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Abstract

Transforming growth factor-beta 1 (TGF-β1) stimulates a broad range of effects which are cell type dependent, and it
has been suggested to induce cellular senescence. On the other hand, long-term culture of multipotent mesenchymal
stromal cells (MSCs) has a major impact on their cellular physiology and therefore it is well conceivable that the
molecular events triggered by TGF-β1 differ considerably in cells of early and late passages. In this study, we
analyzed the effect of TGF-β1 on and during replicative senescence of MSCs. Stimulation with TGF-β1 enhanced
proliferation, induced a network like growth pattern and impaired adipogenic and osteogenic differentiation. TGF-β1
did not induce premature senescence. However, due to increased proliferation rates the cells reached replicative
senescence earlier than untreated controls. This was also evident, when we analyzed senescence-associated DNA-
methylation changes. Gene expression profiles of MSCs differed considerably at relatively early (P 3 - 5) and later
passages (P 10). Nonetheless, relative gene expression differences provoked by TGF-β1 at individual time points or
in a time course dependent manner (stimulation for 0, 1, 4 and 12 h) were very similar in MSCs of early and late
passage. These results support the notion that TGF-β1 has major impact on MSC function, but it does not induce
senescence and has similar molecular effects during culture expansion.
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Introduction

Transforming growth factor beta 1 (TGF-β1) triggers complex
cellular responses, including activation of SMAD transcription
factors, which regulate for example expression of inhibitors of
DNA binding proteins 1-3 (ID1, ID2 and ID3) [1]. It has major
impact on a multitude of other pathways such as mitogen-
activated protein kinase (MAPK), Jun N-terminal kinase (JNK),
and the phosphatidylinositol 3-kinase/Akt/mTOR pathways, as
well as other down-stream targets of the small GTPases Rho,
Rac, and Cdc42 [2–5]. TGF-β1 also up-regulates the cyclin-
dependent kinase inhibitors CDKN1A (WAF1; CIP1, p21),
CDKN2A (INK4A; p16) and CDKN2B (INK4B; p15) [4,6]. With

regard to this variety of implications on the molecular network it
may be not surprising that the effects of TGF-β1 are largely
dependent on the cell type, the cellular environment and the
differentiation state [7,8].

Multipotent mesenchymal stromal cells (MSCs) are
concurrently tested in a multitude of clinical trials for a broad
range of diseases [9]. They comprise a multipotent subset of
cells which is capable of differentiation towards the
mesodermal lineages such as adipocytes, osteocytes and
chondrocytes [10]. It has been shown that TGF-β is essential
for chondrogenic differentiation and supports myogenic
differentiation [11,12–12], whereas it negatively effects
adipogenic differentiation of MSCs [13,14]. Furthermore, the
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effect of TGF-β1 on differentiation of MSCs is influenced by
substrate elasticity [15,16]. TGF-β alone or in a combination
with platelet-derived growth factor (PDGF) and fibroblast
growth factor (FGF) was suggested to be required to facilitate
in vitro proliferation of MSCs [17–19], whereas other studies
indicated that it induces cell-cycle arrest in mesodermal cells
[20,21]. Some of these contradictory results may be due to the
heterogeneous composition of different MSC preparations or
culture conditions [22].

Even for defined cell preparations and under standardized
culture conditions the cellular composition, morphology, and
function changes continuously during culture: MSCs - such as
all non-transformed primary cells - undergo a process of
replicative senescence in the course of culture expansion. After
a limited number of cell divisions they unequivocally stop
proliferation, acquire a large and flattened cellular morphology,
and they lose their in vitro differentiation potential [23,24].
These peculiar alterations in cellular physiology are reflected
by global gene expression changes [23] and highly
reproducible epigenetic modifications. Specific CpG sites in the
genome become either hyper- or hypo-methylated upon long-
term culture of MSCs [25], and can be used to track the
process of cellular aging [26,27]. Thus, it is well conceivable,
that effects of TGF-β1 differ considerably in cells of early and
later passage. In fact, it has been suggested that the sensitivity
towards TGF-β is influenced by the aging process [28–30] and
it has been further suggested that this cytokine induces cellular
senescence [20,21].

In this study, we have further analyzed the effect of TGF-β1
on human bone marrow MSCs, particularly during long-term
expansion. Furthermore, we compared the global gene
expression changes upon stimulation with TGF-β1 in MSCs of
early and late passage to elucidate if the molecular response
varies during culture expansion.

Methods

Ethics statement
All samples in this study were used after patient’s written

consent using guidelines approved by the Ethic Committee of
the University of Aachen (Permit number: EK128/09).

Isolation of MSC from human bone marrow
Multipotent mesenchymal stromal cells were isolated from

mononuclear cells (MNCs) by plastic adherence. In brief, bone
fragments from caput femoris or tibia plateau from patients
undergoing clinical surgery were flushed with phosphate-
buffered saline (PBS) and washed twice with PBS. MNC were
then resuspended in culture medium consisting of DMEM (1
g/L glucose; PAA Laboratories, Pasching, Austria)
supplemented with glutamine, penicillin/streptomycin (both
Gibco / life Technologies, UK ) and 10% FSC (PAA) at 37°C in
a humidified atmosphere with 5% CO2. Medium changes were
performed twice per week and MSCs were passaged when
reaching 80-90% of confluence. Re-seeding was performed at
a density of 10,000 cells/cm2.

Long term cultivation of MSC
To analyze the effect of TGF-β1 on long-term expansion,

MSCs of relatively early passage (P1 - P4) were cultured in
parallel with or without 1ng/mL recombinant human TGF-β1
(R&D Systems, Inc., Minneapolis, MN 55413 USA) until they
reached replicative senescence. After each passage, the cell
number was determined using a Neubauer counting chamber
(Brand, Wertheim, Germany) and cumulative population
doublings (cPD) were calculated as previously described [31].

Proliferation assay
Cell proliferation was measured with the Thiazolyl Blue

Tetrazolium Bromide (MTT) assay as described in our previous
work [32]. Briefly, MSCs of passage 3 - 6 were seeded in 96-
well plates (3,000 cells/cm2) with different concentrations of
TGF-β1. After 7 days, cells were washed with PBS and
incubated with 1 mM MTT (Sigma Aldrich, St. Louis, MO, USA)
for 3.5 hours at 37°C. The excess solution was discarded and
formazan crystals were resolved in 4 mM HCl in isopropanol
(both from Roth, Karlsruhe, Germany). The absorbance was
measured at 590 nm with a reference of 620 nm using a Tecan
Infinite 200 plate reader (Tecan Trading, Switzerland). Each
measurement included four technical replicas. Alternatively we
estimated proliferation by counting of DAPI stained nuclei after
7 d in a 96-well format. Furthermore, we stimulated MSCs with
different concentrations of TGF-β1 for 48 h and incubated with
BrdU for additional 24h prior to analyzing BrdU incorporation by
Cell Proliferation ELISA (Colorimetric; Roche Applied Science,
Mannheim, Germany). Anti-BrdU Peroxidase incubation was
performed for 90 min and substrate conversion was measured
after 5 - 10 min.

Staining for senescence associated β-galactosidase
activity

Activity of pH-dependent senescence-associated β-
galactosidase (SA-β-gal) was analyzed simultaneously in
different MSC passages using SA-β-gal staining kit (Cell
Signaling Technology, Boston, MA, USA). In addition, pH
dependent SA-β-gal activity was analyzed with a fluorescence-
based method for quantitative and sensitive analysis by
flowcytometry [33]. In brief, MSCs were incubated with
Bafilomycin A1 (Sigma, St Louis, MO, USA) to prevent
lysosomal acidification and subsequently 5-
dodecanoylaminofluorescein di-β-D-galactopyranoside
(C12FDG, Invitrogen, Eugene, OR, USA) was used as a
fluorogenic substrate.

Immunophenotypic analysis
Expression of a panel of surface markers was analyzed in

MSCs upon expansion for 4 - 5 passages with or without 1
ng/mL TGF-β1. Cells were stained in parallel with the following
monoclonal mouse antihuman antibodies: CD14-APC (clone
M5E2), CD29-PE (clone MAR4), CD31-PE (clone WM59),
CD34-APC (clone 8G12), CD45-APC (clone HI30), CD73-PE
(clone AD2), CD90-APC (clone 5E10) and CD325-PE (clone
8C11; all BD Bioscience, Heidelberg, Germany) and CD105-
PE (clone MAR-226; ImmunoTools, Friesoythe, Germany).
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Analysis was performed using a FACS Canto II cytometer (BD
Bioscience) and the collected data were analyzed with WinMDI
2.9 software (The Scripps Institute, Flow Cytometry Core
Facility, CA, USA). Fluorescence intensities were normalized to
the corresponding autofluorescence measurements for
statistical comparison.

In vitro differentiation of MSC
The impact of TGF-β1 on in vitro differentiation was analyzed

in MSCs which were pre-incubated either with or without 1
ng/mL TGF-β1 for 1 to 4 passages before induction of
differentiation and during osteogenic and adipogenic
differentiation [34]. After three weeks, calcium-phosphate
deposition of osteogenic differentiated cells was analyzed by
Alizarin Red stain and formation of fat droplets of adipogenic
differentiated cells was analyzed using the green fluorescent
dye BODIPY (4,4-difluoro-1,2,5,7,8-pentamethyl-4-bora-3a,4a-
diaza-s-indacene; Molecular Probes, Eugene, USA) with DAPI
counterstaining of nuclei. Chondrogenic differentiation was
induced in pellet culture. The differentiation medium comprises
TGF-β and therefore the same differentiation medium was
used for TGF-β1-pretreated cells and un-treated controls [34].
After three weeks chondrogenic differentiation was analyzed by
Alcian blue and Periodic acid shiff staining according to routine
histology protocols and analyzed with a Leica DM IL HC
fluorescence microscope (Leica, Wetzlar, Germany)[35].

Senescence-associated DNA-methylation changes
Culture expansion is associated with highly reproducible

genomic hyper-methylation and hypo-methylation at specific
CpG sites. We analyzed such senescence-associated DNA
methylation (SA-DNAm) changes with our recently described
Epigentic-Aging-Signature [26,36]. Briefly, DNA was isolated
from 2x105 cells with the NucleoSpin Blood kit (Machery Nagel,
Düren, Germany) and bisulfite converted. Pyrosequencing of
six relevant CpG sites was performed at Varionostic GmbH
(Ulm, Germany) as described before [37]. Beta-values (the
percentage of DNAm at the respective sites) were then
inserted in our online calculator to estimate passage number of
cumulative population doublings (http://www.molcell.rwth-
aachen.de/dms/).

Gene expression profiling
MSCs from three different donors at early passage (P3 - P5)

and later passage (P10) were used to analyze the kinetic of
TGF-β1 stimulation on gene expression. 1x106 cells were
seeded into 6-well culture plates and after one day they were
stimulated with TGF-β1 at concentrations and periods as
indicated in the text. If indicated, we performed serum
starvation with two washing steps and incubation for 12h in
FCS free culture media before TGF-β1 treatment. RNA was
isolated with the miRNeasy kit (Quiagen, Hilden, Germany) and
DNAse digestion. RNA concentration and integrity was
determined with an Agilent 2100 Bioanalyzer (Agilent
Technologies, Inc., Santa Clara, CA, USA). Genome-wide
gene expression analysis was then performed using GeneChip
Human Gene 1.0 ST Arrays (Affymetrix, Santa Clara, CA,
USA). The complete microarray data and additional information

have been deposited in NCBIs Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible
through GEO Series accession number GSE46019.

Real time PCR
cDNA synthesis was generated using the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA) and real time PCR was performed with the
SYBR Green Method. Primers are listed in Table S1 in File S1.
Fold change was compared to un-stimulated MSCs and
assessed with the ΔΔCt method.

Bioinformatics
Analysis of gene expression profiles was performed via R

and Bioconductor packages [38]. Raw probe intensities were
summarized and normalized using Factor Analysis for Robust
Microarray Summarization (FARMS) [39]. Differential gene
expression analysis was performed for the probe sets, which
could be mapped to Entrez gene IDs according to the
Bioconductor package “hugenetransclusterst10.db”. Gene
expression of late and early cell passages without TGF-β
stimulation was compared via Linear Models for Microarray
Data (Limma) [40] using a factorial design, which takes into
account the correlation of the samples along the time course.
An FDR of < 5 % was regarded as significant for differential
expression [41]. Hierarchical Clustering of genes was
performed using Euclidian distance as dissimilarity measure
and complete linkage agglomeration. Whole time courses were
compared at once using a random-effects model and the
empirical Bayes method to estimate probabilities for differential
time course expression [42]. A probability of > 0.95 was
assumed to indicate differential time-course expression. For
further gene set association studies using Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways and Gene Ontology
(GO) terms the p-values resulting from a Limma analysis and
probabilities resulting from the time-course analysis were taken
as ranking scores for genes. Gene sets (KEGG pathways and
GO terms) were then tested for their association with these
ranking scores by performing a univariate logistic regression
[43]. Adjustment of resulting p-values was subsequently done
according to Benjamini & Yekutieli’s false discovery rate control
under dependency [44]. Significant functional associations to
GO terms and KEGG pathways are regarded at FDR ≤ 0.05.

Statistics
Results are expressed as mean ± standard deviation of

independent experiments. The number of biological replica (n)
is depicted in the figure legends. Normal distribution of the data
was checked using qq-plots and Shapiro-Wilk test. If the data
were approximately normally distributed we have estimated the
probability of differences using the paired two-sided Student’s
T-test. If data were not normally distributed – e.g. due to
natural numbers – we used non-parametric Wilcoxon test as
indicated in the text. For all tests, p < 0.05 was used as level of
significance.
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Results

TGF-β1 influences growth pattern and in vitro
differentiation of MSCs

Culture media for MSCs is usually supplemented with fetal
calf serum (FCS) which is contains TGF-β1 - although
predominantly in the biologically inactive latent form [45]. Since
MSC growth is stalled under serum-free conditions we tested if
we could observe similar effects of TGF-β1 in MSCs cultured
either with 10% FCS or under serum starvation for 12 h. Under
both culture conditions we observed a similar immediate early
and transient up-regulation of ID1, ID2 and ID3 (1 h) followed
by a repression of the corresponding genes (4 h) (Figure S1A
in File S1) and this is in line with previous studies [1].
Furthermore, we compared different concentrations of TGF-β1
(0, 0.01, 0.1, 0.3, 1, 3, and 10 ng/mL) and the highest up-
regulation of ID1 and ID3 was observed with 1 ng/mL TGF-β1
(Figure S1B in File S1). Therefore, we decided to perform all
subsequent experiments in normal growth medium and with the
addition of 1 ng/mL recombinant TGF-β1, if not indicated
otherwise.

Notably, MSCs cultured with TGF-β1 always revealed a
network-like growth pattern whereas untreated cells formed a
more homogeneous cellular layer. This effect on growth pattern
was reversible when TGF-β1 treated cells were re-seeded in
normal culture medium (Figure 1A). All MSC preparations
revealed the same typical immunophenotype (CD14-, CD29+,
CD31-, CD34-, CD45-, CD73+, CD90+, CD105+, and CD325-),
whether they were cultured with or without continuous TGF-β1
stimulation over four passages (Figure 1B). Furthermore,
MSCs could be differentiated towards chondrogenic,
osteogenic and adipogenic lineage and thus fulfilled standard
criteria for definition of MSCs [10]. However, we observed that
osteogenic and particularly adipogenic differentiation was
greatly impaired if treated with TGF-β1 for several passages
and during differentiation (Figure 1C). These results reflect that
TGF-β1 has major impact on MSC growth and function.

TGF-β1 increases proliferation and enhances
replicative senescence of MSCs

To analyze the impact of TGF-β1 on proliferation of MSCs
we stimulated the cells with different concentrations of this
ligand (0.1 to 100 ng/mL) for seven days and then performed
the MTT assay. In comparison to untreated controls
proliferation has significantly increased with 0.1 ng/mL (p =
0.018) and with 1 ng/mL (p = 0.05; both Student’s T-test) of
TGF-β1 (n = 5; Figure 2A). Similar results were obtained by
counting DAPI stained nuclei after seven days of culture (n = 3)
or by quantification of BrdU incorporation after three days (n =
6; Figure S2 in File S1). Furthermore, we observed up-
regulation of CDKN2B after 12 h whereas we did not detect cell
cycle arrest in G0/G1 phase (Figure S3 in File S1). This is in
contrast to observations of other groups which demonstrated
that TGF-β1 rather impairs proliferation and induces cell cycle
arrest in MSCs and fibroblasts [20].

Subsequently, we assessed the effect of TGF-β1 on
replicative senescence during long-term culture. To this end,
we cultured MSCs of early passage in parallel with or without 1

ng/mL TGF-β1 until the cells reached proliferation arrest.
Notably, TGF-β1-treated cells entered senescence on average
46 days earlier than untreated controls (p = 0.05; Wilcoxon test;
Figure 2C). When we compared cumulative population
doublings (cPDs) over each consecutive passage we observed
the above mentioned growth promoting effect of TGF-β1,
particularly in the initial three passages: supplementation of
TGF-β1 increased the number of cPDs by 0.7, 1.73, and 2.94,
respectively. In later passages this effect was no more evident,
proliferation of non-treated cells slowly caught up until there
was no significant difference in the maximal number of cPDs
(Student’s T-test; Figure 2D,E). Staining with senescence-
associated beta galactosidase (SA-β-Gal), a surrogate marker
for senescent cells, did not reveal significant differences after
stimulation with TGF-β1 for up to eight weeks (Student’s T-test;
Figure 2F,G).

To further analyze if TGF-β1 induces epigenetic senescence-
associated changes we used our recently described
Epigenetic-Senescence-Signature [26,37]. This method is
based on DNA methylation level at six CpG sites and facilitates
predictions of passage numbers and cPDs. Cells that were
treated with TGF-β1 for five passages were significantly over-
estimated in their passage number (p = 0.031; Student’s T-test;
Figure 3A), but this can be attributed to the higher number of
cell divisions that the cells undergo during this period which is
also reflected by the higher numbers of cPDs at the time
(Figure 3B). Thus, in relation to the real number of cPDs the
predictions of the Epigenetic-Senescence-Signature were not
significantly over-estimated. Taken together, TGF-β1 increases
proliferation of MSCs and thus they enter replicative
senescence after less time. However, we did not observe
evidence that TGF-β1 directly induces cellular senescence of
MSCs.

TGF-β1 induces similar gene expression changes in
early and late passages

Global gene expression changes were analyzed upon
stimulation of MSCs with TGF-β1 for 0, 1, 4 and 12 h. These
experiments were performed with three MSC preparations at
corresponding early (P3 - 5) and later passages (P10). These
passage numbers corresponded to cPDs of 6.17 to 7.49 and
14.51 to 16.38, respectively. Microarray data reflected up-
regulation of various TGF-β1 response genes, including
transient induction of ID1, ID2 and ID3 which has also been
demonstrated by qRT-PCR (Figure S4 in File S1) and is
consistent with findings of Kang et al. [46]. Hierarchical
clustering of gene expression profiles clearly demonstrated
donor-associated variation. Furthermore, corresponding
samples of early and late passages clustered together and in
tendency gene expression profiles were also sorted according
to the time of TGF-β1 stimulation (Figure 4A). These results
are also reflected by principal component analysis of the gene
expression profiles (Figure 4B). Thus, all three parameters –
donor-specificity, passage number, and TGF-β1 – have
reproducible impact on gene expression profiles.

Comparison of gene expression profiles of MSCs at early
and late passages (all without TGF-β1 stimulation) yielded 345
gene expression changes (File S2). This is in line with our
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Figure 1.  Influence of TGF-β1 on MSC growth and in vitro differentiation.  Treatment with 1 ng/mL TGF-β1 induces a network-
like growth pattern of MSCs within 7 days, which is reversed if the cells are re-seeded in media without TGF-β1 (A; crystal violet
staining of fixed cells). Immunophenotypic analysis of MSCs upon continuous culture either with or without TGF-β1 for 4 to 5
passages was performed by flow cytometry. Exemplary histograms are depicted and analysis of mean fluorescence intensity
(normalized to auto-fluorescence) did not reveal significant differences upon treatment with TGF-β1 (B; n = 5). MSCs that had been
cultured with or without 1 ng/mL TGF-β1 for 1 to 4 passages were differentiated towards chondrogenic, osteogenic and adipogenic
lineage. Particularly adipogenic differentiation was impaired by TGF−β1 (C; n = 3).
doi: 10.1371/journal.pone.0077656.g001
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Figure 2.  Influence of TGF-β1 on short- and long-term expansion and senescence.  MSCs were stimulated for 7 days with
increasing concentrations of TGF-β1 and proliferation was estimated using the MTT assay (A; n = 5). MSCs were cultured with or
without 1 ng/mL TGF-β1 until they stopped proliferation. Cumulative population doublings (cPDs) were calculated throughout culture
expansion and depicted by symbols for each passage (B; n = 6). The average culture period until proliferation arrest is shorter if
cells are continuously cultured with TGF-β1 (C; n = 6). Comparison of cPDs for the first seven passages for TGF-β1 treated and un-
treated MSC revealed a proliferative advantage particularly in the initial three passages (D; n = 6). The maximal cPDs at the time of
ultimate proliferation arrest were similar with and without TGF-β1 treatment (E; n = 6). SA-β-gal activity was measured in MSCs
cultured either with or without TGF-β1 for 7 passages by histochemical analysis with X-gal staining (E) or flowcytometric analysis of
C12FDG (F; n = 3; *p < 0.05; **p < 0.01).
doi: 10.1371/journal.pone.0077656.g002
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previous work demonstrating that long-term culture of MSCs
has major impact on gene expression profiles [23,37,47].
Subsequently, we analyzed differential gene expression upon
stimulation with TGF-β1 for either 1, 4, or 12 h in comparison to
non-treated controls. The number of differentially expressed
genes increased continuously in MSCs of both early and late
passages. Notably, there was a very high overlap of TGF-β1
induced genes in early and late passages (Table 1). This
became also evident, when we plotted log fold changes in early
versus late passages (Figure 4C). Noteworthy, the number of
senescence-associated genes remained similar throughout the
time course (File S2).

We then analyzed TGF-β1 induced gene expression
changes with regard to the whole time course. 2,469 transcripts
and 1,966 transcripts revealed continuous gene expression
changes in early and late passages, respectively (probability >
95%; Table 1; File S2). The overlap of these time course-
associated genes was remarkably high (1,282 genes). When
we specifically looked for genes with significantly differential
time-courses between early and late passage, only four genes
were identified (probability > 95%) – SULF1, PAQR5, RPLP1,

and THBS4 – and none of them was more than two-fold
differentially expressed upon TGF-β1 stimulation at any time
point.

A follow-up functional analysis for association with KEGG
pathways and GO terms revealed very similar TGF-β1 induced
gene expression changes in early and late passage (Tables S3
and S4 in File S1). Taken together, our results support the
notion that TGF-β1 stimulation has great influence on gene
expression in a time course-dependent manner, but there are
hardly any differences in TGF-β1 induced gene expression in
MSCs of early and late passages. This underlines the similarity
of the transcriptional response to TGF-β1 stimulation in early
and late passages.

Discussion

The effects of TGF-β1 are interdependent on a variety of
different parameters such as culture media, pretreatment,
incubation time and even more critical on cell type and state of
differentiation [2]. The goal of this study was to analyze the
effect of TGF-β1 in long-term culture of MSCs as it has been

Figure 3.  Effect of TGF-β1 on senescence-associated DNA-methylation signature.  MSCs were cultured for three passages
either with or without TGF-β1. Then the state of cellular senescence was tracked using our recently described Epigenetic-
Senescence-Signature which is based on DNA-methylation (DNAm) changes at six specific CpG sites in the genome [35,36].
Predicted passage numbers and real passage numbers correlated well for controls, whereas the passage number was significantly
overestimated for TGF-β1 treated cells (A; *p < 0.05). Comparison of predicted and real cumulative population doublings (cPDs)
reflected the proliferative advantage with TGF-β1. Overall, the number of cPDs was slightly overestimated by the Epigenetic-Aging-
Signature but this cannot be attributed to TGF-β1 stimulation (B). Symbols represent different MSC preparations that were cultured
with (black color) or without TGF-β1 (grey color).
doi: 10.1371/journal.pone.0077656.g003
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suggested that TGF-β1 induces cellular senescence [20]. On
the other hand, we assumed that TGF-β1 exerts different gene
expression changes in cells of early and late passage. Our
results support the notion that TGF-β1 has impact on MSC
growth and differentiation but there was no evidence that it
induces cellular senescence. Notably, despite the profound
alterations in cellular physiology during culture expansion the
molecular sequel of TGF-β1 appears to be very similar in cells
of early and later passages.

In this study, we describe that TGF-β1 induces a network-like
growth pattern in MSCs. It was previously reported that TGF-β
induces alterations of the actin-cytoskeleton of MSCs [12,48].
In line with these observations, TGF-β1 induced gene
expression was particularly associated with KEGG pathways
“regulation of actin cytoskeleton” and “focal adhesion” and to

Table 1. Number of regulated genes after TGF-β1
treatment.

 1 h 4 h 12 h Time course
early passage 10 326 2108 2469

late passage 5 336 952 1966

overlap (early and late passage) 4 129 646 1285

Numbers of differentially expressed genes after TGF-β1 stimulation compared to
untreated MSCs (Limma T-test; FDR < 5%). These changes were either analyzed
in MSCs of early passage or MSCs of later passage (gene lists are provided in File
S2). The overlap depicts the number of genes which are regulated in early and late
passages.
doi: 10.1371/journal.pone.0077656.t001

Figure 4.  Gene expression changes upon TGF-β1 treatment in early and later passages.  Hierarchical clustering of global
gene expression profiles (Euclidean distance) revealed inter-donor variation, a close relationship of early and late passages, and
continuous changes with TGF-β1 stimulation (A). This was also reflected by principal component analysis (B; components 1 [PC1]
and 2 [PC2] are depicted). TGF-β1-induced gene expression changes were compared in MSCs of early passage (P3 - P5) and later
passage (P10) upon stimulation for either 1, 4, or 12 hours. Some genes are predominantly induced in early passage (depicted in
blue) or in late passage (depicted in red) but the induced gene expression changes were overall very similar in MSCs of early and
later passage (C).
doi: 10.1371/journal.pone.0077656.g004
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GO-Terms “cell adhesion” and “axon guidance”. Several
previous studies have indicated that TGF-β promotes
proliferation of MSCs [13,17,19] whereas other authors claimed
that it rather induces cell-cycle arrest and even cellular
senescence [20,21]. Here, we describe that TGF-β1
significantly enhanced proliferation, particularly if applied in low
concentrations. These contradictory results might be due to
differences in culture conditions. It may also be attributed to
differences between individual MSC preparations which vary
based on the different starting material, isolation procedures
and even between different donors [22].

Adipogenic differentiation was completely inhibited in TGF-
β1 pre-cultured MSCs in the presence of TGF-β1 which has
been demonstrated in similar studies before [14]. Notably,
TGF-β1 treatment also resulted in a significant down-regulation
of the peroxisome proliferator-activated receptor gamma
(PPAR-γ) even without induction of adipogenic differentiation
(0.5-fold down-regulation, p = 0.002). PPAR-γ is a nuclear
hormone receptor which plays a central role in adipogenic
differentiation [49]. Thus, down-regulation of this master
regulator by TGF-β1 may be one of the reasons for impaired
adipogenic differentiation. Osteogenic differentiation was also
reduced in TGF-β1 pre-cultured MSCs although this effect was
less pronounced and varied between experiments. The
osteogenic differentiation marker RUNX2 was significantly up-
regulated by TGF-β1 even without induction medium (2.5-fold
up-regulation, p = 0.003). TGF-β1 may stimulate the early
stages of osteogenic differentiation whereas it negatively
affects subsequent differentiation steps which are
characterized by calcium deposition [13,50,51]. Notably, in vitro
differentiation of MSCs is also affected by long-term culture.
Various groups have demonstrated that particularly the
adipogenic differentiation decays in long-term culture
[23,24,52]. In this regard, there may be a functional association
of TGF-β1 stimulation and long-term culture associated
changes.

TGF-β1 induced cellular senescence has been discussed as
a mechanism to prevent malignant cell transformation into e.g.
hepatocellular carcinoma [53] or lymphoma cells [54]. It has
also been shown to induce apoptosis or senescence in un-
transformed cells, like epithelial or T cells [55,56]. On the other
hand, the growth stimulatory effect of TGF-β was discussed to
activate malignant or non-malignant cell types, like glioma or
smooth muscle cells [57,58]. So far, the senescence-
stimulatory effect of TGF-β1 has been particularly detected by
cell-cycle analysis and estimation of the SA-β-Gal activity [20].
In this study, we could not observe cell-cycle arrest or signs of
premature cellular senescence upon treatment with TGF-β1.

For clinical applications MSCs are usually used before
passage 5 - due to the functional implications of long-term
culture and to the risk of malignant transformation [59]. On the
other hand, in vitro expansion is necessary to obtain enough
cells and this applies also to the experiments described in this
study. In this regard, the term “early passage” might be
misleading – we have used it to discern from MSCs which were
expanded for much longer time. We even performed long-term
culture experiments with or without addition of TGF-β1 for up to
300 days until the cells reached replicative senescence.

Some signs of cellular senescence, such as higher prediction
of passage numbers with the Epigenetic-Senescence-
Signature [26], may be attributed to higher proliferation rates
and this may also be the reason for earlier growth arrest with
TGF-β1. There was no significant effect on the maximal
number of cPDs, or on the predictions of cPDs. These results
support the notion, that cPDs are the more appropriate
measure for cellular senescence in comparison to passage
numbers [60]. TGF-β1 may enhance replicative senescence
due to the growth stimulatory effect but it does not directly
induce cellular senescence. Usually other growth factors, such
as FGF2, bFGF or PDGF-BB are considered to stimulate MSC
growth [61,62]. Addition of TGF-β1 to MSC culture media may
enhance culture expansion, too [63] – but it interferes with in
vitro differentiation potential.

Senescence has major impact on cellular physiology and
epigenetics [23] and it has been shown, that epigenetic
modifications may lead to alterations in the TGF-β mediated
gene expression [64]. Therefore, we anticipated that the
signaling cascades of TGF-β1 are also greatly influenced by
the state of replicative senescence during culture expansion.
So far, only few studies addressed the role of age-related
effects on TGF-β signaling in tissues and cells [28–30]. By
monitoring the effect on TGF-β1 during cellular senescence it
may be possible to better understand age-related effects in
vivo. As demonstrated by several previous studies, gene
expression is greatly affected by TGF-β1 in a time-course
dependent manner [65,66]. However, we hardly observed any
differences between MSCs of early and later passages. These
results indicate that long-term culture associated changes may
not be a major parameter for the heterogeneous functions of
TGF-β1.
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