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Abstract

Single-cell sequencing data has transformed the understanding of biological heterogeneity. 

While many flavors of single-cell sequencing have been developed, single-cell RNA sequencing 

(scRNA-seq) is currently the most prolific form in published literature. Bioinformatic analysis 

of differential biology within the population of cells studied relies on inferences and grouping 

of cells due to the spotty nature of data within individual cell scRNA-seq gene counts. One 

biologically relevant variable is readily inferred from scRNA-seq gene count tables regardless 

of individual gene representation within single cells: aneuploidy. Since hundreds of genes are 

present on chromosome arms, high-quality inferences of aneuploidy can be made from scRNA-seq 

datasets. This viewpoint summarizes how utilization of these bioinformatic pipelines can benefit 

scRNA-seq studies, particularly in oncology wherein aneuploidy is both rampant and a hallmark 

of the studied disease. Awareness and use of these analytical pipelines will improve each field’s 

ability to understand the studied diseases. Authors are encouraged to attempt these aneuploid 

analyses when reporting scRNA-seq data, much like copy-number variants are commonly reported 

in bulk genome sequencing data.
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Introduction

Single-cell RNA sequencing (scRNA-seq) has quickly become a new normal for molecular 

biology studies, particularly those performed in vivo. As cell isolation technology improves, 

including the advent of spatial partitioning, its use continues to spread. The value is in 

recognizing cellular heterogeneity within the sample. In oncology, immune cell types can be 

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.
*Address correspondence to: Joe R. Delaney, delaneyj@musc.edu.
Author Contribution: The author confirms sole responsibility for the following: study conception and design, data collection, 
analysis and interpretation of results, and manuscript preparation.

Availability of Data and Materials: No data are included within this Viewpoint.
Ethics Approval: No committees were required for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

HHS Public Access
Author manuscript
Biocell. Author manuscript; available in PMC 2021 July 14.

Published in final edited form as:
Biocell. 2021 ; 45(5): 1167–1170.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quickly identified alongside stromal and endothelial cells within the tumor. In neuroscience, 

glial cells, neurons, astrocytes, oligodendrocytes, and recently differentiated cells can be 

identified. The Human Cell Atlas seeks to define cellular subtypes in all major organs 

(Regev et al., 2017).

Somatic mutations are now recognized to contribute to clonal heterogeneity within otherwise 

normal, aged tissue. This recognition comes as ultra-deep sequencing technologies coupled 

with error-reducing sequencing techniques have enabled the detection of mutant cells 

occupying less than one percent of an examined tissue sample (Martincorena, 2019). 

Aneuploidy, the loss or gain of chromosome arms, appears less prevalent in normal 

tissue in these clonal mutant next-generation sequencing analyses. However, fluorescence 

in situ hybridization studies coupled with specialized single-cell sequencing methods have 

both highlighted the relatively frequent occurrence of aneuploidy in normal and diseased 

tissue (Andriani et al., 2019). Aneuploidy is known to confer cellular biology effects both 

dependent and independent of the particular chromosomes altered. The most commonly 

reported phenotype is the activation of senescence programs in association with aneuploidy.

Given that aneuploidy is (a) known to contribute to cell biology and (b) is present at some 

detectable level in many cell types, it is valuable for single-cell sequencing studies to include 

aneuploidy information in their analyses. This is uncommon in the literature. Whereas 

over 900 tools are available to analyze scRNA-seq data (as monitored on https://www.scrna-

tools.org/), only a handful output aneuploidy data or its sub-chromosomal equivalent copy 

number alterations (CNAs). Yet, reliable aneuploidy calls can be readily obtained in scRNA-

seq data; DNA-sequencing is not required. In this viewpoint, we direct investigators to select 

scRNA-seq CNA data analysis tools. We encourage scientists to report stochastic aneuploidy 

events alongside scRNA-seq datasets.

Systematic Description

While one might predict that simply mapping read counts per chromosome readily 

identifies aneuploidy, the reality is that the data are too heterogeneous to quickly determine 

aneuploidy by eye. Intuitive “eyeball” calls are uncommon in bulk RNA-seq or DNA-seq 

determination of aneuploidy and CNAs, so it is unsurprising that a simple stacking of read 

counts is insufficient for quality inference of aneuploidy in scRNA-seq data. Specialized 

software has thus been developed to appropriately handle RNA-seq data in the context of 

CNA determination.

Each software package described here recognizes the extreme high noise character of 

scRNA-seq data. Software may individually benefit from three pieces of information: (1) 

expression level of many genes along each chromosome arm, (2) changes in B-allele fraction 

(BAF) including loss of heterozygosity (LOH) in a portion of genes containing sequence 

variation, or (3) clonality information which restricts noise to a certain level. Aneuploidy is 

more reliable than focal CNA calls due to the incorporation of data from hundreds of genes. 

However, smaller CNAs will become more reliable as the depth and read length of RNA 

sequencing per cell continues to increase with improved capture technologies, sequencing 

technologies, and decrease of high-throughput sequencing costs.
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Peer-reviewed software packages readily infer copy-number alterations from scRNA-seq 

data: STARCH, (Elyanow et al., 2021), InferCNV [Broad Institute], CaSpER (Serin 

Harmanci et al., 2020), clonealign (Campbell et al., 2019), and HoneyBADGER (Fan et 
al., 2018). HoneyBADGER is loosely named after its methods: “Hidden Markov Model 

integrated Bayesian approach for detecting CNVs and LOHs from single-cell RNA-seq 

data”. While CNA calls are improved based on inclusion of BAF data, HoneyBADGER 

requires somewhat onerous cell-level separated BAM files as well as a file of pre-defined 

single-nucleotide polymorphisms (SNPs). CaSpER utilizes a five-state Hidden Markov 

Model (HMM) alongside BAF to calculate CNAs and removes false positives. CaSpER 

can also be used with bulk RNA-seq data and determines BAFs from whole-sample aligned 

BAM files; no pre-defined SNP file is necessary. Like other tools, CaSpER relies on location 

binning to better build CNAs from many data points. CaSpER uniquely excels in smaller 

CNA calls due to an ability to detect small scale-specific altered regions, such as focal 

amplified PDGFRA. A limitation to CaSpER is the need to access large aligned files for 

bulk or single-cell RNA-seq to generate BAFs. The authors of CaSpER note that their 

software was designed for full transcripts, but made similar calls as HoneyBADGER with a 

3’-end scRNA-seq study.

Clonality can be inferred concurrently with CNAs using STARCH or clonealign. Clonealign 

utilizes single-cell DNA-seq data gathered in parallel to increase the confidence of scRNA-

seq CNA calls. Data are then integrated and clonality is estimated for each cell. Clearly, 

using clonealign strictly to define CNAs in scRNA-seq is circuitous as DNA data are already 

measured, however, clonality estimates are greatly improved by using both RNA and DNA 

methods. STARCH was designed to improve analytical calls using spatial information, 

which presumes clonal expansion requires clones to be more closely packed spatially. 

However, spatial data is optional to use the tool. Like clonealign, STARCH is able to assign 

putative clones to single cells.

A uniquely low-prerequisite tool, InferCNV, deserves special attention. It is capable of 

CNA calls using only count table data from scRNA-seq projects, provided that the user can 

download a gene and chromosome position file as well as note which cells are “normal”. 

While InferCNV has been referred to as a visual tool, it is in fact capable of outputting 

tabular CNA data per cell. While InferCNV has not been peer reviewed in a standalone 

publication, the math behind it has been utilized in a number of high-impact peer-reviewed 

publications (Puram et al., 2017). A limitation to InferCNV is that due to lack of BAF data 

or other corrections, it is prone to an increased rate of false-positive calls.

None of these output CNAs explicitly define when aneuploidy occurs. Thresholds are 

common in the literature: a starting point of 50 percent of a chromosome arm altered in 

one direction may be considered “aneuploid” in the context of scRNA-seq based CNA data 

(Kumar et al., 2020). This may be adjusted for each study based on false-positive rates in 

normal, presumably unaltered, cells.

Considering that these software packages are available at no cost yet remain underutilized 

suggests ease-of-use for users is a potential bottleneck. A point-and-click tool, web-

based or otherwise, is unavailable. However, basic scientists already collaborating with 

DELANEY Page 3

Biocell. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bioinformaticians for scRNA-seq data likely have access to individuals capable of using 

the software highlighted here, as long as the tool’s existence can be communicated to 

collaborators.

For scientists who cannot readily access the full sequencing data from scRNA-seq runs 

due to software limitations or bioinformatic limitations, InferCNV may be considered. All 

tools presented here require R or Python programming knowledge. Incorporation of these 

tools into point-and-click user interfaces, such as Galaxy (Afgan et al., 2018), may increase 

utilization rates. A summary of these tools is provided in Tab. 1.

Discussion

Aneuploidy is often a stochastic process. ScRNA-seq is well-poised to quantify patterns 

of aneuploidy. While scRNA-seq can simultaneously describe the effects of aneuploidy, it 

cannot by itself contribute to our understanding of aneuploidy’s contribution to cell biology 

and disease. As aneuploidy is associated with aging and senescence, regulation of the rate of 

aneuploidy is of interest to many age-related disease fields as well as basic science.

The field with greatest potential benefit from scRNA-seq aneuploidy may be oncology. 

Aneuploidy is a hallmark of solid tumors and CNAs originating from aneuploidy alter 

more genes than canonical single-nucleotide variants or small insertion-deletion mutations. 

Analysis of aneuploidy contributes to our understanding of what forms of genomic 

instability are present in tumors (Delaney et al., 2020). Bulk tumor average aneuploidy 

and single-cell aneuploidy alike inform alteration frequency and intra-patient heterogeneity. 

Selective processes of metastasis and chemotherapy are apparent in clusters built from 

aneuploidy data (Kumar et al., 2020). Clinical therapy success may depend on clonal 

heterogeneity of targetable CNAs, such as loss of BRCA1, BRCA2, or BECN1 (Delaney 

et al., 2017), or amplifications of MET or CDK4/6 (Flaherty et al., 2020). For immunology 

studies, aneuploidy calls may increase confidence or support of uniquely “non-tumor” cells 

as these cells will have markedly different aneuploidy spectrum and normal diploid copy 

number for the entire genome.

Each of the programs discussed here are capable of producing CNA calls from RNA 

versions of single-cell sequencing data. Investigators may also pursue DNA-sequencing 

versions on single-cell experiments, however, the field will benefit from performing 

aneuploidy analysis within the wealth of scRNA-seq studies already performed, as well 

as those planned for future studies. Including aneuploidy calls in scRNA-seq workflows is 

an opportunity ripe for investigation with minimal additional costs.
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Abbreviations

BAF B-allele fraction

BAM Binary Alignment Map (.BAM filetype)

CNA Copy-number alteration

HMM Hidden Markov Model

LOH Loss of heterozygosity

scRNA-seq Single-cell RNA-seq

SNP Single-nucleotide polymorphism
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