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Purpose: Todevelopdeep learningmodels basedon color fundusphotographs that can
automatically grade myopic maculopathy, diagnose pathologic myopia, and identify
and segment myopia-related lesions.

Methods: Photographswere graded and annotated by four ophthalmologists andwere
then divided into a high-consistency subgroup or a low-consistency subgroup accord-
ing to the consistency between the results of the graders. ResNet-50 network was used
to develop the classificationmodel, and DeepLabv3+ network was used to develop the
segmentation model for lesion identification. The two models were then combined to
develop the classification-and-segmentation–based co-decision model.

Results: This study included 1395 color fundus photographs from 895 patients.
The grading accuracy of the co-decision model was 0.9370, and the quadratic-
weighted κ coefficient was 0.9651; the co-decision model achieved an area under the
receiver operating characteristic curve of 0.9980 in diagnosing pathologic myopia. The
photograph-level F1 values of the segmentation model identifying optic disc, peripap-
illary atrophy, diffuse atrophy, patchy atrophy, and macular atrophy were all >0.95; the
pixel-level F1 values for segmenting optic disc andperipapillary atrophywere both>0.9;
the pixel-level F1 values for segmenting diffuse atrophy, patchy atrophy, and macular
atrophy were all >0.8; and the photograph-level recall/sensitivity for detecting lacquer
cracks was 0.9230.

Conclusions: The models could accurately and automatically grade myopic maculopa-
thy, diagnose pathologic myopia, and identify and monitor progression of the lesions.

Translational Relevance: The models can potentially help with the diagnosis, screen-
ing, and follow-up for pathologic myopic in clinical practice.
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Introduction

Myopia is a serious public health burden, especially
in East and Southeast Asia, where the prevalence of
myopia among young individuals has reached 80%
to 90% in some areas.1 Due to an earlier onset age
and faster rate of myopic progression, the prevalence
of high myopia has reached 10% to 20% in young
adults,1,2 further increasing the risk and prevalence of
pathologic myopia (PM) or myopic maculopathy.3,4 As
early as the beginning of the 21st century, PM had
become one of the main causes of blindness and low
vision in East Asia.5–7 Thus, PM is now a significant
public health concern; consequently, screening, regular
follow-up, and monitoring for progression of PM are
in critical needs.

With the recent rapid development of artificial
intelligence (AI), particularly in deep learning, AI is
increasingly being applied in various healthcare disci-
plines, especially in fields such as ophthalmology where
medical image assessment plays a key role.8,9 For
example, in 2018, the U.S. Food and Drug Adminis-
tration approved the world’s first AI-based automated
screening system for detection of referral-warranted
diabetic retinopathy (IDx-DR), which demonstrated
diagnostic sensitivity and specificity values of 87.2%
and 90.7%, respectively.10 In terms of the automatic
diagnosis of PM, there has also been some progress.
Liu et al.11 developed a system (PAMELA) to detect
PM in color fundus photographs through the detection
of peripapillary atrophy. Zhang et al.12 used multiple
kernel learning methods and proposed an AI diagno-
sis framework (PM-BMII) for the detection of PM.
The framework uses a combination of heterogeneous
biomedical information including fundus images and
demographic, clinical, and genotyping information as
its input data.12 In 2019, the organizer of the Inter-
national Symposium on Biomedical Imaging issued a
challenge to train an AI model on a specified color
fundus images dataset in order to (1) classify images as
showing PM or non-PM, (2) locate the fovea, and (3)
detect and segment the optic disc, patchy atrophy, and
retinal detachment. Liu13 developed a diagnostic assist

system for the detection of myopic maculopathy that
consisted of two levels of networks. The first network
level was used to distinguish normal fundus images
from myopic maculopathy images, and the second
level of network further classified myopic maculopa-
thy images into those with a tessellated fundus and
those with atrophic lesions. However, to the best of our
knowledge, there is currently no AI model that actually
classifies or grades myopic maculopathy and segments
the relevant lesions based on the latest and widely
recognized grading system proposed by the META-
PM (meta-analyses of pathologic myopia) study group
in 2015.14

Therefore, in order to more precisely and automat-
ically assess myopic maculopathy, including the deter-
mination of the stage of disease and quantification of
the number and area of relevant lesions, our research
aimed to develop an AI-based automated classification
and lesion segmentation system for myopic maculopa-
thy using color fundus photographs in accordance with
META-PM study group diagnostic criteria.

Methods

Participants
This research was approved by the Institutional

Review Board of the Peking Union Medical College
Hospital (PUMCH), Beijing, China. The research
was conducted in accordance with the tenets of the
Declaration of Helsinki. As this research involved
retrospective medical record reviews with no more
than minimal risk to participants, it met all require-
ments for a waiver of informed consent per institu-
tional policy. This research includes images collected
from patients who presented to the outpatient clinic
of PUMCH from July 2016 to December 2019 and
the outpatient clinic of Beijing Tongren Hospital
from January 2011 to December 2018. The inclusion
criteria were clinical diagnosis of myopia (spher-
ical equivalent ≤ −0.5D) and the availability of
macula-centered 45° color fundus photographs. Exclu-
sion criteria were previous ocular surgery history,
systemic diseases with ocular involvement, and
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any concurrent retinal diseases aside from myopic
maculopathy, including diabetic retinopathy, age-
related macular degeneration, retinal vein occlusion,
retinal artery occlusion, central serous chorioretinopa-
thy, and glaucoma. All color fundus photographs
were obtained by trained clinical faculty using a Kowa
Nonmyd WX-3D retinal camera (Kowa Company
Ltd., Nagoya, Japan) with a resolution of 2144 ×
1424 pixels, Topcon TRC-50DX retinal fundus camera
(Topcon, Tokyo, Japan) with a resolution of 1383
× 1182 to 2830 × 2410 pixels, or a Canon CR-DGi
non-mydriatic fundus camera (Canon Inc., Tokyo,
Japan) with a resolution of 1924 × 1556 pixels. All
identifying information for the patients was discarded.

Definition of Myopic Maculopathy

Myopic maculopathy was defined according to
the META-PM study group.14 This classification
system defines five categories of myopic maculopa-
thy: no myopic retinal degenerative lesion (category
0), tessellated fundus (category 1), diffuse chorioretinal
atrophy (category 2), extramacular patchy chorioreti-
nal atrophy (or simply “patchy atrophy,” category 3),
and macular patchy chorioretinal atrophy (or simply
“macular atrophy,” category 4), as well as three kinds
of “plus” lesions: lacquer cracks, myopic choroidal
neovascularization (CNV), and Fuchs spots. Eyes of
category 2 or greater, or with “plus” lesions, are classi-
fied as PM.14

Development of the Models

In this research, four ophthalmologists, who were
all ophthalmological residents of our hospital inter-
ested in research into retinal diseases, were recruited
to grade the images. Each ophthalmologist was
randomly assigned 50 images after being trained on a
standardized grading protocol, which included typical
color fundus photographs of each grade of myopic
maculopathy and “plus” lesions. Their grading results
were compared with those of an experienced attend-
ing retinal ophthalmologist (Z.Y.). Only those who
achieved a quadratic-weighted κ ≥ 0.75 for classifying
the five grades of myopic maculopathy were allowed to
serve as graders for this research. All four ophthalmol-
ogists met this criterion after one or two attempts.

Color fundus photographs were randomly assigned
to each ophthalmologist after anonymization, and an
online grading platform was used to grade the images.
Each image was graded by at least two ophthalmol-
ogists independently. For any image, if the grading
results given by all ophthalmologists were consistent,
then the image was included in the high-consistency
subgroup. If there were differences in the grading
results for an image, then the ophthalmologists partic-

ipating in the grading would discuss the case together
in an attempt to adjudicate to a final consensus grading
result for the image. If consensus could not be achieved,
then the senior ophthalmologist (Z.Y.) would deter-
mine the final result. In such a situation, the image
was still included in the high-consistency subgroup.
However, if the senior ophthalmologist was uncertain
and could not determine a final single grade, the results
from both primary graders were retained, and the
image was included in the low-consistency subgroup.
The images in the high-consistency subgroup were
stratified randomly and divided into a training set,
validation set, or test set according to the grades. The
distribution of the images in the training set, valida-
tion set, and test set was approximately 60%, 20%,
and 20%. Also, considering that the quantity of data
might be relatively small, a fivefold cross-validation was
conducted to evaluate the generalization ability of the
model. In the fivefold cross-validation, the images in the
high-consistency subgroup were stratified randomly
divided into five folds. Four folds were selected as the
training set, and the other one was selected as the test
set each time.

In addition to the primary maculopathy grade, the
ophthalmologists were also required to locate or delin-
eate the following structures and lesions: (1) fovea, the
location of which was defined as the geometric center
of it (Supplementary Fig. S1); (2) optic disc (Supple-
mentary Fig. S1); (3) peripapillary atrophy, the outline
of which was defined as the outline of its β zone +
γ zone (Supplementary Fig. S1); (4) diffuse atrophy
(Supplementary Fig. S2), patchy atrophy (Supplemen-
tary Fig. S3), and macular atrophy (Supplementary
Fig. S4); (5) lacquer cracks (Supplementary Fig. S5);
and (6) myopic CNV and Fuchs spots. We did not
distinguish between the two lesions in this study,
because Fuchs spots are essentially formed by the
proliferation of retinal pigment epithelium around
CNV, and they are similar in appearance (for an
example, see Supplementary Fig. S6). In some cases,
peripapillary atrophy might fuse with patchy atrophy
or macular atrophy, in which case the boundaries
between them were presumed by the ophthalmologists
according to the trend of the outlines near the fusion
area (Supplementary Fig. S7). To provide an indirect
measure of the amount of tilt of the disk, the ovality
index (the ratio of the minor axis to the major axis
of the optic disc), as previously described,15–17 was
calculated automatically by the grading platform after
segmentation by the grader.

Two basic models were developed: the five-category
classification model and the segmentation model.
Three convolutional neural networks (CNNs), includ-
ing ResNet-50, ResNext-50, and WideResNet-50,
were compared in the development of the classification
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algorithm, which could automatically grade the images.
Other CNNs, such as AlexNet18 and VGG,19 were
proposed earlier, in 2012 and 2014, respectively. Event-
ually, ResNet-5020 was chosen to be used to develop
the classification algorithm according to the compari-
son results in the pretest (see Table 4). Another CNN,
DeepLabv3+,21 was used to develop the segmenta-
tion algorithm, which could detect and segment the
fovea, optic disc, peripapillary atrophy, diffuse atrophy,
patchy atrophy, macular atrophy, and lacquer cracks.
The two models were both developed based on the
training set and validation set and were evaluated on
the test set, as well as on the low-consistency subgroup.
Data augmentation algorithms included random
rotation, random cropping, random inversion, random
contrast variation, random brightness variation, and
random saturation variation. Images were then down-
sized to a resolution of 224 × 224 pixels for the train-
ing, validation, and testing of the classification model
or to a resolution of 512 × 512 pixels for the training,
validation, and testing of the segmentation model.

All experiments were run with PyTorch. For
ResNet-50 pretrained on ImageNet, stochastic gradi-
ent descent (SGD) was used for training, with a
momentum of 0.9 and a weight decay of 0.0005. The
initial learning rate was empirically set to 0.001. The
training strategy was that, if the validation set was not
improved in three times, then the learning rate would
be reduced to 0.1 times the original. The lowest learn-
ing rate was set to 0.00001. The loss function used the
cross-entropy loss function. In the validation set, if the
accuracy was not improved for 10 consecutive times,
then the best model would be saved. In each epoch, the
batch size was set to 32. For the segmentation model
DeepLabV3+, the optimizer used SGD. The learning
rate was set to 0.01, the momentum of the optimizer
was set to 0.95, and the weight decay was 0.0001. The
training strategy was the same as ResNet-50. The loss
function used the dice loss function. The batch size was
set to 8.

In order to further improve the accuracy of the
grading results of the system, we then developed
a classification-and-segmentation–based co-decision
model. In the co-decisionmodel, a four-category classi-
fication model was first developed. Because patchy
atrophy and macular atrophy are morphologically
similar and only differ in their location (the former does
not involve the fovea and the latter involves the fovea),
we combined them into one category to reduce the five
categories into a four-category classificationmodel.We
then amended the results of the four-category classi-
fication model based on the results of the segmenta-
tion model. The amendment strategies were as follows:
(1) If the segmentation model did not detect diffuse
atrophy but the result of the four-category classifica-

tion model was diffuse atrophy, then the final result was
downgraded to tessellated fundus. (2) If the segmenta-
tion model did not detect patchy atrophy or macular
atrophy but the result of the four-category classifica-
tion model was patchy atrophy and macular atrophy,
then the final result was downgraded to diffuse atrophy.
(3)When the four-category classificationmodel and the
segmentation model both detected patchy atrophy and
macular atrophy and if the fovea was located within
the atrophic lesion, then the final result was classified
as macular atrophy. If the fovea was not located within
the atrophic lesion, then the final result was graded as
patchy atrophy. The accuracy of the co-decision model
was also tested on the test set and the low-consistency
subgroup.

The co-decision model was transformed into a
binary classification model to diagnose pathologic
myopia. In the raw results of the four-category classi-
fication model, the probabilities of category 0 and
category 1were added together, and the probabilities of
category 2 and categories 3 and 4 were added together.
(If the result was amended according to amendment
strategy 1 or 2, then the probability was set to 1
artificially.) If the sum probability of category 2 and
categories 3 and 4 was larger than 0.5, then the image
was classified as pathologic myopia.

Statistical Analyses

A confusion matrix was used to visualize and
compare the grading results of the ophthalmolo-
gists and the classification model. The accuracy and
quadratic-weighted κ were used to evaluate the grading
accuracy of the algorithms. The precision, recall, F1
value (the harmonic mean of precision and recall), and
intersection over union (IOU) were calculated to evalu-
ate the segmentation accuracy.Moreover, the results of
the segmentation model were evaluated at the image
level and pixel level. Image level refers to the evalua-
tion of the results according to whether a certain type
of lesion/region (for example, diffuse atrophy) of an
image was identified by the model. Pixel level refers to
the evaluation of the results according to the consis-
tency of the pixels in the delineated lesion/region of
the image between the segmentation model and the
ophthalmologists. The sensitivity, specificity, Youden
index, and area under the receiver operating character-
istic curve (AUC) were used to evaluate the diagnos-
tic accuracy for PM classification by the system. For
analyses related to the segmentation model, the means
and standard deviations (SDs) of three test results were
calculated. For other analyses, 95% confidence inter-
vals (CIs) were calculated. SPSS Statistics 26.0 (IBM,
Armonk, NY) was used for the statistical analyses.
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Results

This study included 1395 color fundus photographs
and 895 patients; 1094 images of 604 patients were
obtained from PUMCH, and 301 images of 291
patients were obtained from Beijing Tongren Hospi-
tal. The high-consistency subgroup included 1203
images, and 192 images were included in the low-
consistency subgroup. The detailed characteristics of
the high-consistency subgroup and the low-consistency
subgroup are shown inTable 1 andTable 2, respectively.

The confusion matrix according to the test results
for the basic five-category classification model on the
test set is shown in Figure 1. The grading accuracy
was 0.9076 (95% CI, 0.8616–0.9399). The quadratic-
weighted κ was 0.9324 (95% CI, 0.8444–1.0000). The
sensitivity, specificity, and their 95% CIs for each

Table 1. Number of Images for Each Pathologic
Myopia Category in the High-Consistency Subgroup

Category Training Set Validation Set Test Set Total

0 86 28 28 142
1 273 91 90 454
2 267 87 88 442
3 74 24 24 122
4 27 8 8 43
Total 727 238 238 1203

Table 2. Classification of Pathologic Myopia Category
in the Low-Consistency Subgroup

Dilemmatic Grades Number

Categories 0 and 1 80
Categories 1 and 2 80
Categories 2 and 3 21
Categories 3 and 4 11
Total 192

Figure 1. Confusion matrix according to the results of the basic
five-category classification model on the test set. Ground truth
represents the results of the ophthalmologists, andprediction repre-
sents the results of the model.

category are reported in Table 3. Beforehand, the three
different CNNs were compared in a pretest, and the
comparison results are shown in Table 4. The data
distribution for the fivefold cross-validation is shown in
Supplementary Table S1, and the grading accuracy of
the fivefold cross-validation is shown in Supplementary
Table S2. The mean accuracy was 0.9119 ± 0.0093.

The results for the location of the fovea for each
grade are shown inTable 5.Notice that in the low-grade
images the location of the fovea as determined by the
model was very close to the human grader–determined
location. As the PM category increased, there were
a few images where the model could not locate the
fovea (for an example, see Supplementary Fig. S8),
and overall the average deviation distance between
the model and the human ground truth increased.
The results of the segmentation model delineating

Table 3. Sensitivity, Specificity, and 95% CIs for Each Category of the Five-Category Classification Model for the
Test Set

Category

0 1 2 3 4

Sensitivity (95% CI) 0.9286 (0.7504–0.9875) 0.9778 (0.9144–0.9961) 0.8977 (0.8101–0.9493) 0.7917 (0.5729–0.9206) 0.5000 (0.1745–0.8255)
Specificity (95% CI) 0.9952 (0.9697–0.9998) 0.9459 (0.8927–0.9746) 0.9667 (0.9199–0.9877) 0.9766 (0.9433–0.9914) 0.9870 (0.9592–0.9966)

Table 4. Comparison Results of ResNet-50, ResNext-50, and WideResNet-50 in the Pretest

Network ResNet-50 ResNext-50 WideResNet-50

Accuracy (95% CI) 0.9055 (0.8763–0.9341) 0.8992 (0.8664–0.9320) 0.8634 (0.8209–0.9059)
Quadratic-weighted κ (95% CI) 0.9307 (0.8988–0.9626) 0.9235 (0.8893–0.9577) 0.9029 (0.8696–0.9362)
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Table 5. Location of Fovea for Each Pathologic Myopia Category
Category

0 1 2 3 4

Number of images with missing location for the
fovea/total number of images ± SD

0/28 ± 0.0 0/90 ± 0.0 2.3/88 ± 0.9 3.7/24 ± 0.5 3.0/8 ± 1.4

Average Euclidean distance (in pixels)a between automated
and manually determined location ± SD

3.02 ± 0.44 3.49 ± 0.07 8.72 ± 0.82 23.28 ± 2.88 26.98 ± 5.03

aImage size: 512 × 512 pixels.

Table 6. Results of the Segmentation Model
Pixel Level ± SD Image Level ± SD

Precision Recall F1 IOU Precision Recall F1

Optic disc 0.9272 ± 0.0042 0.9661 ± 0.0033 0.9462 ± 0.0007 0.8979 ± 0.0012 1.0000 ± 0.0 1.0000 ± 0.0 1.0000 ± 0.0
Peripapillary atrophy 0.9029 ± 0.0099 0.8973 ± 0.0038 0.9001 ± 0.0040 0.8184 ± 0.0066 0.9576 ± 0.0047 1.0000 ± 0.0 0.9783 ± 0.0024
Lacquer cracks 0.2912 ± 0.0572 0.2006 ± 0.0031 0.2375 ± 0.0224 0.1370 ± 0.0141 0.4662 ± 0.1106 0.9230 ± 0.1332 0.6156 ± 0.0719
Diffuse atrophy 0.8876 ± 0.0148 0.8738 ± 0.0134 0.8808 ± 0.0141 0.7870 ± 0.0220 0.9600 ± 0.0088 1.0000 ± 0.0 0.9795 ± 0.0046
Patchy atrophy and macular atrophy 0.7598 ± 0.0236 0.8530 ± 0.0137 0.8036 ± 0.0167 0.6717 ± 0.0229 0.9150 ± 0.0301 1.0000 ± 0.0 0.9555 ± 0.0165

Figure 2. Segmentation results of a sample image. The results of the model are shown in the upper row, indicated by the area delineated
with the blue line, and themanual annotation results are shown in the bottom row, with the green line delineating the segmented area. From
left to right: optic disc, peripapillary atrophy, diffuse atrophy, patchy atrophy, and macular atrophy. Note that the model could distinguish
the fused macular atrophy and peripapillary atrophy in the image.

Figure 3. A sample image showing detection and segmentation
of lacquer cracks. (Left) segmentation model results with the blue
line delineating the segmentation. (Right) Manual annotation results
with the green line delineating the segmentation.

the optic disc, peripapillary atrophy, lacquer cracks,
diffuse atrophy, patchy atrophy, and macular atrophy
are shown in Table 6, Figure 2, and Figure 3. Patchy
atrophy and macular atrophy are combined and
considered as one type of lesion in the analysis based
on their similar morphology. Subsequently, these two
categories of atrophy were distinguished according
to the presence of foveal involvement as previously
described. As for CNV and Fuchs spots, the segmen-
tation model could not identify them accurately, with
the precision and the recall both being zero, at the pixel
level or image level. The average ovality indices of each
grade calculated according to the segmentation model
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Table 7. Average Ovality Index for Each Pathologic Myopia Category

Ovality Index by Category

0 1 2 3 4

Segmentation model, average ± SD 0.8089 ± 0.0035 0.8043 ± 0.0019 0.7356 ± 0.0018 0.7191 ± 0.0028 0.7797 ± 0.0082
Ophthalmologists, average 0.8124 0.7957 0.7160 0.6979 0.7523

Table 8. Average Area (in Pixels)a of Peripapillary Atrophy for Each Pathologic Myopia Category

Area by Category

0 1 2 3 4

Segmentation model, average ± SD 1162 ± 79 1923 ± 21 11,235 ± 165 30,736 ± 199 23,505 ± 2137
Ophthalmologists, average 1235 2009 11,227 33,666 22,980

aImage size: 512 × 512 pixels.

and based on the graders are shown in Table 7. The
average areas of peripapillary atrophy for each PM
category are shown in Table 8.

The confusionmatrix according to the test results of
the classification-and-segmentation–based co-decision
model from the test set is shown in Figure 4. The
grading accuracy was 0.9370 (95% CI, 0.8961–0.9631).
The quadratic-weighted κ was 0.9651 (95%CI, 0.9479–
0.9824). The receiver operating characteristic (ROC)
curve for the diagnosis of PM for the co-decisionmodel
is shown in Figure 5. The AUC was 0.9980 (95% CI,
0.9954–1.0000), the sensitivity was 0.9667 (95% CI,
0.9117–0.9893), and the specificity was 0.9915 (95%CI,
0.9468–0.9996). The Youden index was 0.9582.

Figure 4. Confusion matrix according to the results of the
classification-and-segmentation–based co-decision model on the
test set. Ground truth represents the results of the ophthalmologists,
and prediction represents the results of the model.

Figure 5. ROC curve for the diagnosis of PM of the co-decision
model.

Table 9. Test Results of the Co-Decision Model for the
Low-Consistency Subgroup

Dilemmatic Grades Number Test Results Number

Categories 0 and 1 80 Category 0 46
Category 1 34

Categories 1 and 2 80 Category 1 36
Category 2 44

Categories 2 and 3 21 Category 2 17
Category 3 4

Categories 3 and 4 11 Category 3 3
Category 4 8

The two columns on the left are the grading results given
by the ophthalmologists, and the two columns on the right
are the grading results of the model.
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The test result of the co-decision model for the
low-consistency subgroup is shown in Table 9. Notice
that, for any image, the grading result generated by the
model falls within the range of the discrepant grades
given by the ophthalmologists, which implies that the
grading accuracy of the model was 1.0000 (95% CI,
0.9756–1.0000) for the low-consistency subgroup.

Discussion

In summary, our study demonstrated good accuracy
for the categorization of pathologic myopia and the
segmentation of pathologic myopic features using a
deep learning model. Models such as the one described
in this paper may prove valuable for clinical screening
of PM and monitoring the progression of the disease.
A significant advance of our project compared to previ-
ous studies is that our system not only classifies the
myopic maculopathy according to the latest interna-
tionally accepted grading system but also segments the
myopic lesions, which may further enhance the preci-
sion of the monitoring of disease progression. The
two networks, ResNet-50 and DeepLabV3+, that we
used to develop models have been widely used in other
ophthalmological AI research.22–24

The 1395 color fundus photographs used in the
present study were divided into a high-consistency
subgroup and a low-consistency subgroup according
to the consistency among the graders. The images of
the low-consistency subgroup accounted for 13.8% of
total images. We utilized two subgroups in order to
provide a group of images with a high level of confi-
dence to provide a reliable ground truth to train the
model while at the same time providing a group of
indeterminate cases that reflected the challenging cases
and diagnoses that may be presented in real-world
clinical practice. Such challenging cases were called
questionable according to theMETA-PM study group.
For example, a questionable category 0 or category
1 existed when choroidal vessels could be observed
around the arcade vessels but not in the macula.14
Specifically, when evaluating the reproducibility of the
grading system, the META-PM study group used a
dataset consisting of 100 myopic maculopathy images,
of which 10% were classified as questionable images.
Considering that the META-PM dataset did not
contain images of category 0, the 13.8% proportion of
low-consistency cases in our study would seem to be
acceptable.

The use of three different fundus cameras in obtain-
ing fundus photographs could help reduce overfitting.
Also, the original resolutions of the three cameras were

different and large, and they required more computing
resources. Therefore, the resolutions were downsized to
224 × 224 pixels for the classification model and 512 ×
512 pixels for the segmentation model. The two sizes
were appropriate for completing the network train-
ing while occupying fewer computing resources and
preserving the features and details of the images to
some extent.25,26 Data augmentation was used in the
training stages to simulate the uncertainty in the image
acquisition process by means of giving the augmented
image the same label as the original image.

In reviewing the test results, the co-decision
model demonstrated a better classification ability
than the basic classification model, especially for
high-grade/category images. Due to the morphologic
similarities between patchy atrophy and macular
atrophy, we anticipated that a basic classification
model would have difficulty distinguishing between
them (Fig. 1). After adding information regarding the
location of the fovea with respect to the atrophy based
on the segmentation model (amendment strategy 3),
the classification ability was significantly improved in
the co-decision model. In addition, because of the high
recall/sensitivity (1.0000) of the segmentation model
in detecting atrophic lesions (Table 6), the co-decision
model also amended possible false-positive results that
appeared in the four-category classification model
(amendment strategy 1 and 2). In terms of diagnosing
PM, the co-decision model achieved a good AUC
(>0.99), sensitivity (>0.96), and specificity (>0.99).
If the model is applied to a screening scenario where
the sensitivity must be high, then we could achieve this
by adjusting the probability threshold of diagnosis
or the position on the ROC curve: for example, for a
sensitivity of 1.0000, the specificity was 0.9237. For the
low-consistency subgroup, all images were correctly
classified by the co-decision model, which means that
the classification result of the model for each image
fell into one of the two adjacent grades labeled by the
ophthalmologists. This indicates that when classifying
questionable images that cannot be distinguished with
certainty between two dilemmatic grades, the decision-
making capability of the co-decision model is similar
to that of the ophthalmologists.

The performance of the segmentation model was
satisfactory for the detection and segmentation of the
optic disc, peripapillary atrophy, and atrophic lesions,
for which the image-level F1 values were all >0.95. The
pixel-level F1 values for segmentation of the optic disc
and peripapillary atrophy were both >0.9 and were all
>0.8 for the segmentation of the atrophic lesions. In
terms of evaluating the tilting of the optic disc, the
average optic disc ovality index for each PM category
for the segmentation model was close to that of the
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ophthalmologists, as shown in Table 7. In addition,
the average area of the peripapillary atrophy for each
PM category for the segmentationmodel was also close
to that of the ophthalmologists, as shown in Table 8.
Increasing optic disc tilt and peripapillary atrophy area
may be a reflection of increasing severity of progres-
sion of myopia. Metrics such as these may allow the
progression of PM to be monitored in a quantitative
fashion.

Among the three plus lesions, Xu et al.27 reported
a detection rate of lacquer cracks on color fundus
photographs of 98%. Although the lacquer crack itself
has little effect on the vision, it often progresses to
patchy atrophy or myopic CNV in the future.28,29
Therefore, it is important to detect lacquer cracks
on color fundus photographs for risk prognostica-
tion. In this study, the image-level recall/sensitivity for
the segmentation model to detect lacquer cracks was
0.9230, indicating that the model had a good ability
to detect lacquer cracks. On the other hand, because
lacquer cracks are linear lesions with an inhomoge-
neous distribution, it was relatively difficult for human
graders to delineate their outlines accurately in the
images, thus influencing the effectiveness of the train-
ing of the model, which could explain the low pixel-
level results of the model (Fig. 3).

Myopic CNV is one of the most serious compli-
cations of PM and often leads to a sudden onset of
decline in central vision.30 Our segmentation model,
however, could not accurately detect CNV or Fuchs
spots, which might be related to the small number
of CNV and Fuchs spots included in the dataset
(23 images). On the other hand, although myopic
CNV can appear as a gray–green membrane in color
fundus images, imaging methods such as fluorescein
fundus angiography and optical coherence tomogra-
phy (OCT) are still necessary to confirm the diagnosis
in clinical practice.31–33 New imaging methods such as
OCT angiography are also very useful in the diagnosis
of myopic CNV.34,35 Diagnosis through color fundus
images alone often leads to misdiagnoses or missed
diagnoses in clinical practice.31 Therefore, it may be
more feasible to use other imaging information such
as OCT images as training sources for such classifica-
tions.36

This research has are several limitations. First,
although the co-decision model has greatly improved
the ability to classify the high-category images, the
quantity of the data, especially the high-category
images and plus lesions in this study, was relatively
small, which might lead to overfitting and reduce
the generalization ability of the model. Therefore,
we conducted a fivefold cross-validation to evaluate
the generalization ability of the model. As shown

in Supplementary Table S2, the five test results of
the fivefold cross-validation fluctuated within a small
range, which proved that the model did not overfit
in the current dataset to some extent. In a recent
study that included 226,686 color fundus images, an
AUC of 0.969 for the diagnosis of pathologic myopia
was obtained.37 Second, there was not an external
test dataset in this research. However, as previously
mentioned, one of the advantages of our research
was that we developed a segmentation model that
could help improve the classification accuracy of the
system. For this reason, although it would be better to
include an external test dataset, it was difficult to find
an external dataset for which the images were delin-
eated in the same detail as ours to test the segmen-
tation model or the co-decision model. Third, we did
not collect additional data such as the axial length
of each patient or other imaging data such as OCT.
If OCT had been included to quantitatively evaluate
optic disc tilt or to measure the axial length, then
the accuracy of the model would likely have been
further improved. Fourth, for the peripapillary atrophy,
we delineated only the outline of the β zone + γ

zone and did not annotate each zone distinctly.38 For
the stage of tessellated fundus, the model lacks effec-
tive indicators to describe its progress. Yan et al.39
proposed a method for further subclassifying a tessel-
lated fundus which could be incorporated into future
models.

In conclusion, deep learning models based on color
fundus photographs could accurately and automat-
ically diagnose and classify myopic maculopathy
and quantify peripapillary atrophy, atrophic lesions,
lacquer cracks, and optic disk tilting. Automated tools
such as these may prove to be useful in screening
programs for pathologic myopic and in monitoring
disease progression over time.
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