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Summary

 

Interleukin (IL)-4 is the most potent factor that causes naive CD4

 

1

 

 T cells to differentiate to
the T helper cell (Th) 2 phenotype, while IL-12 and interferon 

 

g

 

 trigger the differentiation of
Th1 cells. However, the source of the initial polarizing IL-4 remains unclear. Here, we show
that IL-6, probably secreted by antigen-presenting cells, is able to polarize naive CD4

 

1

 

 T cells
to effector Th2 cells by inducing the initial production of IL-4 in CD4

 

1

 

 T cells. These results
show that the nature of the cytokine (IL-12 or IL-6), which is produced by antigen-presenting
cells in response to a particular pathogen, is a key factor in determining the nature of the im-
mune response.

 

I

 

n response to pathogens, naive CD4

 

1

 

 T cells differenti-
ate into effector Th1 and Th2 cells. Th1 cells produce

IL-2, IFN-

 

g

 

, and TNF-

 

b

 

, which are involved in cell-
mediated inflammatory reactions. Th2 cells secrete mainly
IL-4, IL-5, IL-6, IL-10, and IL-13, which mediate B cell
activation, antibody production, and the regulation of Th1
responses (for review see reference 1). In general, a Th1 re-
sponse helps eradicate intracellular microorganisms, whereas
a Th2 response can control extracellular pathogens. Devel-
opment of an inappropriate response can lead to ineffective
immunity and may even be pathogenic. Thus, the factors
that regulate the polarization to either a Th1 or Th2 im-
mune response are critical, but remain unclear. The dose of
antigen and the type of APC, and/or the co-stimulatory
pathways (2–6), have been postulated to be some of the
polarizing factors. However, the most effective inducer of
CD4

 

1

 

 T cell differentiation appears to be the local cytokine
environment. It is clear that the cytokine IL-12 directs dif-
ferentiation to a Th1 phenotype (7, 8), while IL-4 can drive
differentiation to a Th2 phenotype (9, 10).

If cytokines are indeed the driving force behind CD4

 

1

 

 T
cell differentiation, where does the initial polarizing cyto-
kine come from? Several findings suggest that during the
initiation of a Th1 response, IL-12 is produced particularly
by macrophages in response to certain microbial antigens,
while NK cells are the main source of IFN-

 

g

 

 in response to
IL-12 (7, 11). In the case of a Th2 response, the initial
source of IL-4 is less clear, since none of the classical APCs
make IL-4. Some non-APCs, such as mast cells and baso-
phils, can produce IL-4, but these cells are not abundant in

the lymphoid organs where T cell priming occurs (12).
Recently, it has been shown that IL-4 is also produced by a
minor subpopulation of T cells, the CD3

 

1

 

CD4

 

1

 

NK1.1

 

1

 

cells, which may therefore have a role (13). However, the
production of IL-4 by mast cells and basophils is a late
event and it is not yet clear how the CD4

 

1

 

NK1.1

 

1

 

 cells
become activated. An alternative possibility, however, is
that other cytokines may induce the initial production of
IL-4 by the CD4

 

1

 

 T cells; after this initial stimulus, the se-
creted IL-4 could act in an autocrine fashion, upregulating
IL-4 production and inhibiting IFN-

 

g

 

 production, thereby
polarizing the differentiation of Th2 cells.

In an attempt to find potential cytokines that, like IL-12,
could be produced by classical APCs and could trigger the
initial IL-4 production by CD4

 

1

 

 T cells, we analyzed the
modulatory effects of IL-6, a cytokine involved in different
aspects of the immune response and acute phase response
(for review see references 14 and 15). Here we show that
IL-6 is able to initiate the polarization of naive CD4

 

1

 

 T cells
to effector Th2 cells by inducing the production of endog-
enous IL-4. In addition, IL-6 also antagonizes the IL-12–
mediated differentiation of Th1 cells. We postulate that IL-6
is a key factor in the choice between a Th1 or Th2 im-
mune response.

 

Materials and Methods

 

Cell Preparation and Reagents.

 

Total CD4

 

1

 

 T cells were iso-
lated from spleen and lymph nodes from either wild-type B10.BR,
wild-type C57BL/6J, or C57BL/6J-backcrossed IL-6–deficient
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1
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mice by negative selection as previously described (16). The naive
population (CD4

 

1

 

CD45RB

 

high

 

CD44

 

low

 

) was purified from total
CD4

 

1

 

 T cells obtained from cytochrome (Cyt)

 

1

 

 c TCR trans-
genic mice by staining with a red

 

613

 

-conjugated anti-CD4 mAb, a
biotinylated anti-CD44 mAb, FITC-conjugated anti-CD45RB
mAb, and PE-conjugated streptavidin (PharMingen, San Diego,
CA) and cell sorting by using a FACS

 

PLUS

 



 

. Mitomycin C-treated
(50 

 

m

 

g/ml) syngeneic splenocytes were used as source of APCs.
Total or naive CD4

 

1

 

 T cells were cultured at 10

 

6

 

 cells/ml in
the presence of syngeneic APCs (5 

 

3

 

 10

 

5

 

 cells/ml) with Con A
(Boehringer Mannheim GmbH, Mannheim, Germany) or syn-
thetic moth Cyt c peptide (Yale University, New Haven, CT)
plus IL-6 (R&D Sys., Inc., Minneapolis, MN), IL-12 (provided
by Genetics Institute, Cambridge, MA), or IL-4 (provided by
DNAX, Palo Alto, CA). After 4 d, a 40–60% increase in the num-
ber of cells was observed in the different conditions. Effector Th
cells were exhaustively washed, counted, and restimulated at 10

 

6

 

cells/ml with Con A (in the absence of APCs) or Cyt c peptide
plus APCs (5 

 

3

 

 10

 

5

 

 cells/ml). Anti-CD3 mAb (2C11) was im-
mobilized on plastic at 5 

 

m

 

g/ml and anti-CD28 (PharMingen)
was used in a soluble form (1 

 

m

 

g/ml).

 

Cell Surface Staining.

 

Expression of IL-6R

 

a

 

 was analyzed by
FACS

 



 

 by double staining with a FITC-conjugated anti-CD4
mAb and a biotinylated anti–IL-6R

 

a

 

 mAb (PharMingen) in
combination with PE-conjugated streptavidin.

 

Competitive Reverse Transcriptase-PCR.

 

Total RNA was ex-
tracted as described (17) from 2 

 

3

 

 10

 

5

 

 cells mixed with 10

 

4

 

 Raji
cells which were added at harvest as an internal control, and the
amount of human MHC class II HLA-DR cDNA from Raji cells
was used as an internal standard. In brief, after dilution (1/2) of re-
verse transcription reaction mixture, 5 

 

m

 

l was assayed for levels of
DR cDNA by PCR using DR-specific primers in the presence of
DR competitor construct (50 pg) to confirm the efficiency of RNA
extraction and reverse transcriptase (RT)-PCR procedure in each
group. IL-4 transcript levels in the 5 

 

m

 

l of diluted (1/2) reverse tran-
scription reaction mixture was semi-quantitated using the competitor
(167 fg) in the presence of specific primers as described (18). DR
primers used were (5

 

9

 

-CGAGTTCTATACTGAATCCTG, and
3

 

9

 

-GTTCTGCTGCATTGCTTTTGC). Competitor amounts
shown (competition cDNA, fg or pg) are corrected to represent the
amount of IL-4 or DR gene and not as the total plasmid amount. A
multiple cytokine-containing competitor construct was a gift from
R.M. Locksley (University of California, San Francisco, CA).

 

Cytokine Production.

 

ELISA assays were performed using pu-
rified anti–IL-4, anti–IL-12, and anti–IL-6 mAbs (3 

 

m

 

g/ml) as
primary antibodies, the corresponding biotinylated anti–IL-4,
anti–IL-12 and anti–IL-6 mAbs (1 

 

m

 

g/ml; PharMingen), and
horseradish peroxidase-conjugated avidin D (2.5 

 

m

 

g/ml) (Vector
Labs., Inc., Burlingame, CA), the TMB microwell peroxidase
substrate and stop solution (Kirkegaard & Perry Labs., Inc., Gaithers-
burg, MD), using the recommended protocol (PharMingen). Re-
combinant IL-4 (DNAX) and IFN-

 

g

 

 (GIBCO BRL, Gaithers-
burg, MD) were used as standards. The specific activity of the IL-4

 

1

 

Abbreviations used in this paper:

 

 Cyt, cytochrome; NFAT, nuclear factor of
activated T cells; RT, reverse transcriptase; WT, wild type.
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and the IFN-

 

g

 

 that were used as standards for the ELISA assays
were 10

 

8

 

 U/mg for IL-4 and 10

 

7

 

 U/mg for IFN-

 

g

 

.

 

Results and Discussion

 

IL-6 is produced by a wide spectrum of cells including
fibroblasts, endothelial cells, neuronal cells, macrophages,
mast cells, tumor cell lines, and CD4

 

1

 

 Th2 cells, but from
an immunological point of view, APCs represent the major
source of IL-6 (14, 19). To determine the potential role of
IL-6 in differentiation of naive CD4

 

1

 

 T cells into effector
Th1 and Th2 cells, we first analyzed the effect of exoge-
nous IL-6. Total mouse CD4

 

1

 

 T cells were isolated (16)
and stimulated to differentiate with Con A with or without
IL-4 (Th2) or IL-12 (Th1) in the presence or absence of
exogenous IL-6. After 4 d, the effector Th1 or Th2 cells
were exhaustively washed, counted, and equal number of
cells were restimulated with Con A for 24 h before harvest-
ing the supernatant which was then analyzed for cytokine
production. Interestingly, even in the absence of any polar-
izing cytokine, IL-6 directed the differentiation of the
CD4

 

1

 

 cells to a Th2 phenotype, since the cells produce

high amounts of IL-4, but not IFN-

 

g

 

 (Fig. 1 

 

A

 

). IL-6 did
not modify the differentiation of the Th2 cells directed by
IL-4. However, differentiation into Th1 cells by IL-12,
was impaired in the presence of IL-6. Thus, Th1 cells dif-
ferentiated with Con A and IL-12 in the presence of IL-6,
produced less IFN-

 

g

 

, and more IL-4 (Fig. 1 

 

A

 

). IL-6, like
IL-2, has been described to be a growth factor for a num-
ber of cells (14, 15). However, only IL-6, but not IL-2, was
able to modify the polarization of the CD4

 

1

 

 cells to Th2
phenotype (Fig. 1 

 

A

 

), indicating that IL-6 is involved in
differentiation rather than growth of T cells. To eliminate
the possibility that IL-6 could favor the expansion or IL-4
secretion of the CD4

 

1

 

 memory subpopulation, which has
been described to display a Th2 phenotype (20), we ana-
lyzed the role of IL-6 in the differentiation of purified na-
ive CD4

 

1

 

 T cells. Thus, we used CD4

 

1

 

 T cells from TCR
transgenic mice (21), which express the 

 

a

 

 and 

 

b

 

 chain of
the TCR that recognizes a pigeon Cyt c peptide; before
further purification, 90–95% of the CD4

 

1

 

 T cells express
the naive phenotype. Total CD4

 

1

 

 T cells were stained with
anti-CD44 and anti-CD45RB mAbs and the naive CD4

 

1

 

CD44

 

low

 

CD45RB

 

high

 

 population was isolated by cell sort-

Figure 1. IL-6 directs differentiation of CD41 T cells into Th2 cells. (A) Total
CD41 T cells (106/ml) were purified from normal B10.BR mice and stimulated (in
the presence of 5 3 105 cell/ml syngeneic APCs) with Con A (2.5 mg/ml) alone,
Con A plus IL-4 (103 U/ml) or Con A plus IL-12 (3.5 ng/ml), in the absence (2) or
presence of IL-6 (100 ng/ml) or IL-2 (50 U/ml). After 4 d, cells were exhaustively
washed and restimulated (106 cells/ml) with Con A alone (2.5 mg/ml) in the absence
of APCs or additional cytokines. Supernatants were harvested 24 h later and analyzed
for IL-4 and IFN-g production by ELISA. (B) Total CD41 population was isolated
from Cyt c TCR transgenic mice, and the naive CD41 CD45RBhighCD44low subpop-
ulation was purified by cell sorting. Naive CD41 T cells were then stimulated with
Con A alone, Con A plus IL-4, or Con A plus IL-12, and APCs, in the presence or
absence of IL-6. After 4 d, cells were exhaustively washed and restimulated (106 cell/
ml) with Con A alone for 24 h before harvesting the supernatants for cytokine mea-
surement. (C) Naive CD41CD45RBhighCD44low CD41 T cells isolated from Cyt c
TCR transgenic mice were stimulated with Cyt c peptide and APCs, in the presence
of medium, IL-6 (100 ng/ml), or IL-4, (103 U/ml). After 4 d, cells were exhaustively
washed and restimulated (106 cell/ml) with Cyt c peptide and APCs for 24 h. (D) To-
tal CD41 T cells from normal B10.BR mice were stimulated with immobilized anti–
CD3 mAb (5 mg/ml) and soluble anti–CD28 (1 mg/ml) in the presence of medium
(2), IL-6 (100 ng/ml), or IL-4 (103 U/ml) and, after 4 d, they were restimulated

with immobilized anti–CD3 mAb. (E) Total CD41 T cells from normal B10.BR mice were stimulated with Con A and APCs in the presence of me-
dium (2), IL-6 (100 ng/ml) (IL-6), or IL-6 (100 ng/ml) plus anti–IL-4 mAb (10 mg/ml) (IL-6 1 anti–IL-4), for 4 d. Cells were then restimulated (106

cells/ml) with Con A alone as described in A.



464 IL-6 Directs the Differentiation of IL-4–producing CD41 T Cells

ing and activated with the same polyclonal stimulus, Con A,
in the presence or absence of different cytokines. We ob-
served that IL-6, in the absence of any other cytokine, was
able to promote the differentiation of naive CD41 cells to
IL-4–producing cells (Fig. 1 B). In addition, we also ana-
lyzed the effect of IL-6 in the differentiation of naive
CD41 T cells stimulated by specific antigen. The presence
of IL-6 during the activation with Cyt c peptide drove dif-
ferentiation of naive CD41 T cells into IL-4–producing ef-
fector Th2 cells as well or better than IL-4 (Fig. 1 C).
Therefore, the modulatory effect of IL-6 in T cell differen-
tiation is not a consequence of an expansion of the memory
subpopulation.

Other cytokines have also been described to indirectly
modulate the polarization towards Th1 and Th2. IL-10, a
Th2 cytokine, promotes Th2 and inhibits Th1 cells, their
cytokines, and related immune phenomena. Although the
mechanism is not clear yet, several lines of evidence indi-
cate that IL-10 reduces the Th1 response by an inhibitory
effect on the IL-12 expression by APCs such as macrophages
(22–24). In contrast, the immunoregulatory role of IL-6 in
the polarization of Th1 and Th2 is not an indirect effect on
the APCs. Thus, IL-6 inhibited IFN-g production and
stimulated IL-4 synthesis by Th1 cells that have been dif-
ferentiated in the presence of exogenous IL-12 (Fig. 1, A
and B), eliminating the possibility of inhibiting the produc-
tion of IL-12 by APCs. In addition, IL-6 did not affect the
expression on the APCs of co-stimulatory molecules such
as B7.1 and B7.1, which have also been involved in the dif-
ferentiation of Th1 and Th2 cells (5, 6; data not shown).
To further prove that the effect of IL-6 was on T cells di-
rectly, rather than APCs, we differentiated CD41 T cells
with immobilized anti-CD3 mAb plus anti-CD28 mAb in
the complete absence of APCs, and then restimulated these
cells with anti-CD3 mAb alone. The presence of IL-6 (or
IL-4 as a control) during the first culture resulted in an in-
crease of IL-4 production and a dramatic reduction of IFN-g
production (Fig. 1 D) by the cells that were elicited, show-
ing that IL-6 directly favors the polarization of naive CD41

T cells to Th2 cells via the T cell.
IL-4 is the most effective differentiation factor for Th2

cells; it acts by promoting the secretion of more IL-4 and
inhibiting the production of IFN-g by T cells (9, 10). It
was therefore possible that IL-6 could directly upregulate
the synthesis of IL-4 by T cells and, consequently, that the
IL-6 effect was mediated through IL-4, which would be
responsible for the suppression of Th1 differentiation, while
favoring a Th2 response. To address this hypothesis, CD41

T cells were differentiated with Con A and IL-6 in the
presence or absence of neutralizing anti–IL-4 mAb, and af-
ter 4 d, the cells were washed and restimulated with Con A.
The ability of IL-6 to polarize CD41 T cells toward the
Th2 phenotype was blocked by anti–IL-4 mAbs, since the
cells were unable to produce IL-4 upon restimulation (Fig.
1 E). These results indicated that the differentiation of Th2
cells by IL-6 is dependent on the endogenous production
of IL-4. It was therefore possible that IL-6 may trigger the
Th2 pathway by inducing small amounts of IL-4, which in

turn would act as an autocrine differentiation factor for the
Th2 cells.

As mentioned above, APCs represent the major source
of IL-6 early in the immune response. To examine the
physiological role of IL-6 in T cell differentiation, we first
measured the production of IL-6 during the differentiation
of Th1 and Th2 cells. CD41 T cells were stimulated with
Con A and IL-4 or IL-12 in the presence of APCs, and su-
pernatants were harvested after different periods of time to
measure IL-6 secretion. After 2 d of culture, identical levels
of IL-6 were detected in the IL-4 and IL-12 cultures (Fig.
2 A). However, while the IL-6 level in the presence of
IL-12 was sustained during the course of T cell differentia-
tion, it decayed dramatically during the differentiation of
Th2 cells in the presence of IL-4. No IL-6 was detected af-
ter restimulation of either Th1 or Th2 cells with Con A in
the absence of APCs (data not shown), suggesting that the
IL-6 that we detected during the first stimulation was se-
creted mainly by the APCs. The difference in the kinetics
of IL-6 synthesis during the differentiation of Th1 and Th2
could, therefore, be due either to upregulation of IL-6 on
the APCs in the presence of IL-12, or greater IL-6 con-
sumption by Th2 cells than by Th1 cells. To test this, we
examined IL-6 production during the differentiation of
Th1 and Th2 in the presence of an anti–IL-6 receptor (IL-6R)
mAb, to block IL-6 consumption. In the presence of anti–
IL-6R mAb IL-6 did not diminish during the differentia-
tion of Th2 cells (Fig. 2 B). These data indicate that the IL-6
produced by APCs was consumed during the differentia-
tion of Th2 cells, but not during differentiation of Th1
cells, supporting the idea that IL-6 plays a role during Th2
polarization by acting directly on T cells. IL-6R is a het-
erodimer of the signal transducer gp130 (which is also a
component of the IL-11, ciliary neurotrophic factor, leuke-
mia inhibitory factor, and onconstatin M receptors) and the
specific IL-6Ra chain (25–30). IL-6R has been found in
both unstimulated CD41 and CD81 T cell subsets and its
expression is downregulated upon activation (31). Differ-
ential expression of the IL-6Ra chain during Th1 or Th2
differentiation could explain the higher IL-6 consumption
by the Th2 cells. We also analyzed, therefore, the expres-
sion of IL-6Ra during the differentiation of CD41 T cells
in effector Th1 or Th2 cells. However, the expression of
cell surface IL-6Ra was regulated similarly during the dif-
ferentiation of Th1 or Th2 cells in the presence of either
IL-4 or -12 (Fig. 2 C). Low levels of IL-6Ra were present
on unstimulated CD41 T cells, and downmodulation oc-
curred after the first day of stimulation, remaining at almost
undetectable levels during the differentiation of both Th1
and Th2 cells. These results indicated that the effects of IL-6
in the differentiation of Th2 cells were not due to a differ-
ential distribution of the IL-6Ra.

If IL-6 was required for Th2 cell differentiation in vitro,
it would follow that T cells from IL-62/2 mice should be
incapable of developing Th2 effector cells. The experi-
ments described below show that this appears to be true. In
correlation with the previous characterization of IL-62/2

mice (32, 33), analysis of cellular populations in the spleen
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and thymus did not show any differences between wild-
type (WT) and IL-62/2 mice (data not shown), and IL-62/2

mice developed normally. We therefore used splenocytes
from IL-62/2 mice as APCs to further establish that the
production of endogenous IL-6 by the APC plays a critical
role in the polarization of the CD41 T cells to effector Th2
cells. We purified CD41 T cells from WT mice and stimu-
lated them for 4 d with Con A in the presence of APCs
from WT mice or IL-62/2 mice in the absence of any
added exogenous cytokines. Restimulation with Con A re-
sulted in significantly less IL-4 production in cells differen-
tiated in the presence of IL-62/2 than in WT APCs (Fig.
3 A). Although the production of IFN-g under these con-
ditions (absence of exogenous IL-12) was low, the levels of
IFN-g produced by CD4 cells differentiated in the pres-
ence of IL-62/2 APCs were higher than those produced
by cells stimulated in the presence of WT APCs (data not
shown).

In vivo experiments have showed an impaired immune
response in IL-62/2 mice. These mice fail to control infec-
tion with Listeria monocytogenes and have a diminished T cell–
dependent body response against vesicular stomatitis virus
(32–34). In addition, CD41 cells from WT mice infected
with Candida albicans express IL-4, but reduced IgE and IL-4
mRNA was observed in IL-62/2 mice (35). Nevertheless,
due to the numerous effects of IL-6 in vivo, it is difficult to
study by which mechanism IL-6 affects the immunopathol-
ogy of infection and whether this is mediated by a modifi-

cation in T cell differentiation. We examined, therefore,
the in vitro differentiation of CD41 T cells from IL-6–defi-
cient mice. IL-62/2 CD41 T cells stimulated with Con A
in the presence of WT APCs, which can provide the IL-6
required, produced IL-4, but this IL-4 production was im-
paired when the IL-6 pathway was blocked by the addition
of anti–IL-6 mAbs (Fig. 3 B). Most significantly, however,
was that in the complete absence of IL-6, when IL-62/2

CD41 T cells were stimulated in the presence of IL-62/2

APCs, no in vitro Th2 response was obtained (Fig. 3 B).
The difference between complete absence of IL-4 produc-
tion when IL-62/2 APCs were used with IL-62/2 T cells
compared with IL-62/2 APCs and WT T cells may have
been the result of either IL-6 production from contaminat-
ing WT APCs in the T cells or a contribution of IL-6 from
the WT T cells. Moreover, high IL-4 production was re-
stored in cells that were differentiated in the presence of
IL-62/2 APCs together with an exogenous source of IL-6
(Fig. 3 B). Similar levels of IL-4 were detected when
CD41 T cells were differentiated in the presence of IL-4,
and no significant additional increase was observed when
both IL-4 and IL-6 were present during the differentiation,
indicating again that both IL-4 and IL-6 were using the
same pathway.

To demonstrate whether the upregulation of IL-4 pro-
duction by IL-6 was due to an induction of IL-4 gene ex-
pression rather than a posttranslational mechanism, e.g., in-
creasing IL-4 secretion, we examined the levels of IL-4

Figure 2. Regulation of IL-6
secretion by APCs during the
differentiation of Th1 and Th2
CD41 T cells. (A) Total CD41

T cells (B10.BR) were stimu-
lated with Con A (2.5 mg/ml)
plus IL-4 (103 U/ml) or IL-12
(3.5 ng/ml) in the presence of
APCs. Supernatants were har-
vested at different times of stim-
ulation (day 2, 3, or 4) and IL-6
secretion was analyzed. (B) Total
CD41 T cells were stimulated as
described in A, but in the pres-
ence of anti–IL-6Ra chain mAb
(10 mg/ml). The arrow indicates
the production of IL-6 after 4 d
of stimulation with Con A and
IL-4, in the absence of anti–IL-
6Ra mAb. (C) Expression of IL-
6Ra during the differentiation
of Th1 and Th2 cells. CD41 T
cells unstimulated (day 0) or
stimulated in the presence of
APCs, with Con A plus IL-4
(Con A/IL-4) or IL-12 (Con A/
IL-12) for different periods of
time (day 1, 2, or 4) were har-
vested, stained with anti-CD4
and anti–IL-6Ra mAbs, and an-
alyzed by FACS . Fluorescence
profiles show the expression of
IL-6Ra in the CD41 popula-
tion.
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mRNA. Naive CD41 T cells were isolated from Cyt c
TCR transgenic mice (see above) and stimulated with spe-
cific Cyt c peptide in the absence or presence of IL-6 or
IL-4. After 4 d, cells were washed and restimulated with
Cyt c peptide, and total RNA was isolated 20 h later. The
expression of the IL-4 gene was determined by competitive
RT-PCR of IL-4–specific transcripts (18). The presence of
exogenous IL-6 or IL-4 during the differentiation (Th2
cells) resulted in the induction of high levels of IL-4
mRNA upon antigen restimulation (Fig. 3 C). Quantita-
tion of IL-4 transcripts in cells differentiated in the presence
of IL-6 or IL-4 were 100-fold higher than in the absence of
cytokines (data not shown). Together, these data indicate
that IL-6 causes the differentiation of Th2 cells by upregu-
lating IL-4 gene expression. The transcriptional regulation
of the IL-4 gene has not yet been characterized as exten-

sively as the regulation of the IL-2 gene. Several positive
and negative regulatory elements in the 59 flanking region of
the IL-4 gene have been described (36–39). Among five
different nuclear factor of activated T cells (NFAT) binding
elements, one located between 290 and 260 is important
for the activation of the IL-4 gene expression. Like the dis-
tal NFAT site in the IL-2 promoter (40–42), this element
binds NFAT (either NFATp or NFATc) in association
with AP-1 components (37, 43). In addition, recently three
functional binding sites for the C/EBP family of transcrip-
tional factors have been identified in the IL-4 promoter (44),
which might be regulated by IL-6 since members of this
family (NF-IL6) have already been described as having been
activated by IL-6 in other systems (45–50). Whether IL-6
acts through these sites will be the subject of future studies.

Both in vivo and in vitro experiments support the idea

Figure 3. IL-6–producing APCs are required for the differentiation of
Th2 cells. (A) Total CD41 T cells (106/ml) were isolated from WT mice
and stimulated with Con A (2.5 mg/ml) alone in the presence of APCs (5 3
105 cells/ml) from WT (WT APC) or IL-6–deficient (IL-62/2 APC)
mice. After 4 d, CD41 T cells were washed and restimulated (106 cells/ml)
with Con A in the absence of APCs, and supernatants were collected after
24 h. (B) Total CD41 T cells were isolated from IL-6–deficient (IL-62/2)
mice and stimulated with Con A plus medium (2), neutralizing anti–IL-6
mAb (10 mg/ml) (anti–IL-6), IL-6 (100 ng/ml), IL-4 (103 U/ml), or both
(IL-4 1 IL-6), in the presence of APCs from WT (WT APC) or IL-6–
deficient (IL-62/2) mice. After 4 d, cells were washed and restimulated
(106 cells/ml) with Con A alone for 24 h. Only in the case where all cells
(both CD4 T cells and APCs) were from IL-62/2 mice did we observe a
slightly lower recovery (70–80% of the recovery from other conditions)
after 4 d of primary culture. Nevertheless, cell number was normalized

(106 cells/ml) before restimulation. (C) Induction of IL-4 gene expression in CD41 Th2 cells differentiated in the presence of IL-6. Naive CD41 T
cells (12) from Cyt c TCR transgenic mice were primary cultured with moth Cyt c peptide (5 mg/ml) and APCs in the absence (2) or the presence of
IL-6 (100 ng/ml) or IL-4 (103 U/ml) for 4 d. Cells were then washed and stimulated with Cyt c peptide and APCs. After 20 h, 2 3 105 cells were har-
vested and used for the quantitation of IL-4 mRNA by competitive RT-PCR. (Top) The expression of IL-4 transcripts. (Bottom) The expression of DR
transcripts. Small arrow, the competitor DNA.
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that, although other factors can play immunomodulatory
roles, IL-4 and IL-12 are both necessary and sufficient for
the polarization of Th1 and Th2 during the response to dif-
ferent pathogens. Considerable interest in the initial source
of the IL-4 that drives Th2 cell differentiation has been ex-
pressed and recent attention has focused on mast cells or
NK1.11 CD4 T cells. We propose here that IL-6 is one of
the stimuli in the initial production of IL-4 which provides
a new mechanism to initiate Th2 CD41 T cell differentia-
tion. The levels of IL-6 that we used in these experiments
are relatively high, just as the levels of IL-4 that also must
be used to direct Th2 differentiation in vitro are (500–
1,000 U/ml IL-4). Presumably, for both IL-4 and IL-6
produced endogenously, lower levels produced in a local
microenvironment suffice. Consistent with this idea, al-
though the IL-6 effect is mediated through IL-4 (since it is
blocked by anti–IL-4), the levels of IL-4 that can be de-
tected are very low, presumably because of local consump-

tion, but are sufficient to direct Th2 cell differentiation.
Our data suggest a model (Fig. 4) for Th2 differentiation
that is strikingly similar to the mechanism used for Th1 dif-
ferentiation. In both cases, the source of the polarizing cy-
tokine is the APC, IL-12 in the case of Th1 cells and IL-6
in the case of Th2 cells. Although APCs are the major
source of IL-6 in vitro, other cell types that produce IL-6,
such as fibroblasts, endothelial cells, keratinocytes or others,
could also contribute to the overall in vivo IL-6 produc-
tion. In our in vitro model, activation of the APC is pro-
posed to result in the secretion of IL-6 which, in combina-
tion with the antigen, will participate in the induction of
IL-4 gene expression in naive CD41 T cells. In the second
step, the low levels of IL-4 secreted by the T cells is suffi-
cient to induce upregulation of the IL-4 and IL-4 receptor
genes in an autocrine manner, while it inhibits the expres-
sion of the IFN-g gene. Cells are therefore subsequently po-
larized to a Th2 phenotype using their own source of IL-4.

Figure 4. Schematic model for the differentiation of precursors Th cells (pTh) into effector Th1 and Th2 cells.

We thank S. Samanta for technical assistance and F. Manzo for assistance with manuscript preparation. We
also thank Genetics Institute for providing the IL-12 and DNAX Institute for a gift of IL-4. 

This work was supported by National Institutes of Health grants CA65861 and 1-P01-AI30548. R.A. Flavell
is an investigator and T. Nakamura was an associate of the Howard Hughes Medical Institute. E. Fikrig is a
Pew Scholar.

Address correspondence to Dr. Richard A. Flavell, Section of Immunobiology, Yale University School of



468 IL-6 Directs the Differentiation of IL-4–producing CD41 T Cells

References
1. Paul, W.E., and R.A. Seder. 1994. Lymphocyte response and

cytokines. Cell. 76:241–251.
2. Bretscher, P.A., G. Wei, J.N. Menon, and H. Bielefeldt-

Ohmann. 1992. Establishment of stable, cell-mediated im-
munity that makes “susceptible” mice resistant to Leishmania
major. Science (Wash. DC). 257:539–542.

3. Constant, S., C. Pfeiffer, A. Woodard, T. Pasqualini, and K.
Bottomly. 1995. Extent of T cell receptor ligation can deter-
mine the functional differentiation of naive CD41 T cells. J.
Exp. Med. 182:1591–1596.

4. Pfeiffer, C., J. Stein, S. Southwood, H. Keterlaar, A. Sette,
and K. Bottomly. 1995. Altered peptide ligands can control
CD4 T lymphocyte differentiation in vivo. J. Exp. Med. 181:
1569-1574.

5. Kuchroo, V.K., M.P. Das, J.A. Brown, A.M. Ranger, S.S.
Zamvil, R.A. Sobel, H.L. Weiner, N. Nabavi, and L.H.
Glimcher. 1995. B7-1 and B7-2 costimulatory molecules ac-
tivate differentially the Th1/Th2 developmental pathways:
application to autoimmune disease therapy. Cell. 80:707–718.

6. Lenschow, D.J., S.C. Ho, H. Sattar, L. Rhee, G. Gray, N.
Nabavi, K.C. Herold, and J.A. Bluestone. 1995. Differential
effects of B7-1 and anti-B7-2 monoclonal antibody treatment
on the development of diabetes in the nonobese diabetic
mouse. J. Exp. Med. 181:1145–1155.

7. Hsieh, C.S., S.E. Macatonia, C.S. Tripp, S.F. Wolf, A.
O’Garra, and K.M. Murphy. 1993. Development of Th1
CD41 T cells through IL-12 produced by Listeria-induced
macrophages. Science (Wash. DC). 260:547–549.

8. Seder, R.A., R. Gazzinelli, A. Sher, and W.E. Paul. 1993.
IL-12 acts directly on CD41 T cells to enhance priming for
IFNg production and diminish IL-4 inhibition of such prim-
ing. Proc. Natl. Acad. Sci. USA. 90:10188–10192.

9. Le Gros, G., S.Z. Ben-Sasson, R. Seder, F.D. Finkelman, and
W.E. Paul. 1990. Generation of interleukin 4 (IL-4)-produc-
ing cells in vivo and in vitro: IL-2 and IL-4 are required for
in vitro generation of IL-4 producing cells. J. Exp. Med. 172:
921–929.

10. Swain, S.L., A.D. Weinberg, M. English, and G. Huston.
1990. IL-4 directs the development of Th2-like helper effec-
tors. J. Immunol. 145:3796–3806.

11. D’Andrea, A., M. Rengarayu, N.M. Valginte, J. Chemini,
M. Kibin, M. Aste, S.H. Chan, M. Kobayashi, D. Young,
and E. Nichbarg. 1992. Production of natural killer cell stim-
ulatory factor (interleukin 12) by peripheral blood mononu-
clear cells. J. Exp. Med. 176:1387–1398.

12. Seder, R.A., M. Plaut, S. Barvieri, J. Urban, F.D. Fenkel-
man, and W.E. Paul. 1991. Mouse splenic and bone marrow
cell populations that express high affinity Fc epsilon receptors
and produce interleukin 4 are highly enriched in basophils.
Proc. Natl. Acad. Sci. USA. 88:2835–2839.

13. Yoshimoto, T., and W.E. Paul. 1994. CD41NK1.11 T cells
promptly produce interleukin-4 in response to in vivo challenge
with anti-CD3. J. Exp. Med. 179:1285–1295.

14. Van Snick, J. 1990. Interleukin-6: an overview. Annu. Rev.
Immunol. 8:253–278.

15. Kishimoto, T., S. Akira, and T. Taga. 1992. Interleukin-6

and its receptor: a paradigm for cytokines. Science (Wash.
DC). 258:593–597.

16. Kamogawa, Y., L.-A.E. Minasi, S. Carding, K. Bottomly,
and R.A. Flavell. 1993. The relationship of IL-4 and IFNg-
producing T cells studied by lineage ablation of IL-4–pro-
ducing cells. Cell. 75:985–995.

17. Chomczynski, P., and N. Sacchi. 1987. Single-step method
of RNA extraction by acid guanidinium thiocyanate-phenol-
chloroform. Anal. Biochem. 162:156–159.

18. Reiner, S.L., S. Zheng, D.B. Corry, and R.M. Locksley. 1993.
Constructing polycompetitor cDNAs for quantitative PCR. J.
Immunol. Methods. 165:37–46.

19. Aarden, L.A., E.R. De Groot, O.L. Schaap, and P.M. Lans-
dorp. 1987. Production of hybridoma growth factor by mono-
cytes. Eur. J. Immunol. 17:1411–1416.

20. Bradley, L.M., D.D. Duncan, K. Yoshimoto, and S. Swain.
1993. Memory effectors: a potent, IL-4–secreting helper T
cell population that develops in vivo after restimulation with
antigen. J. Immunol. 150:3119–3130.

21. Kaye, J., M.-L. Hsu, M.-E. Sauron, S.C. Jameson, N.R.J.
Gascoigne, and S.M. Hedrick. 1989. Selective development
of CD41 T cells in transgenic mice expressing a class II
MHC–restricted antigen receptor. Nature (Lond.). 341:746–749.

22. Fiorentino, D.F., A. Zlotnik, T.R. Mosmann, M. Howard,
and A. O’Garra. 1991. IL-10 inhibits cytokine production by
activated macrophages. J. Immunol. 147:3815–3822.

23. Tripp, C.S., S.F. Wolf, and E.R. Unanue. 1993. Interleukin
12 and tumor necrosis factor a are costimulators of interferon
g production by natural killer cells in severe combined im-
munodeficiency mice with listeriosis, and interleukin 10 is a
physiologic antagonist. Proc. Natl. Acad. Sci. USA. 90:3725–
3729.

24. D’Andrea, A., M. Aste-Amezaga, X. Ma, M. Kubin, and G.
Trinchieri. 1993. Interleukin 10 (IL-10) inhibits human lym-
phocyte interferon g-production by suppressing natural killer
cell stimulatory factor/IL-12 synthesis in accessory cells. J.
Exp. Med. 178:1041–1048.

25. Yamasaki, K., T. Taga, Y. Hirata, H. Yawata, Y. Kawanishi, B.
See, T. Tanaiguchi, T. Hirano, and T. Kishimoto. 1988. Clon-
ing and expression of human interleukin-6. Science (Wash.
DC). 241:825–828.

26. Taga, T., M. Hibi, Y. Hirata, K. Yamasaki, K. Yasukawa, T.
Matsuda, T. Hirano, and T. Kishimoto. 1989. Interleukin-6
triggers the association of its receptor with a possible signal
transducer, gp 130. Cell. 58:573–581.

27. Hibi, M., M. Murakami, M. Saito, T. Hirano, T. Taga, and
T. Kishimoto. 1990. Molecular cloning and expression of an
IL-6 signal transducer, gp 130. Cell. 63:1149–1157.

28. Gearing, D.P., M.R. Comeau, D.J. Friend, S.D. Gimpel,
C.J. Thut, J. McGourty, K.K. Brasher, J.A. King, S. Gillis, B.
Mosley, S.F. Ziegler, and D. Cosman. 1992. The IL-6 signal
transducer, gp 130: an oncostatin M receptor and affinity
converter for the LIF receptor. Science (Wash. DC). 255:
1434–1437.

29. Taga, T., M. Narazaki, K. Yasukawa, T. Saito, D. Miki, M.
Hamaguchi, S. Davis, M. Shoyab, G.D. Yancopoulos, and T.

Medicine, PO Box 208011, New Haven, CT 06520-8011. M. Rincón’s present address is the University of
Vermont, Department of Medicine, Given Medical Bldg., Burlington, VT.

Received for publication 30 October 1996 and in revised form 21 November 1996.



469 Rincón et al.

Kishimoto. 1992. Functional inhibition of hematopoietic and
neurotrophic cytokines by blocking the interleukin-6 signal
transducer gp 130. Proc. Natl. Acad. Sci. USA. 89:10998–
11001.

30. Yin, T., T. Taga, M.L.-S. Tsang, T. Yasukawa, T. Kishimoto,
and Y.-C. Yang. 1993. Involvement of interleukin-6 signal
transducer gp 130 in interleukin-11–mediated signal trans-
duction. J. Immunol. 151:2555–2561.

31. Coulie, P.G., M. Stevens, and J. Van Snick. 1989. High and
low affinity receptors for murine interleukin 6. Distinct dis-
tribution on B and T cells. Eur. J. Immunol. 19:2107–2114.

32. Kopf, M., H. Baumann, G. Freer, M. Freudenberg, M. Lam-
ers, T. Kishimoto, R. Zinkernagel, H. Bluethmann, and G.
Köhler. 1994. Impaired immune and acute-phase responses
in interleukin-6–deficient mice. Nature (Lond.). 368:339–342.

33. Poli, V., R. Balena, E. Fattori, A. Markatos, M. Yamamoto,
H. Tanaka, G. Ciliberto, G.A. Rodan, and F. Constantini. 1994.
Interleukin-6 deficient mice are protected from bone loss
caused by estrogen depletion. EMBO (Eur. Mol. Biol. Organ.)
J. 13:1189–1196.

34. Dalrymple, S.A., L.A. Lucian, R. Slattery, T. McNeil, D.M.
Aud, S. Fuchino, F. Lee, and R. Murray. 1995. Interleukin-6–
deficient mice are highly susceptible to Listeria monocytogenes
infection: correlation with inefficient neutrophilia. Infect. Im-
mun. 63:2262–2268.

35. Romani, L., A. Mencacci, E. Cenci, R. Spaccapelo, C. To-
niatti, P. Puccetti, F. Bistoni, and V. Poli. 1996. Impaired
neutrophil response and CD41 T helper cell 1 development
in interleukin 6–deficient mice infected with Candida albicans.
J. Exp. Med. 183:1345–1355.

36. Bruhn, K.W., K. Nelms, J.L. Boulay, W.E. Paul, and M.J.
Lenardo. 1993. Molecular dissection of the mouse interleu-
kin-4 promoter. Proc. Natl. Acad. Sci. USA. 90:9707–9711.

37. Chuvpilo, S., C. Schomberg, R. Gerwing, A. Heinfling, R.
Reeves, F. Grummt, and E. Serfling. 1993. Multiple closely-
linked NFAT/octamer and HMG I(Y) binding sites are part
of interleukin-4 promoter. Nucleic Acids Res. 21:5694–5704.

38. Szabo, S.J., J.S. Gold, T.L. Murphy, and K.M. Murphy.
1993. Identification of cis-acting regulatory elements control-
ling interleukin-4 gene expression in T cells: roles for NF-Y
and NF-ATc. Mol. Cell Biol. 13:4793–4805.

39. Todd, M.D., M.J. Grusby, J.A. Lederer, E. Lacy, A.H. Licht-
man, and L.H. Glimcher. 1993. Transcription of interleukin-4
gene is regulated by multiple promoter elements. J. Exp.

Med. 177:1663–1674.
40. Boise, L.H., B. Petrynyak, X. Mao, C.H. June, C.-Y. Wang,

T. Lindsten, R. Bravo, K. Kovary, J.M. Leiden, and C.B.
Thompson. 1993. The NFAT-1 DNA binding complex in
activated T cells contains Fra-1 and JunB. Mol. Cell Biol. 13:
1911–1919.

41. Jain, J., P.G. McCaffrey, V.E. Valge-Archer, and A. Rao. 1992.
Nuclear factor of activated T cells contains Fos and Jun. Na-
ture (Lond.). 356:801–804.

42. Northrop, J.P., K.S. Ullman, and G.R. Crabtree. 1993. Charac-
terization of nuclear and cytoplasmic components of the lym-
phoid-specific nuclear factor of activated T cells (NF-AT). J.
Biol. Chem. 268:2917–2923.

43. Rooney, J.W., T. Hoey, and L.H. Glimcher. 1995. Coordi-
nate and cooperative roles for NFAT and AP-1 in the regula-
tion of murine IL-4 gene. Immunity. 2:473–483.

44. Davydov, I.V., P.H. Krammer, and M. Li-Weber. 1995. Nu-
clear factor–IL-6 activates the human IL-4 promoter in T cells.
J. Immunol. 155:5273–5279.

45. Akira, S., H. Issihiki, T. Sugita, O. Tanabe, S. Kinoshita, Y.
Nishio, T. Nakajima, T. Hirano, and T. Kishimoto. 1990. A
nuclear factor for IL-6 expression (NF-IL6) is a member of a
C/EBP family. EMBO (Eur. Mol. Biol. Organ.) J. 9:1897–
1906.

46. Cao, Z., R.M. Umek, and S.L. McKnight. 1991. Regulated
expression of three C/EBP isoforms during adipose conver-
sion of 3T3-L1 cells. Genes Dev. 5:1538–1552.

47. Chang, C.J., T.T. Chen, H.Y. Lei, D.S. Chen, and S.C. Lee.
1990. Molecular cloning of a transcription factor, AGP/EBP,
that belongs to members of the C/EBP family. Mol. Cell Biol.
10:6642–6653.

48. Descombes, P., M. Chojkier, S. Lichtsteiner, E. Falvey, and
U. Schibler. 1990. LAP, a novel member of C/EBP gene fam-
ily, encodes a liver-enriched transcriptional activator protein.
Genes Dev. 4:1541–1551.

49. Poli, V., F.P. Mancini, and R. Cortese. 1990. IL-6DBP, a
nuclear protein involved in interleukin-6 signal transduction,
defines a new family of leucine zipper proteins related to
C/EBP. Cell. 63:643–653.

50. Nakajima, T., S. Kinoshita, T. Sasagawa, K. Sasaki, M.
Naruto, T. Kishimoto, and S. Akira. 1993. Phosphorylation
at threonine-235 by a ras-dependent mitogen-activated pro-
tein kinase cascade is essential for transcription factor NF-IL6.
Proc. Natl. Acad. Sci. USA. 90:2207–2211.


