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Abstract: Clinically, acute ischemic symptoms in the eyes are one of the main causes of vision
loss, with the associated inflammatory response and oxidative stress being the key factors that
cause injury. Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common type
of ischemic optic neuropathy (ION); however, there are still no effective or safe treatment options
to date. In this study, we investigated the neuroprotective effects of n-butylidenephthalide (BP)
treatment in an experimental NAION rodent model (rAION). BP (10 mg/kg) or PBS (control group)
were administered on seven consecutive days in the rAION model. Rats were evaluated for visual
function by flash visual evoked potentials (FVEPs) at 4 weeks after NAION induction. The retina
and optic nerve were removed for histological examination after the rats were euthanized. The
molecular machinery of BP treatment in the rAION model was analyzed using Western blotting. We
discovered that BP effectively improves retinal ganglion cell survival rates by preventing apoptotic
processes after AION induction and reducing the inflammatory response through which blood-
borne macrophages infiltrate the optic nerve. In addition, BP significantly preserved the integrity
of the myelin sheath in the rAION model, demonstrating that BP can prevent the development of
demyelination. Our immunoblotting results revealed the molecular mechanism through which BP
mitigates the neuroinflammatory response through inhibition of the NF-κB signaling pathway. Taken
together, these results demonstrate that BP can be used as an exceptional neuroprotective agent for
ischemic injury.

Keywords: ischemic optic neuropathy; retinal ganglion cell; apoptosis; n-butylidenephthalide; NF-kB;
neuroinflammation; oxidative stress

1. Introduction

Ischemic optic neuropathy (ION) is one of the main pathological manifestations
of visual impairment and vision loss in ophthalmic diseases [1]; among these diseases,
nonarteritic anterior ischemic optic neuropathy (NAION) is the most common type [1,2].
The majority of NAION patients are middle-aged and elderly individuals over 50 years
of age, who usually have an accompanying risk of cardiovascular disease (hypertension,
hypercholesterolemia, nocturnal hypotension, and/or diabetes) [3,4]. Clinically, the most
common presentation of NAION in patients includes optic disc swelling and hyperemia,
loss of color vision, and visual field defects [2,5], eventually leading to loss of vision. To
date, there are still no effective and safe treatment options. However, the NAION model
of rodents (rAION) has already been developed for the examination of various potential
therapies [6–8]. Thus, identifying suitable treatments is an urgent task in preclinical research
involving the rAION model. Studies have suggested that circulatory insufficiency in the
optic nerve (ON) head leads to the loss of vascular homeostasis, triggering the NAION
process. At the same time, disc swelling and compartment syndrome further induce
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oxidative stress [4,9–12]. Oxidative stress promotes the development of neuroinflammation
and the loss of RGCs [12–15]. However, the complete mechanism constituting the cause of
this chain reaction is still unknown. Thus, reducing the response to neuroinflammation
and preventing the loss of RGCs is a priority for preserving visual function.

Angelica has long been used in Chinese medicine to treat arthritis and headaches
and, as an antipyretic extract, has been widely used to research pharmacology [16]. n-
Butylidenephthalide (BP) is one of the major components of Angelica and has been studied
in many different capacities, including for its antitumor [17–19], anti-inflammatory [20–22],
and neuroprotective effects [20,23,24]. In combination with other treatments, BP reduces
damage and promotes neurogenesis after cerebral ischemic stroke [25,26]. A study of cardio-
vascular disorders revealed that BP can regulate the inflammatory process by changing the
phenotype of macrophages and preventing myocardial fibrosis in rats after infarction [27].
In terms of neurodegenerative diseases, BP prolongs the life of a mouse model of amy-
otrophic lateral sclerosis (ALS) by inhibiting motor neurons from apoptosis and reducing
the development of neuroinflammation [20]. In summary, BP is a potential candidate for
treating ischemic injury. In this study, by modulating inflammatory mediators in ischemic
optic neuropathy, we investigated the molecular mechanism of BP. Simultaneously, the
survival rates of RGCs and the recovery of visual function were evaluated to confirm the
therapeutic effects of BP.

2. Results
2.1. BP Rescued RGC Survival Rates

To investigate the influence of BP on RGC survival rates after AION induction, retro-
grade labeling with fluorogold (FG) was used. The RGC counts of the sham group in the
central and mid-peripheral retina were 2771± 453/mm2 and 2236± 485/mm2, respectively.
After AION induction, the RGC counts of the PBS-treated and BP-treated groups in the
central retina were 935 ± 514/mm2 and 2172 ± 458/mm2, respectively (Figure 1A,B). In
addition, the RGC counts of the mid-peripheral retina in the PBS-treated and BP-treated
groups were 750 ± 452/mm2 and 1962 ± 505/mm2, respectively (Figure 1A,C). In general,
BP significantly improved the survival rates of the central and mid-peripheral retina in the
rAION model, by 44.7% and 54.2%, respectively, suggesting that BP has neuroprotective
effects on RGCs.
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Figure 1. The RGC density in the whole retina was evaluated in the rAION model to detect the
therapeutic effects of BP. Qualitative images of the central and mid-peripheral retina in each group
(A,B). Quantitative graphs of RGC density in the central retina in the sham, PBS-treated, and BP-
treated groups were 2771 ± 453/mm2, 935 ± 514/mm2, and 2172 ± 458/mm2, respectively (C), and
those in the mid-peripheral retina were 2236 ± 485/mm2, 750 ± 452/mm2, and 1962 ± 505/mm2,
respectively. (*, p ≤ 0.05; ***, p ≤ 0.001; ****, p < 0.0001; n.s., not significant; n = 6.)
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2.2. BP Preserved the Visual Function

To measure the voltage of P1-N2, the rats received visual light stimulation from flash
visually evoked potentials (FVEPs). The amplitudes of the sham, PBS-treated, and BP-
treated groups were 33.63 ± 8.30 µV, 13.70 ± 5.59 µV, and 22.01 ± 7.03 µV, respectively
(Figure 2). These results demonstrated that BP can prevent the loss of visual function after
ischemic injury.
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Figure 2. The amplitudes were recorded by FVEPs to evaluate the visual function. The images of
electric potential in each group were shown in (A). Quantitative graphs of P1-N2 amplitudes in the
sham, PBS-treated, and BP-treated groups were 33.63 ± 8.30 µV, 13.70 ± 5.59 µV, and 22.01 ± 7.03 µV,
respectively (B) (***, p ≤ 0.001; *, p ≤ 0.05; n = 6).

2.3. BP Mitigated Optic Disc Edema and Preserved RNFL Thickness

Optical coherence tomography (OCT) imaging was used to measure the optic nerve
width (ONW) (Figure 3) and the retinal nerve fiber layer (RNFL) thickness (Figure 4) in the
sham, PBS-treated, and BP-treated groups on days 1, 3, 7, 14, and 28. After AION induction,
optic disc swelling was clearly observed in the acute stage and was significantly improved
by BP administration on days 3, 7, and 28 (311.95 ± 23.21 µm versus 469.58 ± 29.35 µm,
259.35± 33.73 µm versus 329± 25.73 µm, and 273.71± 23.22 µm versus 300.73 ± 26.41 µm,
respectively). The RNFL thickness profiles were measured, and the results showed that
BP effectively preserved RNFL thickness compared with the PBS-treated group on days
14 and 28 (0.089 ± 0.0027 mm2 versus 0.08 ± 0.0028 mm2 and 0.074 ± 0.0089 mm2 versus
0.047 ± 0.0042 mm2, respectively).
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Figure 3. Imaging of optic nerve width by OCT scanning. OCT images of ONW in each group on
days 1, 3, 7, 14, and 28 (A). The BP-treated group exhibited significantly alleviated optic disc edema on
days 3, 7, and 28 compared with the PBS-treated group. (311.95± 23.21 µm versus 469.58 ± 29.35 µm,
259.35 ± 33.73 µm versus 329 ± 25.73 µm, and 273.71 ± 23.22 µm versus 300.73 ± 26.41 µm, respec-
tively) (B) (***, p ≤ 0.001; *, p ≤ 0.05; n = 6).

2.4. BP Reduced Apoptotic Cells in the RGC Layer

The apoptotic situation of the RGC layer was analyzed using a terminal deoxynu-
cleotidyl transferase dUTP nick end labeling (TUNEL) assay. The quantities of TUNEL-
positive cells/high powered field (HPF) in the sham, PBS-treated, and BP-treated groups
were 2.8 ± 1.9, 11.2 ± 2.8, and 3.7 ± 1.5 TUNEL-positive cells/HPF, respectively (Figure 5).
After AION induction, RGC apoptosis was significantly increased in the PBS-treated groups.
However, the number of TUNEL-positive cells was decreased in the BP treatment group,
suggesting that BP had an antiapoptotic effect in the rAION model.
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Figure 4. Image of the retinal nerve fiber layer by OCT scanning. OCT images of RNFL thickness in
each group on days 1, 3, 7, 14, and 28 (A). The BP-treated group exhibited significant maintenance of
RNFL thickness at days 14 and 28 compared with the PBS-treated group (0.089 ± 0.0027 mm2 versus
0.08 ± 0.0028 mm2 and 0.074 ± 0.0089 mm2 versus 0.047 ± 0.0042 mm2, respectively) (B) (**, p ≤ 0.01;
*, p ≤ 0.05; n = 6. RNFL: retinal nerve fiber layer; GCL + IPL: ganglion cell layer + inner plexiform
layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; ELM: external
limiting membrane; RPE: retinal pigment epithelium; CS: choroidal stroma).
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sections in each group (A). Apoptotic cells were counted in the sham, PBS-treated, and BP-treated
groups and were 2.8 ± 1.9, 11.2 ± 2.8, and 3.7 ± 1.5 TUNEL-positive cells/HPF, respectively. Scale
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2.5. BP Reduced Macrophage Infiltration into the Optic Nerve from the Blood

The inflammatory response of ED1+ blood-borne macrophages in ON after AION
induction may cause ON damage [28]. Hence, we investigated whether BP inhibits ED1+

macrophage infiltration in the rAION model. The quantities of ED1-positive cells in the
sham, PBS-treated, and BP-treated groups were 8.7 ± 4.8, 166.4 ± 19.3, and
80.1 ± 28.9 cells/HPF, respectively (Figure 6). The immunohistochemistry (IHC) results
indicate that BP treatment had an anti-inflammatory effect by reducing ED1+ macrophage
accumulation in ONs.

2.6. BP Preserved the Completeness of the Myelin Sheath in the rAION Model

2′,3′-Cyclic nucleotide 3′-phosphohydrolase (CNPase) participates in the process
of myelination and is an important component of the cytoskeleton in oligodendrocyte
cells [29,30]. Demyelination is one of the primary characteristics of many neurodegenerative
diseases [31–34]; therefore, we investigated the levels of CNPase in the rAION model to
evaluate the completeness of the myelin sheath. IHC results demonstrated that CNPase
signaling was highly expressed in the sham group (11.06 ± 2.60). After AION induction,
significantly lower expression of CNPase (4.24 ± 0.71) and reduced damage to the myelin
structure in ON tissue were observed. In contrast, BP treatment simultaneously increased
the expression of CNPase (7.20 ± 1.22) and preserved the integrity of the myelin sheath
(Figure 7). In brief, the process of demyelination and myelin dysfunction was prevented by
BP treatment in the rAION model.
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Figure 6. Immunostaining in the ON with ED1 antibody. ED1 immunostaining image of ON tissue in
each group. The upper rows represent 10×magnification and the lower rows represent high (20×)
magnification in the same specimen. (A). Quantitative analysis of ED1-positive cells (green) in the
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Figure 7. Expression of CNPase in optic nerve. Optic nerve sections reveal the intensity of CNPase in
each group. The upper rows represent 10×magnification and the lower rows represent high (20×)
magnification in the same specimen. (A). The results of quantitative analysis of CNPase+ intensity
(green)/DAPI in the sham, PBS-treated, and BP-treated groups were 11.06 ± 2.60, 4.24 ± 0.71, and
7.20 ± 1.22, respectively (B) (***, p ≤ 0.001; n.s., not significant; n = 6. The upper column of scale bar
= 100 µm, the lower column of scale bar = 50 µm).

2.7. BP Inhibited the Inflammatory Response through the NF-κB Signaling Pathway

Previous studies have shown that the upregulation of reactive oxygen species (ROS) in
ischemic injury induces an inflammatory response through the IκBα-NF-κB signaling path-
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way [35]. Accordingly, we evaluated the protein expression of the NF-κB-associated path-
way to investigate the molecular mechanisms of the neuroprotective effect of BP treatment.
In the rAION model, high expression of phospho-IκBα induces phospho-NF-κB transloca-
tion to the nucleus, which can activate inflammatory gene transcription and NLRP3 and
IL-1β signaling. However, compared with AION+PBS group, the BP-treated group exhib-
ited significantly inhibited phosphorylation of IκBα and NF-κB (Figure 8A–C) and reduced
expression of downstream inflammatory cytokines, NLRP3 and IL-1β (Figure 8A,D,E).
Taken together, these results demonstrate that BP is capable of neuroprotective effects
through modulation of the NF-κB inflammatory signaling pathway in the rAION model.
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3. Discussion

In this study, we observed that BP can promote the survival rates of RGCs after AION
induction based on the morphologic results of fluorogold labeling. Furthermore, the electric
potential results of FVEP showed a favorable phenomenon of preserving visual function by
using BP treatment in cases of ischemic injury. According to the immunostaining results, we
determined that BP can effectively prevent ED1-positive macrophage infiltration into ON
tissue, thereby mitigating the response to neuroinflammation and improving the outcome
of demyelination.

Oxidative stress plays a critical role in the pathogenesis of several eye diseases, in-
cluding neurodegenerative processes and neuroinflammatory responses, and is one of
the main causes of irreversible injury [36–38]. In age-related retinal diseases, it has been
found that the imbalance between the production of ROS and the antioxidant defense re-
sponse can cause cell damage and ultimately lead to loss of vision [39,40]. Previous studies
have indicated that high levels of ROS can induce the NF-κB signaling pathway when
ischemic and hypoxia injury occur [35,41,42], leading to downstream proinflammatory
factors activating an increased response of inflammatory cells [43,44]. Thus, the regulation
of oxidative stress-associated pathways is crucial for the development of ischemic injury
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and cell survival. In this study, we found that BP can inhibit the activation of IκBα and
NF-κB in the rAION model, suggesting that BP may potentially modulate the outcomes of
oxidative stress.

Although we have confirmed that BP can effectively prevent extrinsic macrophage
infiltration, the neuroinflammation caused by intrinsic microglia cannot be ignored in the
central nervous system (CNS). In persistent or exaggerated neuroinflammation, microglia
damage neurons through the excess production of cytotoxic factors, as demonstrated in
many neurodegenerative diseases [45–48]. Microglial activation and recruitment after
AION induction may result in optic nerve damage [28,49]. Notably, NF-κB signaling-
mediated activation of the NLRP3 inflammasome is a key determinant of the development
of neuroinflammation in microglia [50,51]. Our immunoblotting results showed that
treatment with BP markedly inhibited the protein expression of NLRP3; therefore, we
believe that BP can mitigate the neuroinflammation of microglia by downregulating the
NF-κB-mediated NLRP3 inflammasome.

In optic neuritis, the loss of axons caused by the process of demyelination leads to
severe dysfunction, which is closely related to changes in the visual field and the thickness of
the RNFL [52,53]. Several studies in an experimental autoimmune disease model reported
that inflammatory cells released a neurotoxic cytokine attack against the myelin sheath,
resulting in further loss of RGCs in apoptosis [54,55]. However, our IHC staining results
showed that BP can prevent the process of demyelination by inhibiting inflammatory cell
activation, and RGC apoptosis was also significantly reduced, as demonstrated by the
results from the TUNEL assay.

Steroids have been used in the preclinical study of AION [56] and are currently a
common clinical treatment, which can significantly improve acute inflammation to preserve
patients’ vision [2,57]. However, the administration of steroids was also associated with an
increased risk of various ocular conditions, including glaucoma, cataracts, and crystalline
keratopathy [58–60]. In this study, we confirmed that n-Butylidenephthalide was effective in
reducing neuroinflammation after AION induction, and no adverse reactions were observed
in rats. Nevertheless, the clinical results still need to be further examined. Although we
explored the neuroinflammation of AION, the complete mechanism that constitutes the
cause of this chain reaction is still unknown. Thus, we did not exclude other effects on
different targets in AION. The detailed pathogenic mechanism of AION remains to be
investigated.

According to the results of this research and those of previous reports [43,50,51,61], the
regulation of NF-κB-mediated inflammation is crucial for neuroinflammation and demyeli-
nation after AION induction. In addition, maintaining the integrity of the myelin sheath by
inhibiting the development of inflammation can significantly improve the survival rates of
RGCs and preserve visual function. Thus, we think that NF-κB inhibitor administration to
NAION patients is a potential treatment strategy in the future.

4. Materials and Methods
4.1. Animals

All the animal experiments were approved by the Institutional Animal Care and Use
Committee (IACUC) at Tzu Chi University. Animal experimental procedures in vision
research were implemented on the basis of the ARVO statement.

Four- to six-week-old adult male Wistar rats (100–125 g weight) (BioLASCO Taiwan
Co., Ltd., Taiwan) were used for the ischemic optic neuropathy model. The three groups
in this study were as follows: sham, treatment with PBS after AION injury, and AION
injury treated with 10 mg/kg BP (purity ≥ 95%, Alfa Aesar, Thermo Fisher Scientific,
Waltham, MA, USA) by intraperitoneal injection on seven consecutive days. The rats
were bred in an animal room with a 12 h light–dark cycle (7 AM–7 PM light cycle time),
controlled at a temperature of 23 ◦C and 55% humidity. We furnished the rates with
filtered sterilization water and normal rodent chow. The general anesthesia of the rats
during the experimental process was conducted using ketamine (100 mg per kg) and
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xylazine (10 mg per kg) injected intramuscularly. Local anesthesia was conducted using
0.5% Alcaine (Alcon, Puurs, Belgium), and pupil dilation was induced by administering
Mydrin-P (Santen Pharmaceutical Co., Ltd., Osaka, Japan). The sacrifice process of rats was
conducted using CO2 with a filling rate at 5 L/min, which is 20% of cage volume, with the
primary goal of minimizing animal suffering. The timeline of the experimental process is
illustrated in Figure 9.
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4.2. AION Induction

First, the Alcaine and Mydrin-P drops were administered to the rats under local
anesthesia to induce pupil dilation. An intravenous injection of rose bengal (2.5 mM in
pH 7.4 PBS) (1 mL per kg) (Sigma-Aldrich, St. Louis, MO, USA) was then administered,
and then immediately excited throughout the optic disc by exposure to an argon green
laser (532 nm wavelength, 500 mm size, and 80 mW power) at 12 pulses (1/s). The laser
was concentrated on the optic disc using a fundus lens. After this, Tobradex eye ointment
(Alcon, Fort Worth, TX, USA) was spread evenly on the eyes of the rats. The physical health
of the rats was cared for daily until the research had been finalized.

4.3. Retrograde Labeling of RGCs with Fluoro-Gold (FG)

Retrograde labeling was performed 3 weeks after the rats were AION induced. The
sagittal region of the skull was taken as the positioning coordinates, and 2 µL of 5%
Fluorogold was administered to the superior colliculus (AP: −6 mm; ML: ±1.5 mm; DV:
−4 mm) by injection. The rats were sacrificed 1 week after labeling, and the eyeballs
were exteriorized carefully and fixed in 10% formalin for 2 hrs. The whole retina was flat-
mounted on a slide for morphological examination via fluorescence microscope (Axio Scope
A1, Carl Zeiss AG, Oberkochen, Germany) using a filter set (excitation filter: 350~400 nm;
emission filter: 515 nm). Distances of 1 mm and 3 mm from the center-radius of the
retina were defined as a central and mid-peripheral area, respectively. Evaluation and
counting of the RGC density was conducted based on at least 10 randomly selected regions
(38,250 µm2; 225 µm × 170 µm) in the central and mid-peripheral areas to determine the
RGC survival rate.

4.4. Flash Visual Evoked Potential (FVEP)

At day 28 after AION induction, with the sagittal region of the skull taken as the posi-
tioning coordinates, electrodes were implanted into the primary visual cortex region (AP:
−8 mm; ML: ±3 mm) and frontal cortex (AP: +1 mm). The ground electrode was planted
on the tail. The visual electrodiagnostic system (Espion, Diagnosys LLC, Gaithersburg, MA,
USA) was set as follows: no background Illumination; a ganzfeld flash intensity of 0 db; a
single flash rate of light of 1.9 Hz; an artifact rejection threshold of 20 mV; and a sampling
rate of 2000 Hz. Measurements were taken as the average of 100 sweeps. The entire journey
of the recording process was carried out in a dark room. The overview of visual functions
was evaluated via P1 to N2 amplitude.
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4.5. Immunohistochemistry (IHC)

First, the ON vertical-sections were blocked using 2% bovine serum albumin (BSA)
containing 0.3% triton X-100 for 1 h. ON tissue was incubated with anti-ED1 (1:50; Bio-Rad
Laboratories, Inc., Berkeley, CA, USA) and anti-2′, 3′-cyclic nucleotide 3′-phosphodiesterase
(CNPase) (1:100; Abcam, Cambridge, UK) primary antibodies overnight at 4 ◦C. Goat anti-
mouse Alexa Fluor 488 antibody (1:100, Invitrogen, Waltham, MA, USA) was used as a
secondary antibody and incubated with the section for 1 hour at room temperature (RT).
Fluorescent images of the ON tissue section were taken at 10x and 20× magnification
using a Zeiss LSM 900 confocal system (Carl Zeiss AG, Oberkochen, Germany). The 20×
magnification image of ED1+ cell was analyzed using ImageJ software for quantization of
extrinsic macrophages.

4.6. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay

Apoptotic cells in the ganglion cell layer (GCL) were detected using TUNEL assay
in accordance with manufacturer’s protocol (DeadEndTM Fluorometric TUNEL System;
Promega Corporation, Madison, WI, USA). TUNEL-positive cells were manually counted,
based on at least six retina sections of each eyeball in three groups (n = 6 for each group).

4.7. Optical Coherence Tomography (OCT) Imaging

Coherence tomography images of optic nerve width (ONW) and retinal nerve fiber
layer (RNFL) were taken using a Micron IV retinal microscope (Phoenix Technology Group,
Campbell, CA, USA) on day 1, 3, 7, 14, and 28 post-AION induction. The imaging system
was set to a longitudinal and transverse resolution of 1.8 µm and 3 µm, respectively, which
provides a view of the retina of 3.2 mm and a 1.2 mm depth of field. The corneas were
moistened with Methocel 2% (OmniVision GmbH, Puchheim, Germany). The Micron
eyepiece was positioned in direct contact with the eye using gel. In order for the light to
vertically penetrate the cornea, the RNFL and Bruch’s membrane opening (ONW) were
imaged with circular and linear scans, respectively, which an average of 50 frames per scan.

4.8. Western Blotting Analysis

The detailed process of Western blotting was described in our previous reports [8,50].
The total protein was extracted from rat retina using a modified radioimmunoprecipitation
(RIPA) buffer, and detection of protein concentration was conducted using a bicinchoninic
acid (BCA) protein assay kit. The 50 µg retinal protein extracts were separated on 8%
or 10% sodium dodecyl sulphate-polyacrylamide gels (SDS-PAGE), then transferred to
polyvinylidene difluoride (PVDF) membranes. The membranes were blocked using a buffer
containing 5% non-fat milk in TBST (0.02 M Tris-base, pH 7.6, 0.8% NaCl, 0.1% Tween 20)
for 2 h at RT and then incubated overnight with anti-NF-κB (1:500; Abcam), anti-Phospho-
NF-κB (1:200; Abcam), anti-IκBα (1:1000; Cell Signaling Technology, Inc., Danvers, MA,
USA), anti-Phospho-IκBα (1:500; Cell Signaling Technology, Inc., Danvers, MA, USA), anti-
NLRP3 (1:200; Novus Biologicals, Centennial, CO, USA), anti-IL-1β(1:200; Abcam), and
anti-GAPDH (1:5000; Sigma-Aldrich, St. Louis, MO, USA) primary antibodies at 4 ◦C. The
membranes were washed using TBST, and then incubated with corresponding horseradish
peroxidase (HRP)-conjugated secondary antibody (1:10,000, Bio-Rad, Hercules, CA, USA)
at room temperature for 2 h. The protein signaling on the membrane was detected using
enhanced chemiluminescence (ECL) kits (RPN2232, GE Healthcare, Piscataway, NJ, USA).
The signaling intensity of bands was quantitated using ImageJ software.

4.9. Statistical Analysis

The experimental results are presented as mean values ± standard deviation (SD). The
Kruskal–Wallis test was carried out using the statistical comparisons software GraphPad
Prism (GraphPad Software, Inc., La Jolla, CA, USA). The level of statistical significance was
defined as p values < 0.05.
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5. Conclusions

In summary, this study indicates that BP prevents retinal ganglion cells from un-
dergoing apoptosis and preserves visual function by reducing macrophage infiltration,
preventing the process of demyelination, and inhibiting inflammatory cytokine activation.
Our results demonstrate the neuroprotective effects of BP through its modulation of the
NF-κB pathway (Figure 10).
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