Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[3-(2*H*-Benzotriazol-2-yl)propoxy]-3methoxybenzaldehyde

Lei Jin^{a,b*} and Cheng-He Zhou^a

^aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry & Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China, and ^band School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China Correspondence e-mail: zhouch@swu.edu.cn

Received 6 December 2009; accepted 27 April 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.111; data-to-parameter ratio = 13.0.

In the title compound, $C_{17}H_{17}N_3O_3$, the 3-methoxybenzaldehyde group and the benzotriazole fragment are connected through a flexible oxypropyl chain. The O-C-C-C torsion angle in the central link is -63.9 (2)°, while the plane of the benzene ring of the 3-methoxybenzaldehyde substituent forms a dihedral angle of 56.4 (4)° with the benzotriazole plane.

Related literature

For general background to the biological activity of 1*H*benzotriazole and its derivatives, see: Al-Soud *et al.* (2003); Khalafi-Nezhad *et al.* (2005); Nanjunda Swamy *et al.* (2006). For a related structure, see: Jin *et al.* (2009).

Experimental

Crystal data C₁₇H₁₇N₃O₃

 $M_r = 311.34$

Monoclinic, $P2_1/n$	
a = 11.328 (2) Å	
b = 8.1278 (16) Å	
c = 16.156 (3) Å	
$\beta = 100.301 \ (3)^{\circ}$	
V = 1463.6 (5) Å ³	

Data collection

Bruker SMART diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.967, \ T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	209 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
2716 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.34 \times 0.20 \times 0.18 \text{ mm}$

7400 measured reflections

2716 independent reflections 2257 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.030$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2010).

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2115).

References

Al-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. E.-R. S. (2003). Bioorg. Med. Chem. 11, 1701–1708.

- Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jin, L., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2164.
- Khalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). *Bioorg. Med. Chem.* **13**, 1931–1938.
- Nanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). *Bioorg. Med. Chem. Lett.* 16, 999–1004.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

supplementary materials

Acta Cryst. (2010). E66, o1264 [doi:10.1107/S1600536810015461]

4-[3-(2H-Benzotriazol-2-yl)propoxy]-3-methoxybenzaldehyde

L. Jin and C.-H. Zhou

Comment

The incorporation of azole nucleus is an important synthetic strategy in drug discovery. The high therapeutic properties of the related drugs have encouraged the medicinal chemists to synthesize large number of novel chemotherapeutic agents. 1*H*-Benzotriazole and many of its derivatives exhibit important biological properties, some are showing anti-inflammatory, antiviral, antifungal, antineoplastic and antidepressant activities (Al-Soud *et al.*, 2003; Nanjunda Swamy *et al.*, 2006). Recently, the structure of aralkyl nitroimidazole ether, which shows inhibitory effects on several types of pathogenic bacteria, has been published (Khalafi-Nezhad *et al.*, 2005; Jin *et al.*, 2009). Taking into account promising therapeutic applications of benzotriazole derivatives, we are focusing on the development of new drugs belonging to this class. Herein we report the crystal structure of the title compound (Fig. 1).

The 3-methoxybenzaldehyde group and benzotriazole fragment in the molecule of the title compound are connected through the flexible oxypropyl chain. The O3—C9—C10—C11 torsion angle in the central link is equal to -63.9 (2)°, whereas the planes of the benzene ring C2—C7 and benzotriazole system N1—N3, C12—C17 form the dihedral angle of 56.4 (4)°.

Experimental

A solution of benzotriazole (0.119 g, 1 mmol), 4-(3-bromopropoxy)-3-methoxy benzaldehyde (0.273 g, 1 mmol) and triethyl amine (1.01 g, 0.01 mol) in anhydrous MeCN (40 ml) was refluxed for approximately 10 h, when TLC monitoring indicated disappearance of benzotriazole; the solvent was then evaporated and the crude mixture was suspended in 200 ml of water. The organic materials were extracted with CH_2Cl_2 (2 × 150 ml). Both portions were combined, dried over anhydrous Na₂SO₄, and then evaporated to give the crude product, further purified by column chromatography on silica gel with EtOAc to afford the title compound (yield: 0.241 g, 78%; colourless solid; Mp. 411–413 K). Single crystal used in X-ray diffraction analysis was obtained at room temperature by slow evaporation of the solution of title compound in the mixture of ethyl acetate and dichloromethane.

Refinement

Hydrogen atoms were placed in geometrically calculated positions (C—H 0.95 Å for aromatic and formyl, 0.99 Å for methylene and 0.98 Å for methyl) and included in the refinement in a riding motion approximation with Uiso(H) = 1.2Ueq(C) [for methyl groups Uiso(H) = 1.5Ueq(C)].

Figures

Fig. 1. Molecular structure of the title compound, showing atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

4-[3-(2H-Benzotriazol-2-yl)propoxy]-3-methoxybenzaldehyde

C ₁₇ H ₁₇ N ₃ O ₃	F(000) = 656
$M_r = 311.34$	$D_{\rm x} = 1.413 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2314 reflections
a = 11.328 (2) Å	$\theta = 2.4 - 26.8^{\circ}$
b = 8.1278 (16) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 16.156 (3) Å	T = 173 K
$\beta = 100.301 \ (3)^{\circ}$	Block, colourless
$V = 1463.6 (5) \text{ Å}^3$	$0.34 \times 0.20 \times 0.18 \text{ mm}$
Z = 4	

Data collection

Bruker SMART diffractometer	2716 independent reflections
Radiation source: fine-focus sealed tube	2257 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.030$
phi and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 11$
$T_{\min} = 0.967, \ T_{\max} = 0.982$	$k = -9 \rightarrow 9$
7400 measured reflections	$l = -14 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.111$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0598P)^2 + 0.2971P]$ where $P = (F_o^2 + 2F_c^2)/3$
2716 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
209 parameters	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Uiso*/Ueq \boldsymbol{Z} х y C1 0.0304(4)0.30868 (15) 0.3509(2) -0.18483(10)H10.2604 0.4172 -0.22610.036* C2 0.32240 (13) -0.09726(9)0.0252 (4) 0.40484 (19) C3 0.38488 (13) 0.30819 (19) -0.03210(9)0.0247(4)H3 0.4194 0.030* 0.2068 -0.0447C4 0.04991 (9) 0.39637 (13) 0.35957 (18) 0.0233(3)C5 0.0231(3)0.34662 (13) 0.51165 (19) 0.06848 (9) C6 0.28450 (14) 0.60657 (19) 0.00395 (10) 0.0266 (4) H6 0.032* 0.2503 0.7085 0.0161 C7 0.27228 (14) 0.5522(2)-0.07870(10)0.0283 (4) 0.034* H70.2290 0.6171 -0.1229C8 0.50723 (16) 0.12187 (19) 0.10204 (11) 0.0336 (4) H8A 0.4451 0.0477 0.0730 0.050* H8B 0.5457 0.0717 0.1552 0.050* H8C 0.5675 0.050* 0.1412 0.0665 C9 0.33302 (15) 0.71678 (19) 0.17160 (10) 0.0269 (4) H9A 0.032* 0.2451 0.7318 0.1563 H9B 0.7982 0.1400 0.032* 0.3725 C10 0.37338 (14) 0.74091 (19) 0.26499 (10) 0.0260 (4) H10A 0.031* 0.3584 0.8563 0.2798 H10B 0.4607 0.7203 0.2798 0.031* C11 0.30818 (14) 0.6269(2) 0.31527 (9) 0.0283 (4) H11A 0.2212 0.6512 0.3022 0.034* H11B 0.2981 0.034* 0.3198 0.5119 C12 0.42907 (13) 0.73940 (19) 0.52211 (10) 0.0236 (4) C13 0.48871 (14) 0.59075 (10) 0.8333(2)0.0288 (4) H13 0.5255 0.9357 0.5829 0.035* C14 0.49051 (14) 0.7689(2) 0.0296 (4) 0.66857 (10) H14 0.5296 0.8285 0.7162 0.036* C15 0.43636 (14) 0.6163 (2) 0.68129 (10) 0.0305 (4) H15 0.4408 0.5765 0.7371 0.037* C16 0.0297 (4) 0.37797 (15) 0.5246(2)0.61590 (10) H16 0.3416 0.4224 0.6248 0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C17	0.37411 (13)	0.58889 (18)	0.53437 (10)	0.0230 (3)
N1	0.41205 (12)	0.77182 (16)	0.43877 (8)	0.0270 (3)
N2	0.34983 (11)	0.64249 (15)	0.40576 (8)	0.0238 (3)
N3	0.32342 (11)	0.52833 (16)	0.45819 (8)	0.0268 (3)
O1	0.35353 (11)	0.22907 (16)	-0.20936 (7)	0.0390 (3)
O2	0.45409 (10)	0.27407 (13)	0.11862 (7)	0.0294 (3)
O3	0.36540 (10)	0.55293 (13)	0.15124 (6)	0.0276 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0309 (9)	0.0366 (10)	0.0234 (9)	-0.0077 (7)	0.0045 (7)	0.0009 (7)
C2	0.0253 (8)	0.0294 (9)	0.0211 (8)	-0.0072 (7)	0.0044 (6)	-0.0002 (7)
C3	0.0268 (8)	0.0220 (8)	0.0261 (9)	-0.0023 (6)	0.0065 (7)	-0.0018 (7)
C4	0.0248 (8)	0.0234 (8)	0.0216 (8)	-0.0019 (6)	0.0036 (6)	0.0017 (6)
C5	0.0251 (8)	0.0246 (8)	0.0197 (8)	-0.0027 (6)	0.0043 (6)	0.0001 (6)
C6	0.0308 (9)	0.0238 (8)	0.0252 (9)	0.0024 (7)	0.0048 (7)	0.0007 (7)
C7	0.0306 (9)	0.0300 (9)	0.0235 (9)	-0.0018 (7)	0.0022 (7)	0.0062 (7)
C8	0.0442 (10)	0.0256 (9)	0.0302 (9)	0.0090 (7)	0.0047 (8)	0.0024 (7)
C9	0.0361 (9)	0.0211 (8)	0.0235 (9)	0.0044 (7)	0.0053 (7)	-0.0003 (6)
C10	0.0326 (9)	0.0200 (8)	0.0248 (9)	0.0015 (6)	0.0035 (7)	-0.0016 (6)
C11	0.0282 (8)	0.0353 (9)	0.0204 (8)	-0.0035 (7)	0.0014 (6)	-0.0044 (7)
C12	0.0228 (8)	0.0257 (8)	0.0221 (8)	0.0018 (6)	0.0031 (6)	-0.0005 (6)
C13	0.0291 (9)	0.0275 (8)	0.0284 (9)	-0.0042 (7)	0.0014 (7)	-0.0023 (7)
C14	0.0283 (9)	0.0362 (10)	0.0226 (9)	0.0002 (7)	-0.0001 (7)	-0.0048 (7)
C15	0.0311 (9)	0.0368 (10)	0.0229 (9)	0.0029 (7)	0.0034 (7)	0.0043 (7)
C16	0.0332 (9)	0.0271 (9)	0.0294 (9)	-0.0010 (7)	0.0067 (7)	0.0038 (7)
C17	0.0216 (8)	0.0225 (8)	0.0244 (8)	0.0032 (6)	0.0026 (6)	-0.0021 (6)
N1	0.0311 (8)	0.0249 (7)	0.0238 (8)	-0.0048 (6)	0.0023 (6)	-0.0032 (6)
N2	0.0262 (7)	0.0238 (7)	0.0214 (7)	-0.0021 (5)	0.0041 (5)	-0.0019 (5)
N3	0.0293 (7)	0.0246 (7)	0.0265 (8)	-0.0008 (5)	0.0053 (6)	-0.0006 (6)
O1	0.0457 (8)	0.0429 (8)	0.0302 (7)	-0.0049 (6)	0.0113 (6)	-0.0098 (6)
02	0.0402 (7)	0.0242 (6)	0.0225 (6)	0.0084 (5)	0.0022 (5)	0.0009 (5)
03	0.0394 (7)	0.0226 (6)	0.0199 (6)	0.0061 (5)	0.0029 (5)	-0.0016 (4)

Geometric parameters (Å, °)

1.211 (2)	С9—Н9В	0.9900
1.463 (2)	C10-C11	1.510(2)
0.9500	C10—H10A	0.9900
1.381 (2)	C10—H10B	0.9900
1.400 (2)	C11—N2	1.459 (2)
1.373 (2)	C11—H11A	0.9900
0.9500	C11—H11B	0.9900
1.3723 (18)	C12—N1	1.352 (2)
1.413 (2)	C12—C17	1.403 (2)
1.3580 (18)	C12—C13	1.414 (2)
1.384 (2)	C13—C14	1.359 (2)
1.390 (2)	C13—H13	0.9500
	1.211 (2) 1.463 (2) 0.9500 1.381 (2) 1.400 (2) 1.373 (2) 0.9500 1.3723 (18) 1.413 (2) 1.3580 (18) 1.384 (2) 1.390 (2)	1.211 (2)C9—H9B1.463 (2)C10—C110.9500C10—H10A1.381 (2)C10—H10B1.400 (2)C11—N21.373 (2)C11—H11A0.9500C11—H11B1.3723 (18)C12—N11.413 (2)C12—C171.3580 (18)C12—C131.384 (2)C13—C141.390 (2)C13—H13

С6—Н6	0.9500	C14—C15	1.415 (2)
С7—Н7	0.9500	C14—H14	0.9500
C8—O2	1.4220 (18)	C15—C16	1.363 (2)
C8—H8A	0.9800	C15—H15	0.9500
C8—H8B	0.9800	C16—C17	1.410 (2)
C8—H8C	0.9800	С16—Н16	0.9500
С9—ОЗ	1.4350 (18)	C17—N3	1.3543 (19)
C9—C10	1.509 (2)	N1—N2	1.3235 (17)
С9—Н9А	0.9900	N2—N3	1.3261 (18)
01—C1—C2	125.67 (16)	C11—C10—H10A	109.3
01—C1—H1	117.2	C9—C10—H10B	109.3
C2—C1—H1	117.2	C11—C10—H10B	109.3
C7—C2—C3	119.71 (14)	H10A—C10—H10B	108.0
C7—C2—C1	119.55 (15)	N2—C11—C10	112.58 (13)
C3—C2—C1	120.74 (15)	N2—C11—H11A	109.1
C4—C3—C2	120.20 (15)	C10-C11-H11A	109.1
С4—С3—Н3	119.9	N2—C11—H11B	109.1
С2—С3—Н3	119.9	C10-C11-H11B	109.1
02 - C4 - C3	125 16 (14)	H11A—C11—H11B	107.8
02 - C4 - C5	114 95 (13)	N1 - C12 - C17	108 84 (13)
C_{3} C_{4} C_{5}	119.89 (14)	N1 - C12 - C13	129 72 (15)
03-C5-C6	124 97 (14)	C17 - C12 - C13	121 44 (15)
03 - 05 - 04	115 28 (13)	C14-C13-C12	116 34 (15)
C6-C5-C4	119 76 (14)	C14—C13—H13	121.8
$C_{5} - C_{6} - C_{7}$	119.77 (15)	C12—C13—H13	121.8
C5—C6—H6	120.1	C13 - C14 - C15	122.49 (15)
C7—C6—H6	120.1	C13—C14—H14	118.8
$C^{2}-C^{7}-C^{6}$	120.67 (15)	C15-C14-H14	118.8
C2_C7_H7	119.7	C16-C15-C14	121.95 (15)
С6—С7—Н7	119.7	C16-C15-H15	119.0
Ω^2 — C^8 —H8A	109.5	C14 - C15 - H15	119.0
$O_2 = C_8 = H_8B$	109.5	C15-C16-C17	116.82 (15)
H8A - C8 - H8B	109.5	C15 - C16 - H16	121.6
Ω^2 C^8 H^8C	109.5	C17—C16—H16	121.6
H8A = C8 = H8C	109.5	N_{3} C_{17} C_{12}	108 39 (13)
H8B-C8-H8C	109.5	N_{3} C_{17} C_{16}	130.65 (15)
03 - 09 - 010	107.80 (12)	C_{12} C_{17} C_{16}	120.96 (14)
03—C9—H9A	110.1	$N_{2} N_{1} C_{12}$	102.55(12)
C10-C9-H9A	110.1	N1N3	117 59 (12)
03-C9-H9B	110.1	N1 - N2 - C11	121 76 (12)
C10-C9-H9B	110.1	N_{3} N_{2} C_{11}	121.70(12) 120.63(12)
H94_C9_H9B	108.5	N2N3C17	102.64(12)
$C_{0} = C_{10} = C_{11}$	111 61 (13)	C_{4} C_{2} C_{8}	116.40(12)
C9_C10_H104	109.3	C_{5}^{-} C_{3}^{-} C_{9}^{0}	116.98 (11)
	107.5		0.10(17)
01 - 01 - 02 - 07	1/5.92 (16)	NI - UI - UI - NS	0.19(17)
01 - 01 - 02 - 03	-4.0(2)	U13-U12-U1/-N3	1 /9.28 (14)
$U/-U_2-U_3-U_4$	0.0 (2)	NI - CI2 - CI7 - CI6	1/9.98 (14)
C1 - C2 - C3 - C4	-1/9.50 (14)	C13—C12—C17—C16	-0.9 (2)

supplementary materials

C2—C3—C4—O2	179.09 (14)	C15-C16-C17-N3	-179.70 (15)
C2—C3—C4—C5	-1.0 (2)	C15—C16—C17—C12	0.5 (2)
O2—C4—C5—O3	1.43 (19)	C17—C12—N1—N2	-0.25 (16)
C3—C4—C5—O3	-178.48 (13)	C13—C12—N1—N2	-179.25 (16)
O2—C4—C5—C6	-178.82 (14)	C12—N1—N2—N3	0.26 (17)
C3—C4—C5—C6	1.3 (2)	C12—N1—N2—C11	178.47 (13)
O3—C5—C6—C7	179.23 (14)	C10-C11-N2-N1	17.3 (2)
C4—C5—C6—C7	-0.5 (2)	C10-C11-N2-N3	-164.51 (13)
C3—C2—C7—C6	0.8 (2)	N1—N2—N3—C17	-0.14 (17)
C1—C2—C7—C6	-179.71 (14)	C11—N2—N3—C17	-178.38 (13)
C5—C6—C7—C2	-0.5 (2)	C12—C17—N3—N2	-0.03 (16)
O3—C9—C10—C11	-63.91 (17)	C16—C17—N3—N2	-179.80 (15)
C9—C10—C11—N2	177.26 (13)	C3—C4—O2—C8	1.1 (2)
N1-C12-C13-C14	179.44 (15)	C5—C4—O2—C8	-178.83 (13)
C17—C12—C13—C14	0.6 (2)	C6—C5—O3—C9	-9.2 (2)
C12-C13-C14-C15	0.1 (2)	C4—C5—O3—C9	170.54 (13)
C13—C14—C15—C16	-0.5 (3)	C10—C9—O3—C5	-174.10 (12)
C14—C15—C16—C17	0.1 (2)		

Fig. 1