted for all observers (Fig 5H) (p< 0.05 for 9 of 12 observers, boot-

strap). The effect was also highly significant on a population level (p< 0.01, sign test on

median slope parameters for each observer). This demonstrates that the trade-off between sen-

sory and category information in a task robustly changes observers’ temporal weighting strat-

egy as we predicted.

Confirmation bias, not bounded integration, explains primacy

effects

The primary alternative explanation for primacy effects in fixed-duration integration tasks

proposes that observers integrate evidence to an internal bound, at which point they cease pay-

ing attention to the stimulus [7]. In this scenario, early evidence always enters the decision-

making process while evidence late in trial is often ignored. Averaged over many trials, this
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results in early evidence having a larger effect on the final decision than late evidence, and

hence decreasing regression weights (and psychophysical kernels) just as we found in the

LSHC condition. Both models reflect very different underlying mechanism: in our approxi-

mate hierarchical inference models, a confirmation bias ensures that early evidence has a larger

effect on the final decision than late evidence for every single trial. In the integration-to-bound

(ITB) model, in a single trial, all evidence is weighed exactly the same before the bound is

reached, and not at all afterwards.

In order to test whether the ITB mechanism or confirmation bias dynamics better explain

our data, we used an Extended ITB model that can account for both biased integration dynam-

ics (as during a confirmation bias), and for incomplete evidence accumulation due to a finite

bound [49]. This model is a simple extension to classic drift diffusion models [5]. Until it hits a

bound or the trial ends, the model integrates signals as follows:

LPOf ¼ ð1 � aÞLPOf � 1 þ LLOf þ �f ð2Þ

Fig 5. Every observer’s temporal bias consistently changes from primacy to unbiased/recency between conditions as predicted. a-b)

Temporal weights from logistic regression of choices from sub-threshold frames for individual observers. Weights are regularized by a cross-

validated smoothness term, and are normalized to have a mean of 1. c-d) To summarize temporal biases, we constrained weights to be an

exponential function of time and re-fit them to observers’ choices. Exponential weights had higher cross-validated performance than regularized

logistic regression, supporting their use to summarize temporal biases (Fig B in S1 Text; Methods). e) The change in the temporal bias, quantified

as the exponential slope parameter (β), between the two task contexts for each observer is consistently positive (combined, p< 0.01, sign test on

median slope from bootstrapping). This result is individually significant in 9 of 12 observers by bootstrapping (p< 0.05, p< 0.01, and p< 0.001

indicated by �, ��, and ��� respectively; non-significant observers plotted with dashed lines). Points are median slope values after bootstrap-

resampling each observer’s sub-threshold trials. A slope parameter β> 0 corresponds to a recency bias and β< 0 to a primacy bias. We found

similar results using linear rather than exponential weight functions (Fig C in S1 Text).

https://doi.org/10.1371/journal.pcbi.1009517.g005
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where �f represents noise in the accumulation process (Fig 6A, Methods). For α = 0, this model

weighs evidence equally (optimally) over time. α> 0 has previously been proposed to model

“forgetful integration” in mechanistic models [3–5, 11], or as reflecting an assumption of non-

stationarity in the environment in normative models [14], and leads to a recency effect. Impor-

tantly, a negative value for α induces “accelerating” integration dynamics, in which already-

accumulated evidence is amplified, leading to primacy effects [3, 4, 49].

The Extended ITB model produces three distinct patterns in the data (colored text in Fig

6B). First, when α is positive and the bound is large, it produces recency biases. Second, when

the bound is small, it produces primacy biases [7], as long as α is also small so that it does not

prevent the bound from being crossed. Third, when the bound is large and α is negative, it also

produces primacy biases but now due to confirmation-bias-like dynamics rather than due to

Fig 6. Fitting an extended integration-to-bound (“Extended ITB”) model to data demonstrates that integration dynamics (negative α
for confirmation bias, positive α for forgetting), rather than a bound, best accounts for data. a) Illustration of Extended ITB model. As in

classic drift-diffusion models with an absorbing bound, evidence is integrated to an internal bound, after which new evidence is ignored.

Compared to perfect integration (α = 0), a positive leak (α> 0) decays information away and results in a recency bias, and a negative leak (α
< 0) amplifies already integrated information, resulting in a primacy bias. Since α< 0 may also result in more bound crossings, both leak and

bound together determine the shape of the temporal weights. b) Inferred values of the bound and leak parameters in each condition, shown as

median±68% credible intervals. The classic ITB explanation of primacy effects corresponds to a non-negative leak and a small bound—

illustrated here as a shaded green area. Note that the three observers near the ITB regime are points from the HSLC task—two still exhibit

mild recency effects and one exhibits a mild primacy effect as predicted by ITB. c) Across both conditions, the temporal slopes (β) implied by

the full model fits closely match the slopes in the data. β< 0 corresponds to primacy, and β> 0 to recency. Error bars indicate 68%

confidence intervals from bootstrapping trials on βdata and from posterior samples on βfit. d) Median temporal biases implied by the full

model (middle) and by the model with either zero leak (left) or infinite bound (right). Each line corresponds to a single observer. (LSHC

condition only—HSLC condition in Fig L in S1 Text). d) Across the population, the negative leak (confirmation bias) accounted for 99%

(68%CI = [93%, 106%]), and bounded integration accounted for 18% (68%CI = [13%, 23%]) of the primacy bias captured by the model.

(Additional analyses in Fig L in S1 Text).

https://doi.org/10.1371/journal.pcbi.1009517.g006
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bounded integration. Crucially, this single model can account for both primacy due to a

bound and primacy due to a confirmation bias by different parameter values (recovery of

ground-truth mechanisms shown in Figs J and K in S1 Text). Examining the parameters of

this model fit to data therefore allows us to determine the relative contributions of bounded

integration and confirmation bias dynamics in cases where observers show primacy effects.

We fit the Extended ITB model to individual choices on sub-threshold trials, separately for

the LSHC and the HSLC conditions. Fig 6B shows the posterior mean and 68% credible inter-

val for the dynamics parameter, α, and bound parameter inferred for each observer. The

model consistently inferred a negative α in the LSHC condition and a positive α in the HSLC

condition for all observers, suggesting that confirmation-bias dynamics are crucial to explain

observer’s primacy biases in the LSHC condition, as well as the change in bias from LSHC to

HSLC conditions. Note that the leak term in the Extended ITB model reflects a combination

of both the confirmation bias dynamic and a mechanistic “forgetting” term in the accumula-

tion of the decision variable. Those two effects are opposite in nature. As a result, the accelera-

tion inferred by our function model fit to data is likely a lower bound on the actual strength of

the confirmation bias dynamics. However, while the inferred bound for every single observer

is so high as not to contribute at all if the leak was zero, it is possible that bounded integration

still contributes to primacy effects, given that a stronger confirmation bias (α< 0) will hit a

bound more often.

We therefore performed an ablation analysis to quantify the relative contribution of the

leak and bound parameters to the primacy effect in the LSHC condition (Methods). We first

asked whether the inferred model parameters reproduced the observed biases. Indeed, Fig 6C

shows near-perfect agreement between the temporal biases implied by simulating choices

from the fitted models and the biases inferred directly from observers’ choices. Given this, if

setting the bound to1 leaves temporal biases unchanged, then we can conclude that biases

were driven by the leak, and conversely, a temporal bias that remains after setting α to zero

must be due to the bound. Fig 6D shows that primacy effects largely disappear when α is

ablated, but not when the bound is ablated. To summarize ablation effects across the popula-

tion, we used a hierarchical regression model to compute a population-level “ablation index”

for each parameter, which is 0 if removing the parameter has no effect on temporal slopes, β,

and is 1 if removing it destroys all temporal biases (Methods). The ablation index can therefore

be interpreted as the fraction of the observers’ primacy or recency biases that are attributable

to each parameter (but they do not necessarily sum to 1 because the slope is a nonlinear combi-

nation of both parameters). In the LSHC condition, the ablation index for the leak term was

0.99 (68% CI = [0.93, 1.06]), and for the bound term it was 0.18 (68% CI = [0.13, 0.23]) (Fig

6E). This indicates that although both mechanisms are present, primacy effects in our data are

dominated by the self-reinforcing dynamics of a negative leak. Results for the HSLC condition

are shown in Fig L in S1 Text.

Interestingly, one observer exhibited a slight primacy effect in the HSLC condition, and our

analyses suggest this was primarily due to bounded integration dynamics as proposed by Kiani

et al (2008). This outlier observer is marked with a diamond symbol throughout Fig 6, and is

further highlighted in Fig L in S1 Text. However, even this observer’s primacy effect in the

LSHC condition was driven by a confirmation bias (negative α), and their change in slope

between LSHC and HSLC conditions was in the same direction as the other observers. Impor-

tantly, finding a primacy effect due to an internal bound confirms that our model fitting proce-

dure is able to detect such effects when they are, in fact, present. Two additional observers

appear to have low bounds in the HSLC condition (Fig 6C), but are dominated by leaky inte-

gration (α> 0), resulting in an overall recency bias.
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Discussion

Our work makes three main contributions. First, we extended ideal observer models of evi-

dence integration tasks by explicitly accounting for the intermediate sensory representation.

We showed that this partitions the information in the stimulus about the category into two

parts—“sensory information” and “category information”—defining a novel two-dimensional

space of possible tasks. Second, we found that two classes of biologically-plausible approximate

inference algorithms entailed a confirmation bias whose strength strongly varied across this

task space. Interestingly, the location of tasks in existing studies qualitatively predicted the bias

they found across species, sensory modalities and task designs. Third, we collected new data

and confirmed a critical prediction of our theory, namely that individual observers’ temporal

biases should change depending on the balance of sensory information and category informa-

tion in the stimulus. Finally, by fitting an extended integration to bound (Extended ITB)

model to individual observer choices, we confirmed that these changes in biases are due to a

change in integration dynamics rather than bounded integration.

The “confirmation bias” emerges in our hierarchical inference models as the result of three

key assumptions. Our first assumption is that inference in evidence integration tasks is in fact

hierarchical, and that the brain approximates the posterior distribution over the intermediate

sensory variables, x. This is in line with converging evidence that populations of sensory neu-

rons encode posterior distributions of corresponding sensory variables [34, 35, 50, 51] incor-

porating dynamic prior beliefs via feedback connections [34, 35, 39, 42, 43, 51–53]. This is in

contrast to other probabilistic theories in which only the likelihood is represented in sensory

areas [25, 26, 28, 54], which would not predict primacy effects due to confirmation bias

dynamics.

Our second key assumption is that evidence is accumulated online. In our models, the belief

over C is updated based only on the posterior from the previous step and the current posterior

over x. This can be thought of as an assumption that the brain does not have a mechanism to

store and retrieve earlier frames of evidence directly, and is consistent with drift-diffusion

models of decision-making [5]. As mentioned in the main text, the assumptions until now—

hierarchical inference with online updates—do not entail any temporal biases for an ideal

observer. Further, the use of discrete time in our experiment and models is only for mathemat-

ical convenience—analogous dynamics emerge in continuous-time, and in fact we imple-

mented our models at a finer time scale than at which evidence frames are presented.

Third, we assumed that inference in the brain is approximate—a safe assumption due to the

intractable nature of exact inference in large models. In the sampling model, we assumed that

the brain can draw a limited number of independent samples of x per update to C, and found

that for a finite number of samples the model is inherently unable to account for all of the

prior bias of C on x in its updates to C. Existing neural models of sampling typically assume

that samples are distributed temporally [36, 42, 53, 55, 56], but it has also been proposed that

the brain could process multiple sampling “chains” distributed spatially [57]. The relevant

quantity for our model is the number of independent samples that can be tallied per update:

the more samples, the smaller the bias. The variational model’s representational capacity was

limited by enforcing that the posterior over x is unimodal, and that there is no explicit repre-

sentation of dependencies between x and C. Importantly, this does not imply that x and C do

not influence each other. Rather, the Variational Bayes algorithm expresses these dependencies

in the dynamics between the two areas: each update that makes C = +1 more likely pushes the

distribution over x further towards +1, and vice versa. Because the number of dependencies

between variables grows exponentially, such approximates are necessary in variational
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inference with many variables [36]. The Mean Field Variational Bayes algorithm that we use

here has been previously proposed as a candidate algorithm for neural inference [58].

The assumptions up to now predict a primacy effect but cannot account for the observed

recency effects. When we incorporate a forgetting term in our models, they reproduce the

observed range of biases from primacy to recency. The existence of such a forgetting term is

supported by previous literature [4, 15]. Further, it is normative in our framework in the sense

that reducing the bias in the above models improves performance (Fig D in S1 Text through

Fig F in S1 Text). The optimal amount of bias correction depends on the task statistics: for

high category information where the confirmation bias is strongest, a stronger forgetting term

is needed to correct for it. While it is conceivable that the brain would optimize this term to

the task [11, 59, 60], our data suggest it is stable across our LSHC and HSLC conditions, or

only adapts slowly.

It has been proposed that post-decision feedback biases subsequent perceptual estimations

[61–65]. While in spirit similar to our confirmation bias model, there are two conceptual dif-

ferences between these models and our own: First, the feedback from decision area to sensory

area in our model is both continuous and online, rather than conditioned on a single choice

after a decision is made. Second, our models are derived from an ideal observer and only incur

bias due to algorithmic approximations, while previously proposed “self-consistency” biases

are not normative and require separate justification. However, these previous findings on the

effect of commitment to a choice on weighing subsequent evidence can easily be accommo-

dated in our framework by plausibly proposing that the act of committing to a choice increases

one’s subjective certainty about that choice being correct. In our model, such an increase in

certainty would directly translate into an increase in feedback from decision to sensory areas,

and hence increased confirmation bias.

Our analysis decisively shows that accelerating dynamics, rather than reaching a bound

before the end of the trial, explains the primacy effect in our data. Prior work has suggested

that such accelerating dynamics may arise from mutual inhibition of two accumulators [15,

18, 20], or two attractor states corresponding to the two choices [16, 19, 66–68]—all within a

decision-area, and that the nature of the temporal bias depends on the volatility of the inte-

grated signal [22]. Importantly, decision-dynamics alone cannot explain our results, since the

input to these models usually reflects the total information in each frame about the choice, i.e.

combining both sensory and category information. In other words, these models usually inte-

grate log odds, which we kept approximately constant between LSHC and HSLC conditions.

The same argument applies to other models that do no distinguish between sensory and cate-

gory information, whether based on mixing trials of different difficulty [21] or differential

accumulation of consistent and inconsistent evidence [63, 64, 69, 70].

In contrast, in our explanation based on approximate hierarchical inference, attractor

dynamics arise across sensory and decision areas, as the result of cortical inter-area feedback

whose strength is monotonically related to category information. Holding the task difficulty

(and hence the magnitude of the log odds of each frame) constant, our model nonetheless pre-

dicts stronger inter-area attractor dynamics when category information is high. Given recent

evidence that noise correlations contain a task-dependent feedback component [71], we there-

fore predict a reduction of task-dependent noise correlations in comparable tasks with lower

category information. The confirmation bias mechanism may also account for the recent find-

ing that stronger attractor dynamics are seen in a categorization task than in a comparable esti-

mation task [38].

Rollwage et al (2020) recently presented evidence for a relationship between decision confi-

dence and confirmation bias: when observers are more confident about a decision, they will be

more biased in how they interpret subsequent information [65]. Interestingly, our model
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makes a closely related prediction: that positive feedback loop between decision and sensory

area also increases confidence beyond that of an ideal observer. In particular, it predicts that

confidence judgements in the LSHC condition when the primacy effect is strong will be higher

than in the HSLC condition when the primacy effect is weak—a prediction that we found to be

confirmed in follow-up work [72].

It has also been proposed that primacy effects could be the result of near-perfect integration

of an adapting sensory population [29, 68]. For this mechanism to explain our full results,

however, the sensory population would need to become less adapted over the course of a trial

in our HSLC condition, while at the same time more adapted in the LSHC condition. We are

unaware of such an adaptation mechanism in the literature. Further, such stimulus-dependent

circuit dynamics would not predict top-down neural effects such as the task-dependence of

the dynamics of sensory populations [38] nor the origin and prevalence of differential correla-

tions [71], both of which are consistent with hierarchical inference [39, 42].

While our focus is on the perceptual domain in which observers integrate evidence over a

timescale on the order of tens or hundreds of milliseconds, analogous computational princi-

ples hold in the cognitive domain over longer timescales. The crucial computational motif

underlying our model of the confirmation bias is approximate hierarchical inference over mul-

tiple timescales. An agent in such a setting must simultaneously make accurate judgments of

current data (based on the current posterior) and track long-term trends (based on all likeli-

hoods). For instance, Zylberberg et al. (2018) identified an analogous challenge when observers

must simultaneously make categorical decisions each trial (their “fast” timescale) while track-

ing the stationary statistics of a block of trials (their “slow” timescale), with trial-by-trial statis-

tics analogous to the frame-by-frame statistics in our LSHC condition. As the authors

describe, if observers base model updates on posteriors rather than likelihoods, they will fur-

ther entrench existing beliefs [73]. However, the authors did not investigate order effects; our

proposed confirmation bias models would predict that observers’ estimates of block statistics

is biased towards earlier trials in the block (primacy). Schustek et al. (2018) likewise asked

observers to track information across trials in a cognitive task more analogous to our HSLC

condition, and report close to flat weighting of evidence across trials [74] in agreement with

our model.

The strength of the perceptual confirmation bias is directly related to the integration of

internal “top-down” beliefs and external “bottom-up” evidence previously implicated in clini-

cal dysfunctions of perception [75]. Therefore, the differential effect of sensory and category

information may be useful in diagnosing clinical conditions that have been hypothesized to be

related to abnormal integration of sensory information with internal expectations [76].

Hierarchical (approximate) inference on multiple timescales is a common motif across per-

ception, cognition, and machine learning. We suspect that all of these areas will benefit from

the insights on the causes of the confirmation bias mechanism that we have described here and

how they depend on the statistics of the inputs in a task.

Methods

Ethics statement

This study was approved by the Institutional Research Review Board of the University of Roch-

ester (RSRB #55456).

Visual discrimination task

We recruited twelve students at the University of Rochester as observers in our study. All non-

author participants were compensated for their time. We found no difference between naive
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observers and authors, so all main-text analyses are combined, with data points belonging to

authors and naive observers indicated in Fig 5D.

Our stimulus consisted of ten frames of band-pass filtered noise [48, 77] masked by a soft-

edged annulus, leaving a “hole” in the center for a small cross on which observers fixated. The

stimulus subtended 2.6 degrees of visual angle around fixation. Stimuli were presented using

Matlab and Psychtoolbox on a 1920x1080px 120 Hz monitor with gamma-corrected lumi-

nance [78]. Observers kept a constant viewing distance of 36 inches using a chin-rest. Each

trial began with a 200ms “start” cue consisting of a black ring around the location of the

upcoming stimulus. Each frame lasted 83.3ms (12 frames per second). The last frame was fol-

lowed by a single double-contrast noise mask with no orientation energy. Observers then had

a maximum of 1s to respond, or the trial was discarded (Fig 4A). The stimulus was designed to

minimize the effects of small fixational eye movements: (i) small eye movements do not pro-

vide more information about either orientation, and (ii) each 83ms frame was too fast for

observers to make multiple fixations on a single frame.

The stimulus was constructed from white noise that was then masked by a kernel in the

Fourier domain to include energy at a range of orientations and spatial frequencies but ran-

dom phases [48, 71, 77] (a complete description and parameters can be found in Table B in S1

Text). We manipulated sensory information by broadening or narrowing the distribution of

orientations present in each frame, centered on either +45˚ or −45˚ depending on the chosen

orientation of each frame. We manipulated category information by changing the proportion

of frames that matched the orientation chosen for that trial. The range of spatial frequencies

was kept constant for all observers and in all conditions.

Trials were presented in blocks of 100, with typically 8 blocks per session (about 1 hour).

Each session consisted of blocks of only HSLC or only LSHC trials (Fig 4). Observers com-

pleted between 1500 and 4400 trials in the LSHC condition, and between 1500 and 3200 trials

in the HSLC condition. After each block, observers were given an optional break and the stair-

case was reset to κ = 0.8 and pmatch = 0.9. pmatch is defined as the probability that a single frame

matched the category for a given trial. In each condition, psychometric curves were fit to the

concatenation of all trials from all sessions using the Psignifit Matlab package [79], and tempo-

ral weights were fit to all trials below each observer’s threshold.

Low sensory-, high category-information (LSHC) condition. In the LSHC condition, a

continuous 2-to-1 staircase on κ was used to keep observers near threshold (κ was incremen-

ted after each incorrect response, and decremented after two correct responses in a row).

pmatch was fixed to 0.9. On average, observers had a threshold (defined as 70% correct) of κ =

0.17 ± 0.07 (1 standard deviation). Regression of temporal weights was done on all sub-thresh-

old trials, defined per-observer.

High sensory-, low category-information (HSLC) condition. In the HSLC condition,

the staircase acted on pmatch while keeping κ fixed at 0.8. Although pmatch is a continuous

parameter, observers always saw 10 discrete frames, hence the true ratio of frames ranged from

5:5 to 10:0 on any given trial. Observers were on average 69.5% ± 4.7% (1 standard deviation)

correct when the ratio of frame types was 6:4, after adjusting for individual biases in the 5:5

case. Regression of temporal weights was done on all 6:4 and 5:5 ratio trials for all observers,

regardless of the underlying pmatch parameter.

Logistic regression of temporal weights

We constructed a matrix of per-frame signal strengths S on sub-threshold trials by measuring

the empirical signal level in each frame. This was done by taking the dot product of the Fou-

rier-domain energy of each frame as it was displayed on the screen (that is, including the
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annulus mask applied in pixel space) with a difference of Fourier-domain kernels at +45˚ and

−45˚ with κ = 0.16. This gives a scalar value per frame that is positive when the stimulus con-

tained more +45˚ energy and negative when it contained more −45˚ energy. Signals were z-

scored before performing logistic regression, and weights were normalized to have a mean of 1

after fitting.

Temporal weights were first fit using (regularized) logistic regression with different types of

regularization. The first regularization method consisted of an AR0 (ridge) prior, and an AR2

(curvature penalty) prior. We did not use an AR1 prior to avoid any bias in the slopes, which

is central to our analysis.

To visualize regularized weights in Fig 5, the ridge and AR2 hyperparameters were chosen

using 10-fold cross-validation for each observer, then averaging the optimal hyperparameters

across observers for each task condition. This cross validation procedure was used only for dis-

play purposes for individual observers in Fig 5A and 5B of the main text, while the linear and

exponential fits (described below) were used for Fig 5C and 5D and statistical comparisons.

Fig A in S1 Text shows individual observers’ weights for all regression models.

We used two methods to quantify the shape (or slope) of w: by constraining w to be either

an exponential or linear function of time, but otherwise optimizing the same maximum-likeli-

hood objective as logistic regression. Cross-validation suggests that both of these methods per-

form similarly to either unregularized or the regularized logistic regression defined above,

with insignificant differences (Fig B in S1 Text). The exponential is defined as

wexponential
f ¼ a exp ðbf Þ ð3Þ

where f refers to the frame number. β gives an estimate of the shape of the weights w over time,

while α controls the overall magnitude. β> 0 corresponds to recency and β< 0 to primacy.

The β parameter is reported for human observers in Fig 5E, and for the models in Fig 3D and

3G.

The second method to quantify slope was to constrain the weights to be a linear function in

time:

wlinear
f ¼ aþ slope� f ð4Þ

where slope> 0 corresponds to recency and slope< 0 to primacy.

Fig 5E shows the median exponential shape parameter (β) after bootstrapped resampling of

trials 500 times for each observer. Both the exponential and linear weights give comparable

results (Fig C in S1 Text).

Because we are not explicitly interested in the magnitude of w but rather its shape over stim-

ulus frames, we always plot a “normalized” weight, w/mean(w), both for our experimental

results (Fig 5A–5D) and for the model (Fig 3C and 3F).

Approximate inference models

We model evidence integration as Bayesian inference in a three-variable generative model (Fig

2A) that distills the key features of online evidence integration in a hierarchical model [42].

The variables in the model are mapped onto the sensory periphery (e), sensory cortex (x), and

a decision-making area (C) in the brain. For simulations, the same model was used both to

generate data (C! xf! ef), and, in the reverse direction, as a model of inference dynamics (ef

! p(xf | . . .)$ p(C| . . .)).
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In the generative direction, on each trial, the binary value of the correct choice C 2 {−1, +1}

is drawn from a 50/50 prior. xf is then drawn from a mixture of two Gaussians:

xðgenÞf �

(N ðþC; s2
xÞ with prob: equal to category info:

N ð� C; s2
xÞ otherwise

ð5Þ

Finally, each ef is drawn from a Gaussian around xf:

eðgenÞf � N ðxf ; s
2
eÞ : ð6Þ

In the inference direction, we assume that the observer has learned the correct model parame-

ters (namely the category information, and sensory information or s2
e ), even as parameters

change between the two different conditions. This is why we ran our observers in blocks of

only LSHC or HSLC trials on a given day.

Category information in this model can be quantified by the probability that xðgenÞf is drawn

from the mode that matches C, as in Eq (5). We quantify sensory information as the probabil-

ity with which an ideal observer can recover the sign of xf from a single ef. That is, in our

model sensory information is equivalent to the area under the ROC curve for two univariate

Gaussian distributions separated by a distance of 2, which is given by

sensory info: ¼ Fð
ffiffiffi
2
p

=seÞ ð7Þ

where F is the inverse cumulative normal distribution.

Optimal inference of C requires conditioning on all frames of evidence e1, . . ., ef, which can

be expressed as the Log Posterior Odds (LPO),

log
pðC ¼ þ1je1; . . . ; ef Þ

pðC ¼ � 1je1; . . . ; ef Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LPOf

¼ log
pðC ¼ þ1Þ

pðC ¼ � 1Þ
þ
Xf

i¼1

log
pðeijC ¼ þ1Þ

pðeijC ¼ � 1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

LLOi

;
ð8Þ

where LLOf is the log likelihood odds for frame f [4, 5]. To reflect the fact that the brain has

access to only one frame of evidence at a time, this can be rewritten this as an online update

rule, summing the previous frame’s log posterior with new evidence gleaned on the current

frame:

LPOf ¼ LPOf � 1 þ LLOf : ð9Þ

Optimal inference of xf similarly requires accounting for all possible sources of information.

Ideally, sensory areas should incorporate prior information based on previous frames to com-

pute p(xf |e1, . . ., ef). Using pf−1(C = c) = p(C = c|e1, . . ., ef−1) to denote the brain’s belief that

the category is C = c after the first f − 1 frames, the posterior over xf given all frames, p(xf |e1,

. . ., ef), can be written as

pðxf je1; . . . ; ef Þ / pðef jxf Þ
X

c

pf � 1
ðC ¼ cÞpðxf jC ¼ cÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pf ðxf Þ

:

ð10Þ

The term pf(xf) is a prior on sensory features xf that changes over time depending on the cur-

rent belief in the category, pf−1(C). In other words, sensory areas could dynamically combine

instantaneous evidence (p(ef |xf)) with accumulated categorical beliefs (pf−1(C) to arrive at a

more precise estimate of present sensory features xf. This is what we mean by feedback of

“decision-related information” or of “categorical beliefs.”
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Our approximate inference models, described in detail below, compute a biased estimate of

LLOf, which we call ^LLOf . The bias is due to the interaction of approximations with feedback

of prior beliefs, such that ^LLOf is biased towards LPOf−1, resulting in a confirmation bias.

Importantly, this bias arises naturally in both the sampling-based and variational approximate

inference algorithms that we study here, as a direct consequence the approximate nature of the

posterior. Given the approximate representation of posteriors over xf, there is no way to exactly

divide out the influence of the prior and recover the exact log likelihood odds on a frame-by-

frame basis. However, the confirmation bias can be mitigated on average simply by incorporat-

ing a leak term, γ, in the integration process [3, 4]:

LPOf  ð1 � gÞLPOf � 1 þ
^LLOf : ð11Þ

Due to the bias in ^LLOf , γ can be seen as a kind of approximate bias correction, with positive

values for γ often improving performance (Fig E in S1 Text through Fig F in S1 Text). Equiva-

lently, one can view the quantity ^LLOf � gLPOf � 1 as a less biased estimate of the true log likeli-

hood odds.

Because the effective time per update in the brain is likely faster than our 83ms stimulus

frames, we included an additional parameter nU for the number of online belief updates per

stimulus frame. In the sampling model described below, we amortize the per-frame updates

over nU steps, updating nU times per frame using 1

nU
^LLOf . In the variational model, we inter-

pret nU as the number of coordinate ascent steps per stimulus frame.

Simulations of both models were done with 10000 trials per task type and 10 frames per

trial. To quantify the evidence-weighting of each model, we used the same logistic regression

procedure that was used to analyze human observers’ behavior. In particular, temporal weights

in the model are best described by the exponential weights (Eq (3)), so we use β to characterize

the model’s biases.

Sampling model. The sampling model estimates p(ef |C) using importance sampling of

x, where each sample is drawn from a pseudo-posterior using the current running estimate of

pf−1(C)� p(C|e1, ‥, ef−1) as a marginal prior:

xðsÞf � QðxÞ / pðef jxf Þ
X

c

pðxf jC ¼ cÞpf � 1
ðC ¼ cÞ ð12Þ

Using this distribution, we obtain the following unnormalized importance weights.

wðsÞ ¼
X

c

pðxðsÞf jC ¼ cÞpf � 1
ðC ¼ cÞ

 !� 1

ð13Þ

In the self-normalized importance sampling algorithm these weights are then normalized as

follows,

ŵðsÞ ¼
wðsÞ
P

iwðiÞ
;

though we found that this had no qualitative effect on the model’s ability to reproduce the

trends in the data. The above equations yield the following estimate for the log-likelihood ratio
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needed for the belief update rule in Eq (11):

^LLOf ¼ log

XS

s¼1

pðxðsÞf jC ¼ þ1ÞwðsÞ

XS

s¼1

pðxðsÞf jC ¼ � 1ÞwðsÞ
ð14Þ

In the case of infinitely many samples, these importance weights exactly counteract the bias

introduced by sampling from the posterior rather than likelihood, thereby avoiding any dou-

ble-counting of the prior, and hence, any confirmation bias [80]. However, in the case of finite

samples, S, biased estimates of LLOf are unavoidable [81].

The full sampling model is given in Algorithm A in S1 Text. Simulations in the main text

were done with S = 5, nU = 5, normalized importance weights, and γ = 0 or γ = 0.1.

Variational model. The following variational model produces qualitatively similar pat-

terns of temporal biases to the IS model (Fig D in S1 Text).

The core assumption of the variational model is that while a decision area approximates the

posterior over C and a sensory area approximates the posterior over x, no brain area explicitly

represents posterior dependencies between them. That is, we assume the brain employs a

mean field approximation to the joint posterior by factorizing p(C, x1, . . ., xF |e1, . . ., eF) into a

product of approximate marginal distributions qðCÞ
QF

f¼1
qðxf Þ and minimizes the Kullback-

Leibler divergence between q and p using a process that can be modeled by the Mean-Field

Variational Bayes algorithm [46].

By restricting the updates to be online (one frame at a time, in order), this model can be

seen as an instance of “Streaming Variational Bayes” [82]. That is, the model computes a

sequence of approximate posteriors over C using the same update rule for each frame. We thus

only need to derive the update rules for a single frame and a given prior over C; this is extended

to multiple frames by re-using the posterior from frame f − 1 as the prior on frame f.
As in the sampling model, this model is unable to completely discount the added prior over

x. Intuitively, since the mean-field assumption removes explicit correlations between x and C,

the model is forced to commit to a marginal posterior in favor of C = +1 or C = −1 and x> 0

or x< 0 after each update, which then biases subsequent judgments of each.

To keep conditional distributions in the exponential family (which is only a matter of math-

ematical convenience and has no effect on the ideal observer), we introduce an auxiliary vari-

able zf 2 {−1, +1} that selects which of the two modes xf is in:

zf ¼

(
þ1 with probability equal to category info

� 1 otherwise
ð15Þ

such that

xf � N ðzf C; s2
xÞ: ð16Þ

We then optimize qðCÞ
QF

f¼1
qðxf Þqðzf Þ.

Mean-Field Variational Bayes is a coordinate ascent algorithm on the parameters of each

approximate marginal distribution. To derive the update equations for each step, we begin
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with the following [46]:

log qðxf Þ  EqðCÞqðzf Þ
½log pðC; xf ; zf jef Þ� þ const

log qðzf Þ  EqðCÞqðxf Þ
½log pðC; xf ; zf jef Þ� þ const

log qðCÞ  Eqðxf Þqðzf Þ
½log pðC; xf ; zf jef Þ� þ const

ð17Þ

After simplifying, the new q(xf) term is a Gaussian with mean given by Eq (18) and constant

variance

mxf
 
s2

emCmzf
þ s2

xef

s2
e þ s

2
x

ð18Þ

where μC and μz are the means of the current estimates of q(C) and q(z).

For the update to q(zf) in terms of log odds of zf we obtain:

LPOzf
 log

pðzf ¼ þ1Þ

pðzf ¼ � 1Þ
þ 2

mxf
mC

s2
e þ s

2
x

: ð19Þ

Similarly, the update to q(C) is given by:

LPOC  log
pðC ¼ þ1Þ

pðC ¼ � 1Þ
þ 2

mxf
mzf

s2
x

ð20Þ

Note that the first term in Eq (20)—the log prior—will be replaced with the log posterior esti-

mate from the previous frame (see Algorithm B in S1 Text). Comparing Eqs (20) and (9), we

see that in the variational model, the log likelihood odds estimate is given by

^LLOf ¼ 2
mxf
mzf

s2
x

ð21Þ

Analogously to the sampling model we assume a number of updates nU reflecting the speed

of relevant computations in the brain relative to how quickly stimulus frames are presented.

Unlike for the sampling model, naively amortizing the updates implied by Eq (21) nU times

results in a stronger primacy effect than observed in the data, since the Variational Bayes algo-

rithm naturally has attractor dynamics built in. Allowing for an additional parameter η scaling

this update (corresponding to the step size in Stochastic Variational Inference [83]) seems bio-

logically plausible because it simply corresponds to a coupling strength in the feed-forward

direction. Decreasing η both reduces the primacy effect and improves the model’s perfor-

mance. Here we used η = 0.05 in all simulations based on a qualitative match with the data.

The full variational model is given in Algorithm B in S1 Text.

Fitting the extended ITB model to data. To explore alternatives, we implemented an

Integration to Bound (ITB) model in our simplified 3-variable hierarchical task model, C! xf

! ef. The dynamics of the integrator model were nearly identical to Eq (11), using the exact

log likelihood odds, but with added noise:

LPOf ¼ LPOf � 1ð1 � aÞ þ LLOf þ � ; ð22Þ

where � is zero-mean Gaussian noise with variance s2
�

[4, 11, 13, 15, 19]. Although α plays a

similar role to γ from the hierarchical inference models (both α and γ are referred to as “leak”

parameters), we distinguish between them to avoid confusion. Whereas α< 0 produces confir-

mation-bias dynamics in the Extended ITB model, in the hierarchical inference models a
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confirmation bias occurs when γ is small but positive and category information is high (that is,

the confirmation bias in hierarchical inference is due to biased estimation of ^LLO rather than

to γ). In the Extended ITB model, whenever LPOf crosses the bound at ±B, it “sticks” to that

bound for the rest of the trial regardless of further evidence. Note that in the unbounded case

noise does not affect the shape of the temporal weights (only their magnitude), but noise inter-

acts with the bound to determine the shape as well as overall performance. Fig G in S1 Text

shows the performance and temporal biases of the ITB model for a range of parameter values.

Per observer per condition, we used Metropolis Hastings (MH) to infer the joint posterior

over seven parameters: the category prior (pC), lapse rate (λ), decision temperature (T), inte-

gration noise (�), bound (B), leak (α), and evidence scale (s). One challenge for fitting models

is that the mapping from signal in the images (S) to “log odds” to be integrated (LLO) depends

on category information, sensory information, and on unknown properties of each observer’s

visual system. The evidence scale parameter, s, was introduced because although we can esti-

mate the ground truth category information in each task (0.6 for HSLC and 0.9 for LSHC), the

effective sensory information depends on each observer’s visual system and will differ between

the two tasks. Using logistic regression, we explored plausible nonlinear monotonic mappings

between signals S and log-odds, but found that none performed better than linear scaling

when applied to sub-threshold trials. We therefore used LLO� g(S/s), where g is a sigmoidal

function that accounts for category information being less than 1, and inferred s jointly along

with other parameters of the model. The scale s was fixed to 1 when fitting the ground-truth

models, as the mapping between evidence and log odds is completely known in those cases.

Each trial, the Extended ITB model followed the noisy integration dynamics in Eq (22),

where LPO0 ¼ log pC
1� pC

and LLOf was computed exactly, as described above. After integration,

the decision then incorporated a symmetric lapse rate and temperature:

pðChoice ¼ þ1jLPOF; l;TÞ ¼ lþ ð1 � 2lÞs ðLPOF=TÞ ;

where σ(a) is the sigmoid function, σ(a)� (1 + exp(−a))−1. Note that if the bound is hit, then

LPOF = ±B, but the temperature and lapse still apply. To compute the log likelihood for each

set of parameters, we numerically marginalized over the noise, �, by discretizing LPO into bins

of width at most 0.01 between −B and +B (clipped at 3 times the largest LPO reached by the

ideal observer) and computing the probability mass of LPOf given LPOf−1, LLOf, and �. This

enabled exact rather than stochastic likelihood evaluations within MH.

The priors over each parameter were set as follows. p(pC) was set to Beta(2, 2). p(λ) was set

to Beta(1, 10). p(α) was uniform in [−1, 1]. p(s) was set to an exponential distribution with

mean 20. p(�) was set to an exponential distribution with mean 0.25. p(T) was set to an expo-

nential distribution with mean 4. p(B) was set to a Gamma distribution with (shape,scale)

parameters (2, 3) (mean 6). MH proposal distributions were chosen to minimize the autocor-

relation time when sampling each parameter in isolation.

We ran 12 MCMC chains per observer per condition. The initial point for each chain was

selected as the best point among 500 quasi-random samples from the prior. Chains were run

for variable durations based on available shared computing resources. Each was initially run

for 4 days; all chains were then extended for each model that had not yet converged according

to the Gelman-Rubin statistic, R̂ [84, 85]. We discarded burn-in samples separately per chain

post-hoc, defining burn-in as the time until the first sample surpassed the median posterior

probability for that chain (maximum 20%, median 0.46%, minimum 0.1% of the chain length

for all chains). After discarding burn-in, all chains had a minimum of 81k, median 334k, and

maximum 999k samples. Standard practice suggests that R̂ < 1:1 indicates good enough con-

vergence. The slowest-mixing parameter was the signal scale (s), with R̂ ¼ 1:13 in the worst
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case. All R̂ values for the parameters relevant to the main analysis—α, B, and β—indicated con-

vergence ([min, median, max] values of R̂ equal to [1, 1.00335, 1.032] for α, [1.0005, 1.00555,

1.0425] for B, and [1, 1.0014, 1.0178] for all β values in ablation analyses.

Estimating temporal slopes and ablation indices implied by model samples. To esti-

mate the the shape of temporal weights implied by the model fits, we simulated choices from

the model once for each posterior sample after thinning to 500 samples per chain for a total of

6k samples per observer and condition. We then fit the slope of the exponential weight func-

tion, β, to these simulated choices using logistic regression constrained to be an exponential

function of time as described earlier (Eq (3)). This is the βfit plotted on the y-axis of Fig 6C. For

the ablation analyses, we again fit β to choices simulated once per posterior sample of model

parameters, but setting α = 0 in one case or (B =1, � = 0) in the other.

We used a hierarchical regression analysis to compute “ablation indices” per observer and

per parameter. The motivation for this analysis is that observers have different magnitudes of

primacy and recency effects, but the relative impact of the leak or bound and noise parameters

appeared fairly consistent throughout the population (Fig L in S1 Text), so a good summary

index measures the fraction of the bias attributable to each parameter, which directly relates to

the slope of a regression line through the origin. To quantify the net effect of each ablated

parameter per observer, we regressed a linear model with zero intercept to βfit versus βtrue. If

an ablated parameter has little impact on βfit, then the slope of the regression will be near 1, so

we use 1 minus the linear model’s slope as an index of the parameter’s contribution. The

regression model accounted for errors in both x and y but approximated them as Gaussian.

Defining m to be the regression slope for the population and mi to be the slope for observer i,
the regression model was defined as

sm � half‐cauchyð0; 5Þ ð23Þ

mi � N ðm; smÞ ð24Þ

btrue;i � N ðxi; sx;iÞ ð25Þ

bfit;i � N ðximi; sy;iÞ : ð26Þ

This model was implemented in STAN and fit using NUTS [86]. The regression was done sep-

arately for each experimental condition and each set of ablated parameters. Eqs (23) and (24)

are standard practice in hierarchical regression—they capture the idea that there is variation in

the parameter of interest (the slope m) across observers which is normally distributed with

unknown variance, σm, but that this variance is encouraged to be small if supported by the

data. The variable xi is the “true” x location associated with each observer, which is inferred as

a latent variable to account for measurement error in both x (Eq (25)) and y (Eq (26)) dimen-

sions. Measurement errors in βtrue, σx,i were set to the standard deviation in β across boot-

straps. Measurement errors in βfit, σy,i were set to the standard deviation of the posterior

predictive distribution over β from simulated choices on each sample of model parameters as

described above. We set xi and yi to the median values of βtrue (across bootstrapped trials) and

βfit (across posterior samples), respectively.

Ground-truth models. Based on observations of the temporal weighting profile alone, the

transition between primacy and recency could be explained by bounded integration with a

changing leak amount in the LSHC condition and high bound in the HSLC condition (Fig G

in S1 Text). To verify that all of the above fitting and ablation procedures could distinguish a

confirmation bias from bounded integration, we tested them on two ground-truth models:
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one where choices were simulated from a hierarchical inference (IS) model, and one where

choices were simulated from an ITB model. All ground-truth parameter values are given in

Table C in S1 Text, which were chosen to meet two criteria: first, constant performance at 70%

in both LSHC and HSLC regimes, and second, matched temporal slopes (a primacy effect with

shape β� −0.1 in the LSHC condition and a recency effect with shape β� 0.1 in the HSLC

condition for both models). This analysis confirmed that bounded integration is indeed distin-

guishable from a confirmation bias (α< 0), in terms of the quality of the fit (Fig I in S1 Text),

different inferred parameter values (Fig J in S1 Text), and the ablation tests (Fig K in S1 Text).

Supporting information

S1 Text. Combined Supplemental Text, Figs A-L, Tables A-C, and Algorithms A-B. Table A:

Sensory Information, Category Information, and biases in previous studies. Justification of

placement of example prior studies in Fig 1C and description of stimulus manipulations that

will move it to the opposite side of the category–sensory–information space. Each manipula-

tion corresponds to a prediction about how temporal weighting of evidence should change

from primacy (red) to flat/recency (blue), or vice versa, as a result. Table B: Stimulus parame-

ters. Table C: Parameters of ground-truth models used to test model-fitting. SI = sensory

information. CI = category information. γ/α = leak. S = samples per batch (IS model only).

B = bound (ITB model only). � = integration noise. T = decision temperature. λ = lapse rate.

Fig A: Temporal kernels for each condition (LSHC and HSLC), and their difference

between conditions, for each of four regularization techniques. In all panels, weights are

normalized to have a mean of 1, individual observers are shown as faint thin lines, and the

average across observers as a darker bold line. First row (“Logisitic Regression”) is the result of

ridge regression for predicting choices from per-frame signal levels with no further regulariza-

tion. Second row (“Smooth Logistic Regression”) includes a second-order autoregressive pen-

alty, resulting in smoother kernels. Third row (“Linear Kernels”) is a three-parameter model

that constrains weights to be a linear function of time. The three parameters control the slope

and intercept of the kernel, and the choice bias (Methods). Fourth row (“Exponential Kernels”)

is a similar three-parameter model that instead constrains weights to be an exponential func-

tion of time. Fig B: Cross-validation selects linear or exponential shapes for temporal

weights, compared to both unregularized and smoothness-regularized logistic regression.

Panels show 20-fold cross-validation performance of four regression methods to predict

choices from sub-threshold trials, separated by task type and by observer. All values are relative

to the log-likelihood, per fold, of the unregularized model. Error bars show standard error of

the mean difference in performance across folds of shuffled data. “Unregularized LR” refers to

standard ridge regression with no regularization of the temporal shape. “Regularized LR”

refers to the AR2-penalized logistic regression objective, where the hyperparameters were cho-

sen to maximize cross-validated fitting performance separately for each observer. “Exponen-

tial” is the 3-parameter model where weights are an exponential function of time (Eq (3) plus a

bias term). Similarly, the “Linear” model constrains the weights to be a linear function of time

as in Eq (4), plus a bias term. Fig C: Comparing exponential and linear regression weights.

Left panel is the same as Fig 5E in the main text, comparing slope of temporal weights by con-

straining weights to be an exponential function of time. The right panel shows the same analy-

sis with weights constrained to be a linear function of time. In both cases, 9 of 12 observers

individually have a significant increase in slope (p< 0.05, bootstrap). A one-sided sign test on

the medians for each observer reveals a significant population effect with p = .0032 (��)for the

exponential method and p = 0.00024 (���) for the linear method. Fig D: Effect of leak (γ)

parameter in hierarchical inference models. In both models, larger γ increases the prevalence
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of recency effects across the entire task space. Panels are as in Fig 3 in the main text. a-c sam-

pling model with γ = 0. d-f sampling model with γ = 0.1. g-i sampling model with γ = 0.2. j-l

variational model with γ = 0. m-o variational model with γ = 0.1. p-r variational model with γ
= 0.2. Fig E: Performance of hierarchical inference model using optimal leak (γ). Optimiz-

ing performance with respect to γ (see also Fig F in S1 Text). a) Sampling model performance

across task space with S = 5 and γ = 0.5 (compare with Fig 3C in which γ = 0.1). b) Difference

in performance for γ = 0.5 versus γ = 0.1. Higher γ improves performance in the upper part of

the space where the confirmation bias is strongest. c) Optimizing for performance, the optimal

γ� depends on the task. Where the confirmation bias had been strongest, optimal performance

is achieved with a stronger leak term. d) Model performance when the optimal γ� from (c) is

used in each task. e) Comparing the ideal observer to (d), the ideal observer still outperforms

the model but only in the upper part of the space. f) Temporal weight slopes when using the

optimal γ� are flat everywhere. The models reproduce the change in slopes seen in the data

only when γ is fixed across tasks (compare Fig D in S1 Text). Fig F: Further investigation of

optimal leak (γ). Simulation results for optimal leak (γ) for two further model variations, pan-

els as in Fig E in S1 Text. a-f Variational model results. As in the sampling model, we see that

the optimal value of γ� increases with category information, or with the strength of the confir-

mation bias. h-l Sampling model results with S = 1 (in the main text and Fig E in S1 Text we

used S = 5). Since the sampling model without a leak term approaches the ideal observer in the

limit of S!1, the optimal γ� was close to 0 for much of the space in the main text figure.

Here, by comparison, γ� > 0 is more common because the S = 1 model is more biased. Fig G:

Simulation of bounded integration (ITB) model. a) Performance of an ITB model is not dif-

ferentially modulated by sensory and category information. b) ITB consistently produces pri-

macy effects, as in [7]. c) The primacy effect becomes more extreme in regions where evidence

is stronger, since the bound is hit earlier in the trial. d-f) As in (a-c), but with an additional

leak term, resulting in less extreme primacy effects and a transition to recency for difficult
tasks, but no transition from primacy to recency along the iso-performance contour. (Also

note the departure from monotonic exponential-like weight profiles). g-i) We now vary the

leak term, α, as a function of category information. This reproduces the qualitative transition

from primacy in LSHC to recency in HSLC. As measured by an exponential fit (β), slopes are

matched to those in the confirmation bias models (Fig 3D and 3G). Fig H: Simulation results

on the larger model of Haefner et al (2016) [42]. a) Performance as a function of sensory

information (grating contrast) and category information (probability that each frame matches

the trial category). White line is iso-performance contour at 70%, and dots correspond to

LSHC and HSLC parameter regimes plotted in (b). Simulation details in S1 Text. b) Temporal

weights from LSHC and HSLC simulations corresponding to colored points in (a), normalized

in each condition so the weights have mean 1. As in the reduced models in the main text, we

see a transition from primacy to recency. Fig I: Results of direct model comparison between

IS model and ITB model(s) fit to ground-truth data. Lower AIC indicates better fit. An ideal

integrator (gold) and ground-truth (gray) values serve as upper- and lower-bounds, respec-

tively, on plausible AIC values. In all cases, the best fitting model recovered parameters that

are as good as the ground truth. The standard ITB model (with positive leak enforced) is dis-

tinguishable from the IS model in the LSHC simulation (top row). However, an Extended ITB

model that allows for negative leak (purple), fits all data in all conditions as well as the ground-

truth. For this reason, we state in the main text that a negative leak is functionally indistin-

guishable from the true IS model. We pursued parameter comparison within this Extended

ITB model class, rather than model comparison between IS and ITB, in the main text. Fig J:

Box and whisker plots of inferred parameter values. Showing inferred parameter values in

the extended ITB model for each of 12 observers as well as the ground truth models (IS and
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ITB—see Table C in S1 Text). Each parameter and observer has two fits, one for the LSHC

condition (lower/red) and one for the HSLC condition (upper/blue). Thin lines are 95% poste-

rior interval, thick lines are 50% interval, and points are posterior median. Parameter names

are as in the main paper, restated here: pC = prior over categories, λ = symmetric lapse rate, T
= decision temperature, s = signal scale (fixed to 1 for ground truth models), α = leak, B =

bound, � = noise. Fig K: Parameter ablation analysis on ground-truth models. Recall that

the ITB model has a primacy effect in the LSHC condition driven by bounded integration. The

key signature of bounded integration dynamics is that when the bound is ablated, the leak

takes over and it flips to no bias or a recency bias. The key signature of a hierarchical inference

model (here, Importance Sampling or IS), on the other hand, is that the primacy bias is unaf-

fected by ablating the bound, but disappears when the leak term is ablated, since a negative

leak acts as a confirmation bias. In the HSLC condition (right panel), both models’ recency

effects are driven by leaky integration. The ITB model’s bound competes with the leak, how-

ever, so ablating the bound results in exaggerated recency effects, and ablating the leak results

in primacy effects. The key signature of a hierarchical inference model, on the other hand, is a

recency effect that is unaffected by ablating the bound and that disappears when the leak is

ablated. Fig L: Additional information on fits of the Extended ITB model to empirical data

and ablation analyses. a) Copy of Fig 6D. Comparing with Fig K in S1 Text suggests that pri-

macy effects are largely driven by confirmation-bias dynamics rather than by bounded integra-

tion. b) Temporal bias of the full Extended ITB model (x-axis) versus the ablated model (y-

axis) for each observer and each ablated parameter in the LSHC condition (each observer has

two points at the same x coordinate, offset for visualization). We regressed a single slope for

each ablated parameter to summarize the fraction of bias in the population explained by the

leak parameter (green) or the bound parameter (purple). c) Copy of Fig 6E from the main text.

The fact that the leak parameter explains 99.4% of the population primacy effects corresponds

to the green regression line being nearly horizontal in (b). d-f) Same as (a-c) but for the HSLC

condition. As in Fig 6, outlier observer in—who had a primacy bias in the HSLC condition—is

shown as a diamond symbol in panels (a), (d), and (f). Algorithm A: Hierarchical inference

using Importance Sampling. Algorithm B: Hierarchical inference using Variational Bayes.
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