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Abstract.  The Rev protein of human immunodefi- 
ciency virus type 1 (HIV-1) facilitates the nuclear ex- 
port of unspliced and partially spliced viral RNAs. In 
the absence of Rev, these intron-containing HIV-1 
RNAs are retained in the nucleus. The basis for nuclear 
retention is unclear and is an important aspect of Rev 
regulation. Here we use in situ hybridization and digital 
imaging microscopy to examine the intranuclear distri- 
butions of intron-containing HIV RNAs and to deter- 
mine their spatial relationships to intranuclear struc- 
tures. HeLa cells were transfected with an HIV-1 
expression vector, and viral transcripts were localized 
using oligonucleotide probes specific for the unspliced 
or spliced forms of a particular viral RNA. In the ab- 
sence of Rev, the unspliced viral RNAs were predomi- 
nantly nuclear and had two distinct distributions. First, 
a population of viral transcripts was distributed as ~ 1 0 -  

20 intranuclear punctate signals. Actinomycin D chase 
experiments indicate that these signals represent na- 
scent transcripts. A second, stable population of viral 
transcripts was dispersed throughout the nucleoplasm 
excluding nucleoli. Rev promoted the export of this sta- 
ble population of viral RNAs to the cytoplasm in a 
time-dependent fashion. Significantly, the distributions 
of neither the nascent nor the stable populations of vi- 
ral RNAs coincided with intranuclear speckles in which 
splicing factors are enriched. Using splice-junction-spe- 
cific probes, splicing of human 13-globin pre-mRNA oc- 
curred cotranscriptionally, whereas splicing of HIV-1 
pre-mRNA did not. Taken together, our results indi- 
cate that the nucleolus and intranuclear speckles are 
not involved in Rev regulation, and provide further evi- 
dence that efficient splicing signals are critical for 
cotranscriptional splicing. 

T 
HE human immunodeficiency virus type 1 (HIV-1) 1 
Rev protein acts posttranscriptionally to selectively 
increase the cytoplasmic levels of the gag-pol and 

env mRNAs (Dayton et al., 1986; Feinberg et al., 1986; 
Rosen et al., 1988; Emerman et al., 1989; Felber et al., 
1989; Malim et al., 1989a). A cis-acting RNA element (_Rev 
response element [RRE]) that is required for Rev function 
has been mapped within the gag-pol and env mRNAs (Ham- 
marskjold et al., 1989; Malim et al., 1989a; Hadzopoulou- 
Cladaras et al., 1989; Huang et al., 1991; Green, 1993). 

Rev contains an RNA-binding domain, required for in- 
teraction with HIV-1 RNA, and an effector domain, re- 
quired for RNA-bound Rev to function (Daly et al., 1989; 
Dayton et al., 1989; Zapp and Green, 1989; Heaphy et al., 
1990; Malim et al., 1990; Olsen et al., 1990; Bartel et al., 
1991; Kjems et al., 1991a). It is thought that the Rev effec- 
tor domain interacts with a cellular cofactor required to 
mediate the Rev response (Vaishnav et al., 1991; Ruhl et 
al., 1993; Luo et al., 1994; Bogerd et al., 1995; Fritz et al., 
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1995). Recently, hRIP (also called Rab), a human nucle- 
oporin-like protein that specifically interacts with the Rev 
effector domain and has the properties expected of the 
Rev cellular cofactor, has been identified (Bogerd et al., 
1995; Fritz et al., 1995). 

Although biochemical and genetic studies have shown 
that, in the absence of Rev, incompletely spliced HIV-1 
pre-mRNAs are retained in the nucleus, the intranuclear 
distribution of these viral RNAs has not been well defined. 
Based primarily upon the intranuclear distribution of Rev, 
two subnuclear structures have been proposed to be im- 
portant for Rev function, F irsli Rev itself is nuclear local- 
ized and concentrated i t f  the nucleolus (Malim et al., 
1989b; Nosaka et al., 1993; Kailard et al., 1994; Meyer and 
Malim, 1994). Based upon thi~.nucleotar concentration 
and other considerations, it has be~n proposed that the nu- 
cleolus plays an intimate role in Rev function. Second, in 
the nucleoplasm Rev has been reported to have a speckled 
distribution (Kallard et al., 1994). This Speckled pattern 
coincides with that of several cellular splicing factors (for 
review see Spector, 1993). 

While these previous studies have localized Rev, they 
did not analyze the viral RNAs upon which Rev acts. We 
have developed methods to specifically localize DNA, in- 
tronic RNA, or spliced RNA by fluorescent in situ hybrid- 
ization using specific oligonucleotide probes (Zhang et al., 
1994). Here, we have adapted this approach to localize 
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HIV-1 RNAs and to determine their relationship to intra- 
nuclear structures. 

Materials and Methods 

Transient Transfection Assays 
HeLa ceils were grown on sterile, gelatin-coated glass coverslips to 75% 
confluency. Transient transfection assays for Rev function were per- 
formed using the calcium phosphate precipitation DNA transfection pro- 
tocol described by Lin and Green (1991). Transient transfection reactions 
in the absence of Rev contained 3 Ixg pgTAT DNA (Malim et al., 1988); 
reactions in the presence of Rev contained 3 Ixg pgTAT and 3/xg pcREV 
DNAs. Total DNA volume in each transfection mix was adjusted to 20 ~g 

with the empty plasmid, pGEM3 (Promega, Madison, WI). Transfected 
HeLa cells were analyzed at 12, 24, 36, 48, and 72 h after transfection. 

In Situ Hybridization 
After transfection, the coverslips were incubated in fixation buffer (4% 
paraformaldehyde, 1× PBS [1 mM KH2PO4, 10 mM Na:HPO4, 0.13 M 
NaC1, 2.7 mM KC1, pH 7.0], 5 mM MgClz) for 15 min, and then rinsed and 
stored in 70% ethanol at 4°C until use. In situ hybridization reaction con- 
ditions were performed as described (Zhang et al., 1994). 

Digital Imaging Microscopy 
Images were captured using a cooled charged-coupled device (CCD) cam- 
era, digitalized, and analyzed as described (Taneja et al., 1992). Green and 

Figure 1. Intranuclear distri- 
bution of HIV-1 tat RNAs.  
HeLa  cells were transfected 
with the pgTAT expression 
plasmid and incubated for 
the times indicated above. 
Cells were treated with fixa- 
tive, and in situ hybridization 
was performed according to 
Zhang et al. (1994) using a tat 
intron-specific probe, pgTA T, 
pgTAT-transfected HeLa  
cells; ( - ) ,  mock-transfected 
HeLa  cell control; RNAse A, 
pgTAT-transfected HeLa 
cells incubated with RNase 
A (100 ixg/ml) before hybrid- 
ization; DNase, pgTAT-trans- 
fected HeLa cells with RQ 
DNase I (5 U/30 ~1) before 
hybridization. 
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red pseudo-colored images from the same optical plane were superim- 
posed using dual-colored fluorescence beads as fiduciary markers. 

Oligonucleotide Probes 
Fluorescent Labeling. Oligonucleotides containing amino-modified thymi- 
dine (Glen Research Corp., Sterling, VA) were synthesized on an auto- 
mated synthesizer (model 391; Applied Biosystems, Inc., Foster City, 
CA), purified on a 8 M urea/10% polyacrylamide denaturing gel cast in 
0.5 x TBE, and labeled with FITC (Molecular Probes, Inc., Eugene, OR) or 
CY3 (GIBCO BRL, Gaithersburg, MD) in a t00-fold excess of 0.1 M 
NaHCOz,/Na2CO3 (pH = 9.0) overnight. After this incubation, oligonucle- 
otides were purified through a Sephadex-G50 column and resolved on a 8 M 
urea/10% polyacrylamide denaturing gel. 

Oligonucleotide Probe Sequences. The nucleotide sequence, its location 
within the HIV-1 genome, and its designation is described for each oligo- 
nucleotide probe: (a) HIV-1 tat intron specific; IN; 5'GTGGTTGCT- 
TCCTTCCACACAGGT-3'and 5'-TAGGCCTGTGTAATGACTGAG- 
GTGT-3'. Probes are complementary to nucleotides 603-626 and 1067- 
1090, respectively, of the env gene. (b) HIV-1 tat splice-junction specific; 
SJ; 5 ' -TGGGAGGTGGGT and TGCTTTGATAGA-3'. Probe is com- 
plementary to the splice-junction nucleotides 5614-5625/7956-7967 (/ 
= splice junction). (c) HIV-1 tat splice-junction control probe; SJC; probe 
contains the same two sections of splice-junction sequences, but paired in 
the reverse order. Probe complementary to nucleotides 7956-7967/5614- 
5625. (d) Human f~-globin intron specific; HI3-IN; 5'-TCCACATGC- 
CCAGTI"FCTATTGGT-3' and 5'-TGTTATACACAATGT'FAAG- 

GCATT-3'. Probes are complementary to nucleotides 177-200 and 737- 
760 of the human f~-globin gene, respectively. (e) Human fS-globin splice- 
junction specific; HI3-SJ; 5'-ACCACCAGCAGC/CTGCCCAGGGCC-3' 
and 5'-GTTGCCCAGGAG/CCTGAAGTTCTC-3'. Probes are comple- 
mentary to splice-junction sequences of 131-142/273-284 and 484-495/ 
1346-1357, respectively. (f) Human ~-globin splice-junction control; HI3- 
SJC; 5'-GCTGCTGGTGGT/GGCCCTGGGCAG-3'and 5'-CFCCFG- 
GGCAAC/TGAGAACTFCAGG-3'. Probes are complementary to the se- 
quences of 273-284/131-142 and 1346-1357/484-495, respectively. 

Resul ts  

Two Distinct Intranuclear Distributions of 
Intron-containing HIV-1 RNAs 

To determine the intranuclear distribution of intron-con- 
taining HIV-1 RNAs, HeLa cells were transfected with a 
previously described HIV-1 tat expression vector (pgTAT; 
Malim et al., 1989a), and viral transcripts were localized 
using fluorochrome-labeled oligonucleotide probes com- 
plementary to the env region. Fig. 1 shows that ~10-20  
punctate intranuclear dots were visualized at 12 h after 
transfection (Fig. i a). By 24-48 h after transfection, a pre- 
dominantly disperse nucleoplasmic distribution was ob- 

Figure 2. Act inomycin  D chase exper iment .  The  distr ibut ions of  the  nascent  and the stable popula t ions  of  HIV-1 tat R N A  were  deter-  
mined  using in situ hybridizat ions  with tat intron-specif ic  probes,  p g T A  T, pgTAT-t ransfec ted  HeLa  cells; p g T A  T + Act. D, t ransfec ted  
H e L a  cells t r ea ted  with act inomycin D (10 Izg/ml) for 2 h before  fixation. 
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served (Fig. 1 b; see below). At later times, the disperse 
nucleoplasmic pattern became so intense that it partially 
obscured the punctate nuclear signals (Fig. 1 h; data not 
shown). Significantly, these nuclear-localized intron-con- 
taining RNAs were completely excluded from the nucleoli. 

Several control experiments confirmed that both the 
punctate and disperse nuclear signals were specific for 
HIV-1 tat RNAs (Fig. 1). First, nontransfected HeLa cells 
did not contain any signals after hybridization with the 
same probes (Fig. 1, c and d). Second, RNase treatment 
completely abolished the punctate and diffuse signals in 
the transfected cells (Fig. 1, e and f), whereas DNase treat- 
ment had no effect (Fig. 1, g and h). On the basis of these 
results, we conclude that the punctate and disperse signals 
are specific for HIV-1 tat RNAs. 

To determine the relationship between these hybridiza- 
tion signals and transcription, cells were treated with acti- 
nomycin D (Act. D; Fig. 2), a specific inhibitor of RNA 
polymerase II. Fig. 2 shows that treatment with actinomy- 
cin D abolished the punctate (compare Fig. 2, a and c), but 
not the disperse (compare Fig. 2, b and d), nuclear signals. 
Based upon the results of Figs. 1 and 2, our previous study 
(Zhang et al., 1994), and data presented below, we inter- 
pret these data as follows: the punctate nuclear signals rep- 
resent nascent transcripts that are released, giving rise to 
the predominantly disperse, stable nucleoplasmic popula- 
tion. 

Rev Selectively Affects Nuclear Export of  the Dispersed 
Nucleoplasraic HIV-1 RNAs  

Intron-containing HIV-1 pre-mRNAs must be exported 
from the nucleus for expression of viral structural proteins, 
a process that is absolutely dependent on HIV-1 Rev. We 

therefore examined the effect of Rev on both the nascent 
and the stable populations of HIV-1 tat RNAs. Cells were 
transfected with pgTAT DNA in the presence or absence 
of a Rev expression plasmid (pcREV) (Malim et al., 
1989a), and the localization of tat RNAs was analyzed at 
various times after transfection (Fig. 3). In the absence of 
Rev, tat RNAs were distributed as punctate nuclear dots at 
early times (Fig. 3 a) and as a predominantly disperse dis- 
tribution at 24-48 h after transfection (Fig. 3, b-d). Rev 
promoted nuclear export of the dispersely distributed viral 
RNAs in a time-dependent fashion (Fig. 3, e-h), with a 
maximal effect at 36--48 h after transfection (Fig. 3, g and h). 
Thus, as expected, the nuclear export of these viral RNAs 
is Rev dependent. 

The specificity of Rev action in this assay was confirmed 
by in situ hybridization of HeLa cells transfected with a 
pgTAT derivative lacking an RRE (pHd/B2; Malim et al., 
1989a). Fig. 4 shows that Rev did not affect the nuclear ex- 
port of the unspliced pH d/B2 tat RNA, confirming that 
Rev-mediated nuclear export is specific for RRE-contain- 
ing RNAs (Daly et al., 1989; Hadzopoulou-Cladaras et al., 
1989; Zapp and Green, 1989; Heaphy et al., 1990; Malim 
et al., 1990; Olsen et al., 1990; Huang et al., 1991; Kjems et al., 
1991b). 

Spatial Relationship of  Nucleoplasmic HIV-1 RNAs  to 
Intranuclear Speckles 

Pre-mRNA splicing factors are distributed nonrandomly 
in mammalian nuclei. Our recent work has demonstrated 
that the nucleus is not functionally compartmentalized 
with respect to transcription and splicing (Zhang et al., 
1994). Here, we have examined the distributions of the na- 
scent and stable populations of HIV-1 transcripts relative 

Figure 3. Effect of Rev on the localization of HIV-1 tat RNAs. HeLa cells were transfected with either pgTAT (a-d) or pgTAT and 
pcREV (e-h) expression plasmids and analyzed by in situ hybridization. Oligonucleotide probes were as described in Figs. 1 and 2 (see 
also Materials and Methods). 
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Figure 4. Rev action is dependent upon the RRE. HeLa cells were transfected with the pgTAT expression plasmid derivative, pHd/B2, 
in the presence (d) or absence (c) of pcREV. The nuclear distributions of wild-type tat intron RNAs in the presence (b) or absence (a) 
of Rev are indicated. 

to intranuclear speckles in which splicing factors are con- 
centrated. Once again, the viral RNA sites were deter- 
mined using an intron-specific probe, and these same cells 
were stained with an antibody that recognizes the essential 
splicing factor SC35, a well-established marker for speck- 
les (Fu and Maniatis, 1990; Spector, 1993). Fig. 5 shows 
that the SC35 antigen had the expected punctate distribu- 
tion (Fig. 5, b and c). However, the overlay (Fig. 5, c and f) 
of the signals from in situ hybridization (Fig. 5, a and d) 
and indirect immunofluorescence (Fig. 5, b and e) indi- 
cates that these distributions did not colocalize. (Overlap 
of the red and green signals results in yellow.) Thus, the 
distributions of neither the nascent (Fig. 5, a-c) nor the 
stable (Fig. 5, d-f) populations of Tat transcripts coincided 
with that of the intranuclear speckles. These results fur- 
ther demonstrate that transcription and splicing are not re- 
stricted to these intranuclear compartments. 

Nucleoplasmic Distribution of  Spliced HIV-1 RNAs  

An important aspect of Rev regulation is that the intron- 

containing HIV-1 RNAs upon which Rev acts lack effi- 
cient splicing signals (Chang and Sharp, 1989). To under- 
stand the biogenesis of HIV-1 pre-mRNA in greater detail, 
we have determined the spatial relationship of unspliced 
and spliced HIV-1 tat RNAs by double-label in situ hy- 
bridization using intron (IN) and splice-junction (SJ) 
probes (IN and S J; Fig. 6). Whereas the intron-containing 
RNAs were readily visualized (Fig. 6, a, d, and g), between 
12 and 24 h after transfection, spliced RNA was not de- 
tected in either the nucleus or cytoplasm (Fig. 6, b and e). 
By 48 h, the accumulated spliced RNA in the cytoplasm 
was detected as a relatively disperse distribution, but again 
the splice-junction probe failed to detect nuclear signals. 

The specificity of the HIV-1 tat splice-junction probe 
was confirmed by hybridization with a splice-junction con- 
trol (S J-C) probe. The SJ-C probe failed to detect any sig- 
nals under the same experimental conditions (Fig. 6, c, f, 
and i), indicating that the separate but reversed exon com- 
ponents were unable to hybridize to any HIV-1 tat nucle- 
otide sequence. In conjuction with the experiments pre- 
sented below, these results suggest that splicing of HIV-1 
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Figure 5. Distribution of HIV-1 tat RNAs relative to intranuclear speckles. The distribution of nascent and stable populations of HIV-1 
tat RNA relative to the intranuclear speckles was examined by in situ hybridization with a tat intron-specific probe (a and d) and indirect 
immunofluorescence with an anti-SC35 antibody (b and e). Superimposition of the red and green signals appears as yellow (c and f). 

tat RNA predominantly takes place posttranscriptionally, 
consistent with the presence of inefficient splicing sites of 
HIV-1 transcripts (Feinberg et al., 1986; Malim et al., 1988; 
Malim and Cullen, 1993). Furthermore, the failure to visu- 
alize a disperse nuclear distribution of spliced HIV-1 RNA 
suggests that, after splicing, the HIV RNA undergoes rapid 
export from the nucleus. 

Evidence for Cotranscriptional Splicing of  Efficiently 
Spliced Pre-mRNAs 

To compare HIV-1 pre-mRNA processing to that of an ef- 
ficiently spliced cellular pre-mRNA, we analyzed the human 
13-globin gene. HeLa cells were transfected with a human 
13-globin expression plasmid (pHI3), and the distribution of 
unspliced and spliced 13-globin RNAs was detected simul- 
taneously by double-label fluorescence hybridization us- 
ing globin-specific IN and SJ probes (Fig.7). Unspliced hu- 
man 13-globin RNA was distributed predominantly as 
punctate nuclear dots at both early and late times after 
transfection. Consistent with our previous results with ad- 
enovirus and the cellular actin genes (Zhang et al., 1994), 
spliced globin RNAs were visualized in the nucleus as a 
number of punctate nuclear dots that colocalized with un- 
spliced RNA at all times analyzed. In addition, spliced 
t3-globin RNA was observed as a disperse distribution in 
the cytoplasm. A ~-globin SJ-C probe failed to detect sig- 
nals under the same experimental conditions (data not 
shown). These results suggest that, in contrast to the splic- 

ing pattern of HIV-1 tat RNAs (Fig. 6), splicing of the hu- 
man 13-globin pre-mRNA occured at the sites of transcrip- 
tion. Taken together, these results indicate that the 
efficiently spliced 13-globin pre-mRNA undergoes cotrans- 
criptional splicing, whereas the inefficiently spliced HIV 
pre-mRNA does not. 

Discussion 

The relationship between the expression of a gene and its 
intranuclear localization is an unresolved and much de- 
bated issue. HIV-1 Rev is one of the few regulatory pro- 
teins known to affect intracellular mRNA distribution, 
and therefore, expression of HIV genes provides an excel- 
lent model system to address this topic. Two key questions 
regarding Rev action are: (a) what is the mechanism that 
retains HIV pre-mRNAs in the nucleus in the absence of 
Rev? and (b) how does Rev promote the redistribution of 
these viral RNAs? The data presented in this study are rel- 
evant to both these questions. 

Nuclear Compartmentalization and Rev Function 

Previous studies have invoked a role for the nucleolus or 
intranuclear speckles in Rev function (Malim et al., 1989b; 
Nosaka et al., 1993; Kallard et al., 1994). These suggestions 
were based upon the apparent colocalization of Rev with 
these intranuclear structures. However, these earlier stud- 
ies failed to localize the HIV-1 RNAs upon which Rev 

The Journal of Cell Biology, Volume 135, 1996 14 



Figure 6. Spatial relationship of unspliced and spliced HIV-1 tat RNAs. The distribution of unspliced and spliced HIV-1 tat RNA was 
detected by in situ hybridizations with a tat intron (IN; a, d, and g), splice-junction-specific (S J; b, e, and h), or a splice-junction control 
(SJC; c, f, and i) probe. 

acts. Here, we have shown that the nuclear-localized, un- 
spliced HIV-1 RNAs are randomly distributed throughout 
the nucleus. Thus, subnuclear structures such as speckles 
and the nucleolus are not involved in Rev-mediated nu- 
clear RNA export. Our results are consistent with previ- 
ous studies demonstrating that chimeric Rev derivatives 
were not localized to the nucleolus but retained Rev func- 
tion (McDonald et al., 1992). We suggest that Rev's appar- 
ent nucleolar concentration is due to its ability to bind 
RNA nonspecifically at high concentrations and the high 
density of RNA in the nucleolus. The apparently random 
distribution of Rev-responsive HIV RNAs suggests that 
the components necessary for viral transcription, RNA 
biogenesis, and nuclear RNA export are available through- 
out the nucleoplasm. This conclusion is consistent with 

several previous observations. First, immunolocalization 
experiments have shown that transcription factors (Spec- 
tor, 1993), some pre-mRNA splicing factors such as U2AF 
(Zamore and Green, 1991) and U1 snRNA (Carmo-Fon- 
seca et al., 1991), and hRIP/Rab, the likely Rev cellular co- 
factor (Bogerd et al., 1995; Fritz et al., 1995), are randomly 
distributed. Furthermore, even pre-mRNA splicing factors 
that have been reported to have a speckled distribution in 
the nucleus are also present, albeit at lower amounts, out- 
side of the speckled domains (Spector, 1993). Second, our 
results are in agreement with several previous immunolo- 
calization studies demonstrating that cellular transcription 
occurs throughout the nucleus with no evidence for com- 
partmentalization. For example, a disperse distribution of 
nascent transcripts was detected by indirect immunofluo- 
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Figure 7. IntraceUular distribution of unspliced and spliced human f3-globin RNAs. In situ hybridization was performed using double- 
labeled human f3-globin intron (pH[3-1N; a, d, and g) or splice-junction-specific (pH[3-SJ; b, e, and h) probes. The overlay of red and 
green signals appears as yellow. 

rescence of HeLa cells pulse labeled with bromouridine 
triphosphate (Jackson et al., 1993; Wansink et al., 1993). 
These nascent transcription sites did not colocalize with 
speckles, yet, as mentioned above, pre-mRNA splicing can 
occur on nascent RNAs. Second, autoradiographic EM 
studies have shown that [3H]uridine-labeled nascent tran- 
scripts are coincident with "perichromatin fibrils." In con- 
trast, the speckles are congruent with "interchromatin 
granules," which are not major sites of RNA synthesis (Fa- 
kan et al., 1984). Finally, using an experimental approach 
similar to the one described here, we have shown previ- 
ously that transcription and pre-mRNA splicing can occur 
throughout the nucleus with no evidence for compartmen- 
talization (Zhang et al., 1994). 

Cotranscriptional Splicing and Splice Site Strength 

Previous work by several groups have demonstrated that 
splicing of eukaryotic pre-mRNAs can occur cotranscrip- 
tionally (Aebi and Weissman, 1987; Beyer and Osheim, 
1989; LeMaire and Thummel, 1990; Baur6n and Weis- 
lander, 1994; Zhang et al., 1994). Our studies have shown 
that whereas apparent cotranscriptional splicing can be 
detected for pre-mRNAs such as the adenovirus major 
late (Zhang et al., 1994) and human 13-globin (this study), 
which have efficient splice sites, in a comparable experi- 
ment, cotranscriptional splicing of the inefficiently spliced 
HIV pre-mRNA was not detected. Together, these results 
suggest that transcription and pre-mRNA splicing are in- 
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dependent processes; efficient splice sites and long tran- 
scription units may favor cotranscriptional splicing, whereas 
inefficient splice sites and short transcription units would 
favor posttranscriptional splicing. 

Basis for Nuclear Retention 

The basis for the nuclear retention of Rev-responsive 
RNAs is still unclear. Our results clearly indicate that in 
the absence of Rev, compartmentalization in specific sub- 
nuclear regions is not the basis by which HIV-1 RNAs are 
retained in the nucleus. Spliceosome formation has been 
proposed to retain inefficiently spliced pre-mRNAs in the 
nucleus (Chang and Sharp, 1989; LeGrain and Rosbash, 
1989). The suboptimal HIV-1 splice sites may allow partial 
spliceosome assembly, which would prevent nuclear RNA 
export. Consistent with this possibility, previous studies 
have shown that Rev regulation requires inefficient splice 
sites (Chang and Sharp, 1989; Lu et al., 1990; Kjems et al., 
1991b; Malim and Cullen, 1993). Alternatively, negative 
c/s-acting regulatory sequences within the HIV-1 pre-mRNAs 
have been suggested to play an active role in the nuclear 
retention of these RNAs (Dayton et al,, 1989; Felber et al., 
1990; Hammarskjold et al., 1991; Schwartz et al., 1991). 

hRIP Distribution and Rev Action 

The human nucleoporin-like protein, hRIP/Rab, which in- 
teracts directly with Rev's effector domain, is uniformly 
distributed throughout the nucleus with nucleolar exclu- 
sion (Fritz et al., 1995). Thus, the nuclear distribution of 
hRIP/Rab coincides with that of Rev and, as shown here, 
with the intranuclear distribution of HIV-1 RNAs upon 
which Rev acts. 

Based on the results presented here and on previous 
studies, we propose the following as a working model for 
HIV RNA biogenesis. Due to inefficient splice sites, the 
HIV pre-mRNAs are released from the transcription tem- 
plate in an unspliced form. In the absence of Rev, these 
RNAs remain in the nucleoplasm either by an active re- 
tention mechanism or because they fail to engage the 
appropriate nuclear RNA export factors. The HIV-1 
RRE-containing RNAs are bound by Rev, providing a 
recognition surface for hRIP/Rab, hRIP/Rab then binds to 
the Rev-RNA complex and is believed to promote subse- 
quent protein-protein interactions required for recogni- 
tion and translocation through the nuclear pore complex 
(Bogerd et al., 1995; Fritz et al., 1995; Stutz et al., 1995). 
We suggest that the similar intranuclear localizations of 
HIV RNA, Rev, and hRIP help to ensure that these inter- 
actions occur in an efficient and orderly fashion. 
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