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Can we be SMaRT-er in our approach to cancer therapy?
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Spliceosome-mediated RNA trans-splicing (SMaRT) is a molecular
tool that facilitates genetic reprogramming on the RNA level (Wally
et al., 2012). SMaRT exploits the cells own splicingmachinery to recom-
bine two RNA molecules: the endogenous RNA target and the RNA
trans-splicing molecule (RTM). The end product is a chimeric RNA
wherein part of the message encoded by the target RNA is replaced
with one provided by the RTM. The specificity of the trans-splicing
reaction is conferred by an anti-sense binding domain complementary
to a non-coding region within the target RNA. This serves to tether the
RTM to its target RNA, bringing donor and acceptor splice sites on
both molecules into close proximity thereby allowing the trans-
splicing reaction to occur. Since its first demonstration in 1999, where
it was used in a cancer suicide gene therapy approach (Puttaraju et al.,
1999), SMaRT has primarily made a niche in the field of gene therapy
where it has successfully been employed in pre-clinical investigations
for the therapy of various genetic disorders, including cystic fibrosis,
hemophilia A, spinal muscular atrophy, and the severe skin blistering
disease epidermolysis bullosa (as reviewed in Wally et al., 2012).

In this issue, Uckun et al. take the concept of SMaRT-mediated repair
back to its roots and explore its use in the repair of an oncogenic defect,
CD22ΔE12, in childhood B-precursor leukemia (BPL), the largest subset
of B-lineage acute lymphoblastic leukemia (ALL) (Uckun et al., 2015a).
BPL cells express dysfunctional CD22, a principal negative regulator
of B cell receptor signaling, due to homozygous intronic mutations.
These mutations result in aberrant splicing and loss of exon 12, leading
to translation pre-termination and the generation of a truncated protein
which lacks the regulatory domains required for proper signal transduc-
tion and apoptosis induction (Uckun et al., 2010). Forced expression
of human CD22ΔE12 in mice resulted in spontaneous development of
B-ALL with a gene signature that closely recapitulates that of human
ALL, indicating that CD22ΔE12 is an oncogenic driver (Uckun et al.,
2015a, 2010). Because CD22ΔE12 is associated with aggressive and
chemo-refractory disease, the authors sought to repair this defect by
using SMaRT technology to replace the exons 10–14 of the mutant
pre-mRNA with the wildtype sequence using a rationally designed
RTM (Uckun et al., 2015b). Transfection of the RTM into leukemia-
initiating ALL cells significantly reduced their ability to cause leukemia
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in a xenograft animalmodel (Uckun et al., 2015a). This effect is presum-
ably due to the repair and restoration of functional CD22, though this re-
mains to be stringently demonstrated. Functional repair of CD22 should
be evaluated by investigating cellular outcomes in response to appropri-
ate B cell signals. Additionally, a reversion of the gene expression signa-
ture in RTM-treated cells towards that of wild type would further
confirm functional CD22 repair as the mechanism underlying the anti-
cancer effects observed.

These studies follow at the heels of He et al., who used the same
SMaRT technology to repair mutant p53 transcripts in hepatocellular
carcinoma leading to restored wild type p53 function and suppression
of tumor growth in vivo (He et al., 2015). Together, both these studies
pose several interesting questions. Is it possible to treat cancer by
repairing the lesions that drive it? What efficiencies need to be
achieved – at the level of RTM delivery to cancer cells, and at the level
of repair – in order to achieve an anti-cancer effect?

While for most gene therapy applications, a 100% repair is likely not
necessary (Chao et al., 2003), one would expect that in the context of
cancer therapy, a higher efficiency is essential to prevent clonal expan-
sion of single tumor cells that escape treatment. This may apply partic-
ularly to SMaRT when used in the context of a suicide gene therapy
approach (Gruber et al., 2013). One way to boost trans-splicing over
the competing cis-splicing reaction is via the use of antisense oligonu-
cleotides that mask cis-splicing promoting elements (Koller et al.,
2015). The repair of the faulty mRNA is expected to reduce the overall
expression of the mutated protein while increasing the levels of wild
type protein. This shift may be enough to reduce chemoresistance, ren-
dering even partially-corrected cells susceptible to conventional treat-
ments, so that combination regimens that include SMaRT should be
considered for future investigations. It is important that future efforts
also focus on specificity issues including possible off target effects such
as unspecific trans-splicing, and cryptic cis-splicing or undesirable
translation from within the RTM (Gruber et al., 2013; Monjaret et al.,
2014). The use of next generation RNA sequencing technologies should
aid in the in-depth evaluation of SMaRT specificity. Finally, the bottle-
neck for any gene therapy approach is the in vivo delivery of the thera-
peutic DNA or RNA. In this respect, we have seen an increasing number
of reports on the use of non-viral polymer-based nanoparticles that pro-
tect therapeutic DNAmolecules from degradation and deliver them into
the target cells with high efficiency, such as those reported by Uckun
et al. When fully evaluated for safety and efficacy, these will likely be
preferred over viral delivery methods. However, further efforts should
focus on specifically targeting these particles to cancer cells, especially
for cancer types were systemic application is necessary. Moreover,
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rigorous testing of the effects of the RTM in would-be bystander cells is
highly recommended.

Advances in the next generation sequencing platforms, and RNAi
screens, continue to spearhead the identification and validation of
lesions that drive tumorigenesis and confer chemoresistance to malig-
nant cells. In parallel, today's arsenal of genetic editing technologies,
including SMaRT, TALENs, and CRISPR, are continuously improving.
While these technologies are under intense development for the repair
of mutations in monogenic disorders, they are hardly explored as anti-
cancer strategies. It is perhaps precisely because cancer is not a mono-
genic disease, that we have not considered the concept of repairing a
single dominant lesion as a potent anti-cancer strategy. Yet, if the results
of these recent studies stand up to critical cross-examination, it could be
a concept worth further exploration, potentially extending the array of
personalized cancer medicines.

Conflict of interest

JWB is co-inventor on US 8,735,366 B2: Pre-MRNA trans-splicing
molecule (RTM) molecules and their uses. Otherwise the authors state
no conflict of interest.

Acknowledgments

CG and JPH are supported by DEBRA Austria.
References

Chao, H., Mansfield, S.G., Bartel, R.C., et al., 2003. Phenotype correction of hemophilia A
mice by spliceosome-mediated RNA trans-splicing. Nat. Med. 9, 1015–1019.

Gruber, C., Koller, U., Murauer, E.M., et al., 2013. The design and optimization of RNA
trans-splicing molecules for skin cancer therapy. Mol. Oncol. 7, 1056–1068.

He, X., Liu, F., Yan, J., et al., 2015. Trans-splicing repair of mutant p53 suppresses the
growth of hepatocellular carcinoma cells in vitro and in vivo. Sci. Rep. 5, 8705.

Koller, U., Hainzl, S., Kocher, T., et al., 2015. Trans-splicing improvement by the combined
application of antisense strategies. Int. J. Mol. Sci. 16, 1179–1191.

Monjaret, F., Bourg, N., Suel, L., et al., 2014. Cis-splicing and translation of the pre-trans-
splicing molecule combine with efficiency in spliceosome-mediated RNA trans-
splicing. Mol. Ther. 22, 1176–1187.

Puttaraju, M., Jamison, S.F., Mansfield, S.G., et al., 1999. Spliceosome-mediated RNA trans-
splicing as a tool for gene therapy. Nat. Biotechnol. 17, 246–252.

Uckun, F.M., Goodman, P., Ma, H., et al., 2010. CD22 EXON 12 deletion as a pathogenic
mechanism of human B-precursor leukemia. Proc. Natl. Acad. Sci. U. S. A. 107,
6852–6857. http://dx.doi.org/10.1073/pnas.1007896107.

Uckun, F.M., Mitchell, L.G., Qazi, S., et al., 2015a. Development of polypeptide-based
nanoparticles for non-viral delivery of CD22 RNA Trans-splicing molecule as a
new precision medicine candidate against B-lineage ALL. EBioMedicine 2, 647–657.

Uckun, F.M., Qazi, S., Ma, H., et al., 2015b. CD22DeltaE12 as amolecular target for corrective
repair using RNA trans-splicing: anti-leukemic activity of a rationally designed RNA
trans-splicing molecule. Integr. Biol. (Camb.) 7, 237–249.

Wally, V., Murauer, E.M., Bauer, J.W., 2012. Spliceosome-mediated trans-splicing: the thera-
peutic cut and paste. J. Invest. Dermatol. 132, 1959–1966.

http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0005
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0005
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0010
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0010
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0015
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0015
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0020
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0020
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0025
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0025
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0025
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0030
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0030
http://dx.doi.org/10.1073/pnas.1007896107
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0040
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0040
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0040
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0045
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0045
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0045
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0050
http://refhub.elsevier.com/S2352-3964(15)30034-7/rf0050

	Can we be SMaRT-er in our approach to cancer therapy?
	Conflict of interest
	Acknowledgments
	References


