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Abstract Agricultural productivity to meet growing demands
of human population is a matter of great concern for all
countries. Use of green compounds to achieve the sustainable
agriculture is the present necessity. This review highlights the
enormous use of harsh surfactants in agricultural soil and
agrochemical industries. Biosurfactants which are reported to
be produced by bacteria, yeasts, and fungi can serve as green
surfactants. Biosurfactants are considered to be less toxic and
eco-friendly and thus several types of biosurfactants have the
potential to be commercially produced for extensive applica-
tions in pharmaceutical, cosmetics, and food industries. The
biosurfactants synthesized by environmental isolates also has
promising role in the agricultural industry. Many rhizosphere
and plant associated microbes produce biosurfactant; these
biomolecules play vital role in motility, signaling, and biofilm
formation, indicating that biosurfactant governs plant–microbe
interaction. In agriculture, biosurfactants can be used for plant
pathogen elimination and for increasing the bioavailability of
nutrient for beneficial plant associated microbes. Biosurfactants
can widely be applied for improving the agricultural soil quality
by soil remediation. These biomolecules can replace the harsh
surfactant presently being used in million dollar pesticide in-
dustries. Thus, exploring biosurfactants from environmental
isolates for investigating their potential role in plant growth
promotion and other related agricultural applications warrants
details research. Conventional methods are followed for screen-
ing the microbial population for production of biosurfactant.
However, molecular methods are fewer in reaching biosurfac-
tants from diverse microbial population and there is need to
explore novel biosurfactant from uncultured microbes in soil

biosphere by using advanced methodologies like functional
metagenomics.
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Introduction

Increase in agricultural productivity to meet ever growing
food demands of human population is a matter of great
concern for all countries. United Nation’s Economic and
Social Commission for Asia and the Pacific (ESCAP) con-
ducted a theme study in April 2009 entitled “Sustainable
Agriculture and Food Security in Asia and the Pacific” in
which the importance of revitalization of native soil systems
for improved crop yield was emphasized. Such revitaliza-
tion processes can be carried out in an eco-friendly manner
using various biological amendments. Many microorgan-
isms found in rhizosphere (the soil under the influence of
plant roots) share a mutualistic relationship with plants
conferring marked beneficial effects on plants. Several
mechanisms are reported by which rhizobacteria help in
plant growth promotion (Gamalero and Glick 2011; Zahir
et al. 2004; Glick et al. 2007). Hence, rhizosphere biology is
considered to be the most intensive area of research in
agriculture.

Surfactants have several functional properties, well
known, and exploited in many commercial sectors. There
are numerous areas of agriculture which also requires sur-
factants. A review by Deleu and Paquot (2004) enlists the
major area where surfactants are employed. It is reported in
year 2004 that approximately±0.2 milliontons of surfac-
tants are used in crop protection and agrochemical formula-
tions. Several reports have highlighted the advantages of
green surfactants (biosurfactant derived from microbes)
over the synthetic surfactant. Since there are fewer reports
stating the application of biosurfactants in agriculture, the
review emphasizes on the significance of biosurfactants and
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biosurfactant producing microbes from soil especially rhi-
zosphere in agriculture sector.

Biosurfactants are low molecular weight surface-active
compounds widely produced by bacteria, yeast and fungi.
These amphiphilic biomolecules reduce the surface tension
at the air/water interfaces and the interfacial tension at oil/
water interfaces (Satpute et al. 2010a; Banat et al. 2010).
There are different types of biosurfactant stated based on
their physico-chemical properties as glycolipids, lipopepti-
des, neutral lipids, phospholipids, fatty acids, and polymeric
(Pacwa-Plociniczak et al. 2011; Cameotra et al. 2010;
Amaral et al. 2010). Biosurfactants are derived from renew-
able resources and are low or nontoxic, biodegradable,
demonstrate excellent surface activity, possess high speci-
ficity, show effectiveness under extreme conditions, and can
be reused through regeneration too as compared to synthetic
surfactants (Koglin et al. 2010; Xu et al. 2011a; Lima et al.
2011b), hence commercially exploited. Biosurfactants have
the potential to be applied in pharmaceutical, cosmetics,
petroleum, and food industries (Rodrigues et al. 2006;
Nitschke and Costa 2007; Lourith and Kanlayavattanakul
2009; Banat et al. 2010; Das et al. 2010). A potent lip-
opeptide biosurfactant, “surfactin” is reviewed as a versatile
bioactive molecule having ability to inhibit fibrin clot for-
mation and is also applied for enhanced oil recovery. In
addition, it has demonstrated antifungal, antiviral, antitu-
mor, insecticidal, and antimycoplasma activities. Surfactin
can also be used as bioremediation agent for treatment of
soil and water (Mulligan 2005). These properties of surfac-
tin reflect its potential commercial applications (Sen 2010).
Recently, biosurfactant and biosurfactant producing
microbes are used for production of nanoparticles. The area
of the biosurfactant mediated process of nanoparticle syn-
thesis is emerging as part of green chemistry (Kiran et al.
2011). Biosurfactants are used for increasing the stability of
microbubble technology which further has wide scope in
molecular imaging, disease diagnosis, in delivery systems
for drugs and genes, cost-effective water purification, and
sewage treatment (Zhang et al. 2011b; Xu et al. 2011b). In
conclusion, these diverse biosurfactants are useful tool for
biotechnology and advantageous for the mankind. Several
patents related to biosurfactant producing microbes mainly
for Pseudomonas spp., Acinetobacter spp., Bacillus spp.,
and Candida spp., types of biosurfactant, the process for
production, and industrial application of biosurfactant have
been issued (Shete et al. 2006), indicating the potential of
these microbe derived biomolecules.

Agriculture related applications of biosurfactants

Taking into account the dual hydrophobic/hydrophilic na-
ture of biosurfactant from microbial sources (Singh et al.
2007), these green surfactants have more advantages over

the chemically synthesized surfactants. These biosurfactants
can be widely exploited in areas related to agriculture for
enhancement of biodegradation of pollutants to improve the
quality of agriculture soil, for indirect plant growth promo-
tion as these biosurfactants have antimicrobial activity and
to increase the plant microbe interaction beneficial for plant.
These biosurfactants can replace the harsh surfactant pres-
ently used in pesticide industries as these natural surfactants
are found to be utilized as carbon source by soil inhabiting
microbes (Scott and Jones 2000; Takenaka et al. 2007; Lima
et al. 2011a) and this accounts for the biological removal of
biosurfactants from the agricultural soil. The following part
of the review highlights on the reports on role of biosurfac-
tants and biosurfactant producing microbes in the most
important commercial sector viz agriculture (Fig. 1).

Improvement of soil quality

The productivity of agriculture land is affected by presence
of organic and inorganic pollutants that impart abiotic stress
on the cultivated crop plant. To increase the quality of such
soil contaminated by hydrocarbon and heavy metals, pro-
cess of bioremediation is required. Microorganisms produc-
ing biosurfactant and and/or biosurfactants can be
effectively used for removal of hydrocarbons as well as
heavy metals (Sun et al. 2006). As biosurfactants are known
to enhance bioavailability and carry out biodegradation of
hydrophobic compounds, different technologies such as soil
washing technology and clean up combined technology
employ biosurfactant for effective removal of hydrocarbon
and metal, respectively (Pacwa-Plociniczak et al. 2011; Liu
et al. 2010; Partovinia et al. 2010; Gottfried et al. 2010;
Coppotelli et al. 2010; Kang et al. 2010; Pei et al. 2009;
Camilios Neto et al. 2009; Zhao and Wong 2009; Robles-
González 2008; Sheng et al. 2008; Santos et al. 2008; Aşçi
et al. 2008; Juwarkar et al. 2007; Hickey et al. 2007; Shin et
al. 2006; Mulligan 2005; Kildisas et al. 2003; Maier et al.
2001). A very important phenomenon of desorption of hy-
drophobic pollutants tightly bound to soil particles is accel-
erated by biosurfactants. This is very crucial for
bioremediation process. Biosurfactants can also enhance
the degradation of certain chemical insecticides which are
accumulated in the agricultural soil (Zhang et al. 2011a;
Singh et al. 2009; Sharma et al. 2009; Wattanaphon et al.
2008; White et al. 2006; Neilson et al. 2003). There are
several reports which suggest role of biosurfactants in im-
proving the health of agriculture soil by the process of soil
remediation. There are reports on pesticide biodegradation
supported by surfactin (Mata-Sandoval et al. 2001) and
degradation of chlorinated hydrocarbon supported by gly-
colipids (Awashti et al. 1999). Biosurfactant from
Lactobacillus pentosus has demonstrated reduction by
58.6 % to 62.8 % of octane hydrocarbon from soil

1006 Appl Microbiol Biotechnol (2013) 97:1005–1016



(Moldes et al. 2011) thus exhibiting the biodegradation ac-
celerator property of biosurfactant. It has been observed that a
biosurfactant producing species of Burkholderia isolated from
oil-contaminated soil may be a potential candidate for biore-
mediation of variety of pesticide contamination (Wattanaphon
et al. 2008). Many researchers have observed that the efficien-
cy of biosurfactant in removal of organic insoluble pollutants
from soil is more as compared to synthetic surfactants
(Cameotra and Bollag 2003; Urum et al . 2003;
Vipulanandan and Ren 2000; Schippers et al. 2000; Dean et
al. 2001; Straube et al. 2003). Literature also states the re-
quirement of iron for increased production of biosurfactant by
Pseudomonas sp. and further enhancement of poly aromatic
hydrocarbons (PAH’s) bioavailability (Santos et al. 2008).
Rhamnolipids are found to be useful in removal of poly
aromatic hydrocarbons (Poggi-Varaldo and Rinderknecht-
Seijas 2003) and pentachlorophenol (Mulligan and Eftekhari
2003) from soil. Thus biosurfactant can be applied in agricul-
ture soil to enhance soil quality. However, high cost for
production of biosurfactant yet restricts the application of
these green surfactants for bioremediation of soil contaminat-
ed by crude oil and/or petroleum (Moldes et al. 2011). Use of
agro-industrial waste for production of green surfactants
which can further be used for biodegradation of hydrocarbons
from soil (Benincasa 2007) needs imperative examination.

Heavy metals are present as pollutant in agriculture soil.
The heavy metal pollution originates from excessive use of
metal salt-based fungicides, sewage, and sludge amend-
ments applied on the agricultural fields. These heavy metals
serve as essential micronutrients and are required for various
important physiological processes in plant metabolism.
However, it can be detrimental to plant growth at higher
concentrations causing damage to plant in form of root
tissue necrosis and purpling of foliage. A recent review
summarizes the role of biosurfactants and biosurfactant
producing microorganisms in bioremediation of heavy metals
and hydrocarbon pollutants. There are several reports on po-
tential properties of biosurfactants produced by Pseudomonas
sp, Bacillus sp., and Acinetobacter sp. for removal of heavy
metals from contaminated soil and even acceleration of

biodegradation of pesticides (Pacwa-Plociniczak et al. 2011;
Kassab and Roane 2006). Rhamnolipid biosurfactant produced
by species of pseudomonads are reported to remove toxic
metals from soil (Herman et al. 1995). Further, biosurfactant
such as rhamnolipid and surfactin are known to remove heavy
metals such as Ni, Cd, Mg, Mn, Ca, Ba, Li, Cu, and Zn (ions)
from soil with a new method of foaming-surfactant technology
(Neilson et al. 2003; Mulligan and Wang 2004; Mulligan et al.
2001).

Augmentation of soil health requires removal of less
water soluble pollutants by use of surfactants. The synthetic
surfactants are also used for removal of nonpolar organic
contaminants (NOC) from soil. However, these surfactants
are required at higher concentration and also affect the
microbial biodegradation (Colores et al. 2000). Thus, rather
than use of harmful synthetic surfactants overproducer of
biosurfactants can be the most useful for bioremediation
(Rosenberg and Ron 1998). Uses of certain supplements
such as cyclodextrin also appear in literature which can
enhance the degradation of hydrocarbons by soil microbial
population (Bardi et al. 2000).

Plant pathogen elimination

Several biosurfactants from microbes have antimicrobial
activity against plant pathogens and therefore they are con-
sidered to a promising biocontrol molecule for achieving
sustainable agriculture. Biosurfactants produced by rhizo-
bacteria are known to have antagonist properties
(Nihorimbere et al. 2011). An agricultural application of
chemical surfactants and biosurfactants also facilitates bio-
control mechanism of plant growth promoting microbes
such as parasitism, antibiosis, competition, induced system-
ic resistance, and hypovirulence (Singh et al. 2007). In bulk,
the surfactants are used in agriculture to enhance the antag-
onistic activities of microbes and microbial products (Jazzar
and Hammad 2003; Kim et al. 2004). Several in vitro and in
situ studies have demonstrated the role of surfactants in
improving the insecticidal activities of other systems
(Jazzar and Hammad 2003; Gronwald et al. 2002;

Fig. 1 Multifunctional
prospective of biosurfactants in
agriculture
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Krishnayya and Grewal 2002). In addition, these surfactants
are used in combination with fungus (Myrothecium verru-
caria) to eradicate weed species which affect the land pro-
ductivity and also the spread of such weed species have
adverse effect on biodiversity (Boyette et al. 2002) and
surfactants are also reported to inhibit the aflatoxin produc-
tion by Aspergillus sp. which infects crops such as cotton-
seed, peanuts and corn during storage as well as at
agricultural field (Rodriguez and Mahoney 1994). Thus
the surfactants (synthetic and biological) play diverse role
in plant pathogen elimination directly or indirectly and at
different processes related to agriculture.

The following section states few examples of biosurfac-
tants as an essential component for inhibition of phytopath-
ogens. Biosurfactant producing rhizospheric isolates of
Pseudomonas and Bacillus have exhibited biocontrol of soft
rot causing Pectobacterium and Dickeya spp. (Krzyzanowska
et al. 2012). Rhamnolipids have demonstrated inhibition of
zoospore forming plant pathogens that have acquired resis-
tance to commercial chemical pesticides (Sha et al. 2011; Kim
et al. 2011; Hultberg et al. 2008a) and another investigation
has shown that rhamnolipid can stimulate plant immunity
which is considered as an alternative strategy to reduce the
infection by plant pathogens (Vatsa et al. 2010). Recent inves-
tigation has also established rhamnolipid as an insecticidal
compound. Kim and co-workers (2011) have isolated biosur-
factant from a strain of Pseudomonas, which has demonstrat-
ed insecticidal activity against green peach aphid (Myzus
persicae). Plant growth-promoting Pseudomonas putida pro-
duces biosurfactants that can cause lysis of zoospores of the
oomycete pathogen Phytophthora capsici; causative agent of
damping-off of cucumber (Kruijt et al. 2009). The lipopeptide
biosurfactant produced by strains of Bacillus exhibits growth
inhibition of phytopathogenic fungi like Fusarium spp.,
Aspergillus spp., and Biopolaris sorokiniana. Such biosurfac-
tant can be used as biocontrol agent (Velho et al. 2011).
Brevibacillus brevis strain HOB1 produces surfactin isoform
and this lipopeptide biosurfactant has demonstrated strong
antibacterial and antifungal property which can be exploited
for control of phytopathogens (Haddad 2008). Antifungal
properties of biosurfactant produced by strains of
Pseudomonas fluorescens is well documented in literature
(Nielsen and Sørensen 2003). Hultberg et al. (2008b)) have
reported that fluorescent pseudomonad’s with the biosurfac-
tant producing ability can inhibit the growth of fungal patho-
gens such asPythium ultimum (causative agent of damping off
and root rot of plants),Fusarium oxysporum (causes wilting in
crop plants), and Phytophthora cryptogea (causes rotting of
fruits and flowers). Pseudomonas sp. are reported as biocon-
trol agents against Verticillium microsclerotia; a causative
agent ofVerticilliumwilt mainly in potatoes. The biosurfactant
produced by this Pseudomonas sp. is considered to play major
role in inhibition of in vitro viability of Verticillium sp.

(Debode et al. 2007). Strains of Pseudomonas sp. terminate
the growth of pathogenic fungi Rhizoctonia solani (causes
several plant diseases) and Phythium ultimum (causes damp-
ing off and root rot of plants) by production of dual function-
ing compounds tensin, viscosin and viscosinamid. The dual
function includes biosurfactant and antifungal activity
(Andersen et al. 2003). Colletotrichum gloeosporioides, caus-
ative agent for anthracnose on papaya leaves is reported to be
controlled by biosurfactant producing Bacillus subtilis isolat-
ed from soil (Kim et al. 2010). A possible plant pathogen
Pseudomonas aeruginosa was reported to be inhibited by
biosurfactant produced by Staphylococcus sp., isolated from
crude oil-contaminated soil (Eddouaouda et al. 2012). The
above examples prove that the green surfactants are well
documented in literature for plant growth promotion by their
detrimental effect on pathogens. Hence, these biosurfactants
and/or biosurfactant producing microbes are potential substi-
tutes for the harsh chemical pesticides and insecticides being
currently used in agriculture. Apart from these anti-
phytopathogenic properties, addition of biosurfactant is also
known to accelerate compositing process by providing favor-
able conditions for microbial growth (Zhang et al. 2011a, b)
and thus offers an additional advantage of use of these green
surfactants., The biosurfactants which have antagonist prop-
erties against phytopathogensmay also affect the other flora of
the system. Thus, to construct a potent green surfactant with
specificity against the phytopathogens, the chemical compo-
sition of the biosurfactant may be varied by altering the
production strategies.

Asset for beneficial plant microbe interaction

To provide beneficial effect to the plants by rhizobacteria, it is
very important for these microbes to interact with the plant
surfaces such as roots (Nihorimbere et al. 2011). Microbial
factors such as motility, ability to form biofilm on root surface
and release of quorum sensing molecules are required to es-
tablish association with the plant. It is reviewed that quorum
sensing molecules such as acyl homoserine lactone (AHL) are
required for synthesis of antifungal compounds by the rhizo-
bacteria. Studies also indicate that the concentration of these
molecules is high in rhizosphere as compared to that to bulk
soil (soil away from plant roots) suggesting the role of AHL
andAHL-like molecules in rhizosphere competence (ability of
beneficial microorganism to colonize the root surface). These
AHL are also reported to contribute in regulation of exopoly-
saccharide essential for biofilm formation (Newton and Fray
2004; Loh et al. 2002). Dusane et al. (2010) have recently
reported that the biosurfactant (rhamnolipid) produced by
Pseudomonas spp. regulates the process of quorum sensing
(cell to cell communication). It is also reported that biosurfac-
tants affect the motility of microorganisms, participate in
signaling and differentiation as well as in biofilm formation
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(Ron and Rosenberg 2011; Berti et al. 2007; VanHamme et al.
2006; Kearns and Losick 2003). Hence, these green surfac-
tants are important parameters for microbes to achieve a
beneficial association with the plant roots and improve the
growth of the plant. Further these biosurfactants produced by
rhizobacteria increase the bioavailability of hydrophobic mol-
ecules which may serve as nutrients. Biosurfactants produced
by soil microbes provide wettability to soil and support proper
distribution of chemical fertilizers in soil thus assisting plant
growth promotion. Reviewing the functions of biosurfactant
indicates the essential role of these green compounds for
sustainable agriculture.

Potential of biosurfactants in pesticide industries

Surfactants are must as adjuvant with fungicides, insecti-
cides, and herbicides. The synthetic surfactant presently
used in pesticides industries act as emulsifying, dispersing,
spreading and wetting agent and enhance the efficiency of
pesticides. In addition, these surfactants are used in insecti-
cides in modern agriculture as these have defensive proper-
ties (Rostas and Blassmann 2009). Different types of
surfactants such as anionic, cationic, amphoteric, and non-
ionic are presently being used at several pesticide manufac-
turing industries (Mulqueen 2003). Thus surfactants are
widely used in formulation of pesticides. However, it is
important to note that the surfactant present in pesticides
formulations in access becomes accumulated in soil and
affects the texture, color and growth of the plant. These
harmful pesticides also become leached from soil to the
ground water (Blackwell 2000). Pesticide residues are
known to persist for years in soil and spreads in air and
water too. These even remain on surface of fruit and vege-
tables (Street 1969). In addition, the synthetic surfactants are
considered as potent organic pollutants in soil (Petrovic and
Barcelo 2004). Considering the adverse effect of pesticides
and surfactants associated with the pesticides, there is need
to use the environmentally safe biosurfactants to replace
these harmful surfactants in the million dollar pesticide
industries thus preventing the pollutions (Hopkinson et al.
1997). Research related to exploration of soil bacteria which
can utilize the chemical surfactant in agriculture soil as
carbon source can be another alternative to this environmen-
tal problem. There is a report on bacteria belonging to
Pseudomonas sp. and Burkholderia sp. from paddy field to
degrade surfactants (Nishio et al. 2002). Agriculture impor-
tant products like pesticides formed with the assistance of
biosurfactant can be widely used on agricultural fields. The
need for agrochemical industries is to develop effective
formulation technology and to achieve this goal; many
companies can employ mixture of biosurfactants in different
combinations with the polymers to make excellent formula-
tions for agricultural applications.

Microbes from soil environment as producers
of biosurfactants

Several researchers indicate that variety of environmental
niches such as soil, water, and leaf surface are explored for
biosurfactant producing bacteria (Burch et al. 2011). Many
rhizosphere and plant associated microbes are known to pro-
duce biosurfactant indicating the potential role of biosurfac-
tant in plant-microbe interaction and further application of
biosurfactant in agriculture (Amani et al. 2010; Singh et al.
2009; Kruijt et al. 2009; Nielsen and Sørensen 2003; Bodour
et al. 2003; Nielsen et al. 2002; Takeyama et al. 2002). The
table 1 summarizes the genera that appear in literature as
biosurfactant producers from rhizosphere as well as contam-
inated soil. The literature affirms the prevalence of biosurfac-
tant producing bacteria in environment and that biosurfactants
also have applications in agriculture and related industries as
they play vital role in soil remediation, plant pathogen elim-
ination and by increasing the bioavailability of nutrient for
beneficial plant associated microbes.

Molecular methods for profiling of biosurfactant producing
community from agriculture soil

The conventional methods used for screening microbes for
biosurfactant production are well complied (Satpute et al.
2010b; Walter et al. 2010). Ecological niches contaminated
with hydrocarbon are the most recommended sites for the
isolation of biosurfactant producing microbes. Techniques
for purification of biosurfactant includes thin layer chroma-
tography, high pressure liquid chromatography and phase
separation technology (Baker and Chen 2010; Heyd et al.
2008) followed is the characterization of the biomolecule by
infra red, gas chromatography mass spectrometry, nuclear
magnetic resonance and fast atom bombardment mass spec-
trometry (Petrovic and Barcelo 2004; Satpute et al. 2010b).
High throughput methods are also developed by automation
and miniaturization for screening of biosurfactant producers
(Walter et al. 2010). Recently, MALDI-TOF mass spectrom-
etry is reported for detection and separation of biosurfac-
tants (Kurtzman et al. 2010). Along with the traditional
methods, molecular techniques are being implemented to
detect presence of biosurfactant producing bacteria.
Techniques such as PCR, cloning, sequencing, homology
analysis, and transposon mutagenesis appear in the litera-
ture. PCR based techniques targeting genes involved either
in synthesis of biosurfactant (for, e.g., srfA3, sfp, coma,
licA3, rhlA, rhlB, rhlC, swrW) or regulation of biosurfactant
production (for ,e.g., rhlR, rhlI, dnaK) have been employed
(Simpson et al. 2011; Neilson et al. 2010; Hommais et al.
2008; Tanikawa et al. 2006; Dubern et al. 2005; Hsieh et al.
2004) mainly for Bacillus spp., Pseudomonas spp., and
Serratia spp. Bioinformatics approach such as “mine” the
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genome of are used in few studies which has led to identifi-
cation of a nonribosomal peptide biosynthetic gene cluster that
codes for proteins involved in the production of structurally
related linear lipopeptides (Berti et al. 2007). The molecular
approach is concentrated for very few bacterial strains and
there is need to explore novel biosurfactant from uncultured
microbes in soil biosphere by using advanced methodologies
like functional metagenomics. This approach will also append
tremendous knowledge of genes pool related to biosurfactant
production; still undiscovered. The data generated from such

high throughput studies will accelerate application of biosur-
factant in agriculture as well as other fields. The following are
the steps that can be employed for molecular characterization
of biosurfactant production in bacteria from selected habitat
especially hydrocarbon/crude oil/ heavy metal-contaminated
agricultural soil:

& Total DNA directly can be extracted from soil samples
and subsequently analyzed either by characterizing par-
ticular sequences targeted and amplified by PCR.

Table 1 Recent reports on agri-potential biosurfactant producing microbes from contaminated soil and rhizosphere

Microorganism Source Reference/s

Pseudomonas aeruginosa Indigenous flora of apple; petroleum-
contaminated soil

Abbasi et al. (2012);
Kumar et al. (2012)

Bacillus cereus Bacillus megaterium
B. thuringiensis

Land farming soil Cerqueira et al. (2012)

Stenotrophomonas maltophilia Land farming soil Cerqueira et al. (2012)

Psuedomonas nitroreducens Petroleum-contaminated soil Onwosi and Odibo (2012)

Acinetobacter sp. Petroleum-contaminated soil Chen et al. (2012)

Staphylococcus sp. Crude oil-contaminated soil Eddouaouda et al. (2012)

Pseudomonas sp. Crude oil-contaminated soil Hua and Wang (2012)

Pseudomonas aeruginosa Bacillus cereus Petrochemical waste-contaminated soil Cerqueira et al. (2011)

Bacillus subtilis Endosulfan sprayed cashew plantation
soil containing hydrophobic substances

Sekhon et al. (2011)

Serratia marcescens Hydrocarbon-contaminated soil Roldán-Carrillo et al. (2011)

Enterobacter cloacae Pseudomonas sp. Heavy crude oil-contaminated soil Darvishi et al. (2011)

Streptomyces rochei Heavy crude oil-contaminated soil Chaudhary et al. (2011)

Pseudomonas fluorescens Rhizosphere of fique Sastoque-Cala et al. (2010)

Pseudomonas aeruginosa Petroleum-contaminated soil Nie et al. (2010)

Rhodococcus fascaians Antarctic soil Gesheva et al. (2010)

Bacillus subtilis Soil Kim et al. (2010)

Bacillus mojavensis Endophytic bacteria from maize Snook et al. (2009)

Sphingomonas paucimobilis Phenanthrene-contaminated soil microcosm Coppotelli et al. (2010)

Pseudomonas sp. Agriculture soil Singh et al. (2009)

Pseudomonas sp. Oil-contaminated soil Cameotra and Singh (2009)

Pseudomonas putida Rhizosphere of black pepper Kruijt et al. 2009

Pseudomonas aeruginosa Oil-contaminated soil de Lima et al. (2009)

Burkholderia cenocepacia Fuel oil-contaminated soil Wattanaphon et al. (2008)

Rhodococcus wratislaviensis Soil Tuleva et al. (2008)

Nocardia otitidiscaviarium Contaminated soil Zeinali et al. (2007)

Pseudomonas aeuroginosa Diesel-contaminated soil Chen et al. (2007)

Pantoea sp. Ornithogenic soil of Antarctica Vasileva-Tonkova and Gesheva (2007)

Pseudomonas aeruginosa Bacillus subtilis Petroleum oil-contaminated soil Das and Mukherjee (2007)

Pseudomonas sp. Rhizosphere of white and red cocoyam plants Perneel et al. (2007)

Pseudomonas chlororaphis Soil Gunther et al. (2005)

Acinetobacter junii Long Beach soil Menezes Bento et al. (2005)

Pseudomonas fluorescens Sugar beet rhizosphere Nielsen and Sørensen (2003)

Flavobacterium sp. Hydrocarbon/metal-contaminated soil Bodour et al. (2003)

Bacillus sp. Soil Takeyama et al. (2002)

Pseudomonas fluorescens Petroleum-contaminated soil Barathi and Vasudevan (2001)
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& PCR products can be analyzed by cloning or genetic
fingerprint. Genetic fingerprint consists in a rapid and
simple electrophoretic analysis of the PCR products
enabling the analysis of the genetic structure of the
community.

& Characterization of cloned sequences enables assess-
ment of the genetic diversity of a community and can
reveal the phylogenetic affiliation of the community
members.

& Similarly, the sequencing of bands of fingerprint profiles
can lead to identification of particular populations and/or
type of biosurfactant dominant in the selected niche.

& Functional community can be analyzed by FISH, SIP,
DNA microarray technology and can also help to
assess the genetic structure of biosurfactant producing
communities.

Apart from the above methodologies, real time PCR can
also be employed to understand the biosurfactant producing
population present in a particular niche in comparison with
the total bacterial community profile.

Screening unculturable microbes for biosurfactant
production: A metagenomic approach

Metagenomics is the culture-independent genomic analysis
of microbial communities. The term was derived from the
statistical concept of meta-analysis (the process of statisti-
cally combining separate analysis) and genomics (the com-
prehensive analysis of an organism’s genetic material)
(Schloss and Handelsman 2003; Rondon et al. 2000).
Thus, this technique is a powerful tool for exploring novel
compounds from uncultured bacteria associated with natural
ecosystems. No PCR is involved in the metagenomics and
hence PCR biases can be ruled out. Other advantage is that
whole soil DNA is cloned and sequenced, thus metagenom-
ics offers the opportunity to capture operons or genes encod-
ing pathways that may direct the synthesis of complex
molecules such as biosurfactants. It is observed that the
genes that encode for proteins/enzymes involved in the
pathway of biosurfactant synthesis are usually clustered in
a region of chromosome. The gene related to biosyn-
thesis of bacterial surfactants lie on gene cluster of
approximately 3,000–7,000 bp. Hence it is possible to
imply the metagenomic approach to obtain novel bio-
surfactant from uncultured bacteria associated with con-
taminated agricultural soil and rhizosphere. Most of the
reports on commercially significant biosurfactant are
from pathogenic bacterial strains and thus metagenomic
approach is must for production of biosurfactants and in
supplement there is greater possibility to search for
novel biosurfactant by this technique. Fig 2 summaries
the steps for functional metagenomic to mine the novel

biosurfactants from uncultured bacteria. The location for
extraction of total metagenomic DNA should be selected
which may include hydrocarbon, pesticides or heavy
metal-contaminated agricultural soil and/or rhizosphere.
The total DNA extracted should be fragmented by re-
striction enzymes and inserted in a suitable expression
vector. The DNA construct should be transformed in
host like E.coli and all the metagenomic clones should
be screened for production of biosurfactant by known
conventional and/or high through put techniques. The
novel surface active compound should be further chem-
ically characterized. The sequence of the clone positive
for biosurfactant production should be sequenced and
analyzed. The functional metagenomic approach seems
a promising technique for mining novel green surfac-
tants which can replace the harsh chemical surfactants
widely employed in agriculture as well as other sectors.

Total DNA Extraction 

+

Suitable restriction 
digested expression vectors Digested Heterologous DNA 

E. coli (Host cells)

Ligation

DNA construct

Transformation 

+

Metagenomic Library 

Screening the clones for production of biosurfactant 

Chemical characterization of surface active compound 

(a) (b)

Optimization of expression 

Fig. 2 Schematic representation of construction and screening of
metagenomic libraries from contaminated agriculture soil (a) and rhi-
zosphere (b) for novel biosurfactant from uncultured bacteria
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Conclusion

Surfactants have several applications in agriculture and ag-
rochemical industries. However, there is rare use of biosur-
factants which are more environmental friendly. Exact role
of surfactant in facilitating other systems as biocontrol
agents is yet not much understood and warrants investiga-
tions. Such studies will help in replacing the harsh chemical
surfactants with green ones. There is need to work on the
production cost of green surfactants to achieve net economic
gain from application of biosurfactants in agriculture as well
as other sectors. The use of agriculture waste for overpro-
duction of biosurfactants also requires a more serious
thought. The chemical compositions of biosurfactants
reported potent biocontrol agents can be altered by changing
the production scheme. This approach may lead to biosyn-
thesis of highly target specify green surfactant/s. The high
prevalence of biosurfactants and biosurfactant producing
bacteria in rhizosphere is a positive indication for its
potent role in sustainable agriculture. Mainly species of
Pseudomonas and Bacillus appear in literature as pro-
ducers of biosurfactants indicating that only limited
genera have been studied till date. A modern approach
such as functional metagenomics is the utmost essential
which will even lead to discovery of novel green surfac-
tants. Intense work on green surfactants is a priority to
prevent the adverse effects of synthetic surfactants largely
employed in many commercial sectors including agro-
chemical industries. Hence, it can be concluded that a
cumulative input by researchers from various fields such
as molecular biology, biochemistry, microbiology, compu-
tational biology, environmental science is indispensable.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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